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Abstract

Descriptive region features extracted by object detection net-
works have played an important role in the recent advance-
ments of image captioning. However, they are still criticized
for the lack of contextual information and fine-grained de-
tails, which in contrast are the merits of traditional grid fea-
tures. In this paper, we introduce a novel Dual-Level Col-
laborative Transformer (DLCT) network to realize the com-
plementary advantages of the two features. Concretely, in
DLCT, these two features are first processed by a novel Dual-
way Self Attenion (DWSA) to mine their intrinsic properties,
where a Comprehensive Relation Attention component is also
introduced to embed the geometric information. In addition,
we propose a Locality-Constrained Cross Attention module
to address the semantic noises caused by the direct fusion
of these two features, where a geometric alignment graph
is constructed to accurately align and reinforce region and
grid features. To validate our model, we conduct extensive ex-
periments on the highly competitive MS-COCO dataset, and
achieve new state-of-the-art performance on both local and
online test sets, i.e., 133.8% CIDEr on Karpathy split and
135.4% CIDEr on the official split.

Introduction
Image captioning is the task of generating a descriptive
statement automatically for an input image. Its main chal-
lenges not only lie in the comprehensive understanding of
objects and relationships in the image, but also in the genera-
tion of fluent sentences that match the visual semantics. With
years of developments, the great success of image caption-
ing has been supported by a flurry of methods (Rennie et al.
2017; Anderson et al. 2018; Zhou et al. 2020) and bench-
mark datasets (Lin et al. 2014).

Among these advancements, a milestone in image cap-
tioning is the introduction of visual region features extracted
by object detection networks (Anderson et al. 2018), e.g.,
Faster R-CNN (Ren et al. 2015). Compared with the grid
features1 used in earlier methods (Vinyals et al. 2015), re-
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1The feature maps of the pre-trained convolution neural net-
works (CNN).

Figure 1: (a) Limitations of region features on characteriz-
ing contextual (up) and detailed (down) information. (b) An
example of region features (left), grid features (right) and
their geometric alignment. Our model enables the interac-
tion between two kinds of features based on their semantic
alignment constructed according to their geometric proper-
ties. (c) An illustration of semantic noise problem. Blue re-
gions are the top-k attended regions (from deep to shallow)
by the red grid. In Transformer (left), the top-5 attended re-
gions are all semantically unrelated. In our DLCT (right),
the red grid only attends to two semantically related regions.

gion features can provide object-level information, since
most salient regions in an image can be recognized and rep-
resented by a feature vector. Hence, region features greatly
reduce the difficulty of visual-semantic embeddings, based
on which recent endeavors have greatly boosted the perfor-
mance of image captioning (Huang et al. 2019; Cornia et al.
2020; Pan et al. 2020).

Despite the great success, region features are still criti-
cized for the lack of contextual information and fine-grained
details. As illustrated in Fig.1-(a), the detected regions may
not cover the entire image, leading to the inability to cor-
rectly describe the global scenes, e.g., in front of a store.
Meanwhile, each region is represented by a single fea-
ture vector, which inevitably loses object details in large
amounts, e.g., the colors of trains. However, these shortcom-
ings are the merits of grid features which in contrast cover
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all the content of a given image in a more fragmented form.
To this end, it is a natural thought to use both features as

the visual input, which however results in a new issue. To
explain, most recent methods in image captioning (Huang
et al. 2019; Cornia et al. 2020; Pan et al. 2020) use the self-
attention modules to model the relationships of visual fea-
tures. Under this setting, the direct use of two sources of
features is prone to producing semantic noises during the at-
tention process. For instance, a grid may interact with incor-
rect regions just because they have similar appearances, e.g.,
the cat’s belly and the white remote controller, as shown in
Fig.1-(c). Such a case not only hinders the complementarity
of two features but also degrades the overall performance,
i.e., using two features might be worse than using one, which
has also been validated in Tab.5.

In this paper, we propose a novel Dual-Level Collabo-
rative Transformer (DLCT) network to realize the comple-
mentary advantages of region and grid features for image
captioning. Concretely, as shown in Fig.2, the two sources
of features are first processed by a novel Dual-Way Self-
Attention (DWSA) module to explore their intrinsic prop-
erties, where a Comprehensive Relation Attention (CRA)
scheme is equipped to embed absolute and relative geome-
try information of input features. In addition, we further pro-
pose a Locality-Constrained Cross Attention (LCCA) mod-
ule to address the aforementioned degradation issue, where
a geometric alignment graph is constructed to guide the se-
mantic alignment between two sources of features. With this
geometric alignment graph, LCCA can accurately enable the
interaction between features of two sources. More impor-
tantly, it can reinforce each type of feature by cross-attention
fusions, such as transferring objectness information from re-
gion features to grid ones and supplementing fine-grained
details from grid features to region ones.

To validate the proposed DLCT, we conduct extensive
experiments on MS-COCO dataset (Lin et al. 2014), and
achieve new state-of-the-art performances for image cap-
tioning, i.e., 133.8% CIDEr scores on Karpathy test set
(Karpathy and Fei-Fei 2015) and 135.4% CIDEr scores on
the online test.

We summarize the contributions of this paper as follows:

• We propose an Dual-level Collaborative Transformer net-
work to achieve the complementarity of region and grid
features. Extensive experiments on MS-COCO dataset
demonstrate the superior performance of our method
compared with the state-of-the-arts.

• We propose Locality-Constrained Cross Attention to ad-
dress the issue of semantic noise aroused by the direct
fusion of two sources of features. With the constructed
geometric alignment graphs, LCCA can not only enables
the interaction between features of different sources ac-
curately, but also reinforce each kind of feature via cross-
attention fusions.

• To our best knowledge, we also present the first attempt to
explore the absolute position information for image cap-
tioning. By integrating absolute and relative location in-
formation, we further improve the modeling of intra- and
inter-level relationships.

Related Work
Existing image captioning approaches typically follow the
encoder-decoder architecture (Xu et al. 2015; Huang et al.
2019; Guo et al. 2020; Cornia et al. 2020; Zhao, Wu, and
Zhang 2020; Seo et al. 2020), which takes an image as in-
put and generates a description in the form of natural lan-
guage. Earlier works (Xu et al. 2015; Lu et al. 2017; Jiang
et al. 2020) apply grid-based features as input to generate
captions, which are fixed-size patches extracted from the
CNN (He et al. 2016; ?) model. Recently, region-level fea-
tures extracted by Faster-RCNN (Ren et al. 2015) have also
been introduced to captioning models, significantly improv-
ing the quantitative performance of image captioning (An-
derson et al. 2018; Herdade et al. 2019; Huang et al. 2019;
Cornia et al. 2020; Guo et al. 2020). Nevertheless, they have
a deficiency of predicting sentences by using only one kind
of feature.

HAN (Wang, Chen, and Hu 2019) proposes a hierarchical
attention network to combine text, grids, and regions with a
relation module to exploit the inherent relationship among
diverse features. However, it fails to integrate location in-
formation of visual features and coarsely model appearance
relationship while ignoring to filter semantic noises. GCN-
LSTM (Yao et al. 2018) and Object Relation Transformer
(Herdade et al. 2019) utilize bounding boxes of regions to
model location relationships between regions in a relative
manner. However, by modeling location relatively, they can
integrate appearance features and geometry features but still
fail to grab the absolute locations of features in an image.

Dual-Level Collaborative Transformer
In this section, we introduce a novel image captioning
model, named Dual-Level Collaborative Transformer, which
uses both grid and region features to achieve the comple-
mentarity of them. The overall structure of our model is il-
lustrated in Fig. 2.

Integrating Position Information
Previous methods only model location relationships of re-
gions in a relative manner. Thus we propose Comprehen-
sive Relation Attention (CRA) to model complex visual and
location relationships between input features by integrating
both absolute and relative location information.

Absolute Postional Encoding Absolute positional encod-
ing (APE) tells the model where the feature is, which is
important information. Suppose there are two objects with
identical appearance features: one locates in the corner and
the other locates at the center. In this case, APE facilitates
the model to distinguish them accurately. For APE, we con-
sider two kinds of visual features, i.e., grids and regions. For
grids, we use the concatenation of two 1-d sine and cosine
embeddings to get the grid positional encoding (GPE):

GPE(i, j) = [PEi;PEj ], (1)
where i,j are the row index and column index of the grid and
PEi, PEj ∈ Rdmodel/2 are defined as:

PE(pos, 2k) = sin(pos/100002k/(dmodel/2)),

PE(pos, 2k + 1) = cos(pos/100002k/(dmodel/2)),
(2)
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Figure 2: Overview of the proposed Dual-Level Collaborative Transformer architecture. We devise the Comprehensive Relation
Attention to integrate position information in both absolute and relative manners. The Dual-Way Self Attention is applied to
mine the intrinsic properties of two kinds of features, followed by the Locality-Constrained Cross Attention (LCCA) which
enables the interaction between regions and grids. With the geometric alignment graph, LCCA can eliminate semantic noises
and achieve inter-level fusion effectively.

where pos denotes the position and k is the dimen-
sion. For regions, we embed 4-d bounding box Bi =
(xmin, ymin, xmax, ymax) in region positional encoding
(RPE):

RPE(i) = BiWemb, (3)
where i is the index of box, (xmin, ymin) and (xmax, ymax)
respectively denote the top-left and bottom-right corners of
the box and Wemb ∈ Rdmodel×4 is an embedding parameter
matrix.

Relative Positional Encoding To better integrate relative
location information of visual features, we add relative lo-
cation information according to the geometric structure of
bounding boxes. The bounding box of a region can be repre-
sented as (x, y, w, h) where x, y, w, and h denote the box’s
center coordinates and its width and height. Note that a grid
is a special case of a bounding box. So grids can also be
represented as (x, y, w, h) according to its respective field.
Thus for boxi and boxj , we can represent their geometric
relationship as a 4-d vector:

Ω(i, j) =(
log (
|xi − xj |

wi
), log (

|yi − yj |
hi

), log (
wi
wj

), log (
hi
hj

)

)T
.

(4)
Then Ω(i, j) is embeded in a high-dimensional embedding
by the Emb method in (Vaswani et al. 2017). Finally, Ω(i, j)
is mapped to a scalar which conveys the geometric relation-
ship between two boxes:

Ω(i, j) = ReLU(Emb(Ω(i, j))WG), (5)

where WG is a learned parameter matrix.

Comprehensive Relation Attention Once absolute infor-
mation and relative information are extracted, we can in-
tegrate them by Comprehensive Relation Attention (CRA).
For APE, we modify the queries and keys at the attention
layer:

W =
(Q+ posq)(K + posk)T√

dk
, (6)

where posq and posk are APE of queries and keys respec-
tively. Then we utilize relative location information to adjust
attention weights by:

W ′ij = Wij + log(Ω(i, j)). (7)

Finally, softmax is applied to normalize weights and calcu-
late the outputs of CRA. Our Multi-Head CRA (MHCRA)
can be formalized as:

MHCRA(Q,K, V ) = Concat(head1, · · · , headh)WO,
(8)

headi = CRA(QWQ
i ,KW

K
i , V W

V
i , posq, posk,Ω), (9)

where

CRA(Q,K, V, posq, posk,Ω) =

softmax(
(Q+ posq)(K + posk)T√

dk
+ log(Ω))V.

(10)

Dual-Level Collaborative Encoder
Given an image, we firstly extract its grid and region features
respectively dubbed as VG = {vi}NG and VR = {vi}NR .
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Figure 3: Example of a geometric alignment graph. Re-
gions and grids with intersections (highlighted with the same
color) are connected by undirected edges to eliminate se-
mantically unrelated information. Note each node has a self-
connected edge.

NG and NR are numbers of corresponding features. Our en-
coder consists of two sub-modules: Dual-Way Self Attention
and Locality-Constrained Cross Attention.

Dual-Way Self Attention In general, visual features are
extracted by locally-connected convolutions, which make
them isolated and relation-agnostic. It is believed that Trans-
former Encoder contributes significantly to the performance
of image captioning, because it can model relationships be-
tween the inputs to enrich visual features by self-attention.
To better model intra-level relationships of two kinds of fea-
tures, we devise a Dual-Way Self Attention (DWSA) which
consists of two independent self-attention modules.

Specifically, the hidden states of regions H
(l)
r and grids

H
(l)
g are fed into the (l+1)-th DWSA to learn relation-aware

representaion:

C(l)
r = MHCRA(H(l)

r ,H
(l)
r ,H

(l)
r ,RPE,RPE,Ωrr), (11)

C(l)
g = MHCRA(H(l)

g ,H
(l)
g ,H

(l)
g ,GPE,GPE,Ωgg). (12)

where H
(0)
r = VR, H(0)

g = VG. Ωrr and Ωgg are relative
location matrix of regions and grids respectively. Then we
adopt two independent position-wise feedforward networks
FFN for each type of visual features:

C
′(l)
r = FFNr(C(l)

r ), (13)

C
′(l)
g = FFNg(C(l)

g ). (14)
After that, the relation-aware representations are fed into the
next module.

Locality-Constrained Cross Attention We propose
Locality-Constrained Cross Attention (LCCA) to model
complex interactions between regions and grids for inter-
level fusion. To avoid introducing semantic noises, we first
create a geometric alignment graph G = (V,E). All region
and grid features are represented as independent nodes to
form a visual node set V . For edge set E, a grid node is
connected to a region node if and only if their bounding
boxes have intersections. Following the above rules, we
can construct an undirected graph, as illustrated in Fig. 3.
Based on the geometric alignment graph, we apply LCCA

to identify attention across two different kinds of visual
feature fields: the source field and the target field. In LCCA,
the source field serves as queries and the target field serves
as keys and values. LCCA aims at reinforcing representation
of the source field by embedding information of the target
field into the source field. Like Equ. (1)(2), we integrate the
absolute and relative location information to get the weight
matrix W

′
and normalize it:

αij =
eW

′
ij∑

j∈A(vi)
eW

′
ij

, (15)

where vi is the visual node and A(vi) is the set of neighbor-
ing visual nodes of vi. The weighted sum is applied as

Mi =
∑

j∈A(vi)

α
(l)
ij Vj , (16)

where Vj is the j-th visual node value. For simplicity, we
formulate this stage as

M = graph-softmax
G

(W ′)V, (17)

where graph-softmax assign 0 weight to non-neighboring vi-
sual nodes and apply softmax like Equ. (15) based on G.
Overall, our Multi-Head LCCA (MHLCCA) can be formu-
lated as

MHLCCA(Q,K, V ) = Concat(head1, · · · , headh)WO,
(18)

headi = LCCA(QWQ
i ,KW

K
i , V W

V
i , posq, posk,Ω, G),

(19)
where

CRA(Q,K, V, posq, posk,Ω, G) =

graph-softmax
G

(
(Q+ posq)(K + posk)T√

dk
+ log(Ω))V.

(20)
In this stage, the grid features and region features serve as
the source field and target field alternately. For the l-th out-
put of DWSA:

M(l)
r = MHLCCA(C

′(l)
r ,C

′(l)
g ,C

′(l)
g ,RPE,GPE,Ωrg, G),

(21)
M(l)

g = MHLCCA(C
′(l)
g ,C

′(l)
r ,C

′(l)
r ,GPE,RPE,Ωgr, G),

(22)
where Ωrg is the relative position matrix between regions
and grids and Ωgr is the relative position matrix between
grids and regions.

By LCCA, we embed regions into grids and vise versa
to reinforce two kinds of features. Specifically, grid fea-
tures attend to regions to get high-level object information,
while regions attend to grids to supplement detailed and con-
textual information. With the geometric alignment graph,
LCCA constrains information from semantically unrelated
visual features to eliminate semantic noises and apply cross-
attention effectively.

Note that a region can align with one or more grids while a
grid can align with zero or more regions. There might exist a
grid that aligns with no region. So we create a self-connected
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edge for each node in the geometric alignment graph. Be-
sides, self-connected edges give the attention module an ex-
tra choice of not attending to any other features. In the l-th
layer, the attention module is followed by two independent
FFN like in DWSA:

H(l+1)
r = FFN′r(M

(l)
r ), (23)

H(l+1)
g = FFN′g(M

(l)
g ). (24)

Note that the output of LCCA serves as the input of DWSA.
After multi-layer encoding, grid features and region features
are concatenated and fed into decoder layers.

Objectives
Given ground truth sequence y∗1:T and a captioning model
with parameters θ. We optimize the following cross-entropy
(XE) loss:

LXE = −
T∑
t=1

log(pθ(y
∗
t |y∗1:t−1)). (25)

Then we continually optimize the non-differentiable
CIDER-D score by Self-Critical Sequence Training (Rennie
et al. 2017) (SCST) following (Cornia et al. 2020):

∇θLRL(θ) = −1

k

k∑
i=1

(r(yi1:T )− b)∇θ log pθ(y
i
1:T ), (26)

where k is the beam size, r is the CIDEr-D score function,
and b = (

∑
i r(y

i
1:T ))/k is the baseline.

Experiments
Datasets
We conduct our experiments on the benchmark image cap-
tioning dataset COCO (Lin et al. 2014). The dataset contains
123,287 images, each annotated with 5 different captions.
For offline evaluation, we follow the widely adopted Karpa-
thy split (Karpathy and Fei-Fei 2015), where 113,287, 5,000,
5,000 images are used for training, validation, and testing
respectively. We also upload generated captions of COCO
official testing set for online evaluation.

Experimental Settings
To extract visual features, we use the pre-trained Faster-
RCNN (Ren et al. 2015) provided by (Jiang et al. 2020), that
uses delated stride-1 C5 backbone and 1 × 1 RoIPool with
two FC layers as the detection head to train Faster R-CNN
on the VG dataset. In the feature extraction stage, it removes
the delation and uses a normal C5 layer to extract grid fea-
tures. For grid features, we leverage their grid features and
average-pool them to 7×7 grid size. For region features, we
use the same model to extract 2048-d features after the first
FC-layer of the detection head.

In our implementation, we set dmodel to 512 and the num-
ber of heads to 8. The number of layers for both encoder
and decoder is set to 3. In the XE pre-training stage, we
warm up our model for 4 epochs with the learning rate lin-
early increased to 1 × 10−4. Then we set the learning rate

Figure 4: Examples of image captioning results by standard
Transformer and our proposed DLCT with ground truth sen-
tences and the corresponding CIDEr scores. Generally, our
method can generate more accurate and descriptive captions.

to 1 × 10−4 between 5 ∼ 10 epoches, 2 × 10−6 between
11 ∼ 12 epoches, 4 × 10−7 afterwards. The batch size is
set to 50. After the 18-epoch XE pre-training stage, we start
to optimize our model with CIDEr reward with 5 × 10−6

learning rate and 100 batch size. We use Adam optimizer
in both stages and the beam size is set to 5. Following the
standard evaluation criterion, we utilize BLEU@N (Pap-
ineni et al. 2002), METEOR (Banerjee and Lavie 2005),
ROUGE-L (Lin 2004), CIDEr (Vedantam, Lawrence Zit-
nick, and Parikh 2015), and SPICE (Anderson et al. 2016)
to evaluate our model.

Performance Comparison
Offline Evaluation Table 1 summarizes the performance
of the state-of-the-art models and our approach on the of-
fline test split. We also report the results of ensembled mod-
els for a comprehensive comparison. The compared models
include: SCST (Rennie et al. 2017), Up-Down (Anderson
et al. 2018), HAN (Wang, Chen, and Hu 2019), GCN-LSTM
(Yao et al. 2018), SGAE (Yang et al. 2019), ORT (Herdade
et al. 2019), SRT (Wang et al. 2020), AoA (Huang et al.
2019), HIP (Yao et al. 2019), M2 (Cornia et al. 2020) and
X-Transformer (Pan et al. 2020).

As shown in Table 1, our single model consistently ex-
hibits better performance than the others. Our DLCT sur-
passes all the other models in terms of BLEU-1, BLEU-4,
CIDEr while being comparable on Meteor and Rouge with
the strongest competitor X-Transformer. In sum, our DLCT
outperforms X-Transformer in most of the metrics and per-
forms slightly worse in SPICE. The CIDEr score of our
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Single Model Ensemble Model
Model B-1 B-4 M R C S B-1 B-4 M R C S
SCST (ResNet-101) cvpr2017 - 34.2 26.7 57.7 114.0 - - 35.4 27.1 56.6 117.5 -
Up-Down (ResNet-101) cvpr2018 79.8 36.3 27.7 56.9 120.1 21.4 - - - - - -
HAN (ResNet-101) aaai2019 80.9 37.6 27.8 58.1 121.7 21.5 - - - - - -
GCN-LSTM (ResNet-101) eccv2018 80.5 38.2 28.5 58.5 128.3 22.0 80.9 38.3 28.6 58.5 128.7 22.1
SGAE (ResNet-101) cvpr2019 80.8 38.4 28.4 58.6 127.8 22.1 81.1 39.0 28.4 58.9 129.1 22.2
ORT (ResNet-101) nips2019 80.5 38.6 28.7 58.4 127.8 22.1 - - - - - -
SRT (ResNet-101) aaai2020 80.3 38.5 28.7 58.4 129.1 22.4 - - - - - -
AoA (ResNet-101) iccv2019 80.2 38.9 29.2 58.8 129.8 22.4 81.6 40.2 29.3 59.4 132.0 22.8
AoA (ResNeXt-101 Grid) iccv2019 80.7 39.0 28.9 58.7 129.5 22.6 - - - - - -
HIP (SENet-154) iccv2019 - 39.1 28.9 59.2 130.6 22.3 - - - - - -
M2 (ResNet-101) cvpr2020 80.8 39.1 29.2 58.6 131.2 22.6 82.0 40.5 29.7 59.5 134.5 23.5
M2 (ResNeXt-101 Grid) cvpr2020 80.8 38.9 29.1 58.5 131.7 22.6 - - - - - -
X-Transformer (ResNet-101) cvpr2020 80.9 39.7 29.5 59.1 132.8 23.4 81.7 40.7 29.9 59.7 135.3 23.8
X-Transformer (ResNeXt-101 Grid) cvpr2020 81.0 39.7 29.4 58.9 132.5 23.1 - - - - - -
Ours (ResNeXt-101) 81.4 39.8 29.5 59.1 133.8 23.0 82.2 40.8 29.9 59.8 137.5 23.3

Table 1: Performance comparisons on COCO Karpathy test split. B-1, B-4, M, R, C, and S are short for BLEU-1, BLEU-4,
METEOR, ROUGE, CIDEr, SPICE scores, respectively. Note that 4 models are used for the ensemble. The backbone is listed
in brackets.

Model B-1 B-2 B-3 B-4 M R C
c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCST (ResNet-101) 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
Up-Down (ResNet-101) 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
HAN (ResNet-101) 80.4 94.5 63.8 87.7 48.8 78.0 36.5 66.8 27.4 36.1 57.3 71.9 115.2 118.2
GCN-LSTM (ResNet-101) 80.8 95.2 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
SGAE (ResNet-101) 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
AoA (ResNet-101) 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
HIP (SENet-154) 81.6 95.9 66.2 90.4 51.5 81.6 39.3 71.0 28.8 38.1 59.0 74.1 127.9 130.2
M2 (ResNet-101) 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
X-Transformer (ResNet-101) 81.3 95.4 66.3 90.0 51.9 81.7 39.9 71.8 29.5 39.0 59.3 74.9 129.3 131.4
X-Transformer (SENet-154) 81.9 95.7 66.9 90.5 52.4 82.5 40.3 72.4 29.6 39.2 59.5 75.0 131.1 133.5
DLCT (ResNeXt-101) 82.0 96.2 66.9 91.0 52.3 83.0 40.2 73.2 29.5 39.1 59.4 74.8 131.0 133.4
DLCT (ResNeXt-152) 82.4 96.6 67.4 91.7 52.8 83.8 40.6 74.0 29.8 39.6 59.8 75.3 133.3 135.4

Table 2: COCO online leaderboard of published state-of-the art image captioning models. The backbone is listed in brackets.

DLCT reaches 133.8%, which advances X-Transformer by
1%. The boost of performance demonstrates the advantages
of our DLCT which uses the complementary appearance and
geometry features of regions and grids, and models intra-
and inter-level for detailed and comprehensive visual repre-
sentations. Our ensembled model achieves the best results
in BLEU-1, BLEU-4, Rouge and a particularly high score in
CIDEr. Our Meteor score is comparable with the best model
as well while the SPICE score is slightly worse. For a fair
comparison, we also run M2 and X-Transformer based on
our features. The results show that our DLCT still outper-
forms M2 in all metrics.

Online Evaluation We submit the generated captions on
the official testing set to the online testing server and re-
port the results in Table 2, which shows the performance
leaderboard with 5 reference captions (c5) and 40 reference
captions (c40). For online evaluation, we ensemble 4 mod-
els and adopt two different backbones: ResNeXt-101 and
ResNeXt-152 (Xie et al. 2017). Compared to all the other
state-of-the-arts, our model with ResNeXt-152 achieves the
best performance in all metrics. Notably, our model with

the ResNeXt-101 can achieve comparable performance to
X-Transformer with SENet-154 (Hu et al. 2020).

Ablation Study
We conduct several ablative studies to quantify the contribu-
tion of each design in our model.

Features To better understand the effect of our features,
we conduct several experiments on our features using Stan-
dard Transformer as shown in Table 3. As we can see, the
results of every single feature and concatenation of both fea-
tures are trivial and our approach with both features can
achieve much better results.

CRA To better demonstrate the effectiveness of CRA,
we conduct several ablative experiments as shown in Ta-
ble 4. CRA can improve the performance of both the model
with grid feature and the model with region feature. And it
can also improve the performance by cooperating with our
LCCA, which boosts the CIDEr-D score from 133.0% to
133.8%. By integrating absolute and relative location infor-
mation, the captioning model can better understand the ap-
pearance features and the relationships among them.
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Figure 5: Attention visualization of region-based Transformer (a) and our DLCT (b). For each word, we show top-3 attended
regions (red, blue, green respectively) and the attention heatmap on grids (only available in DLCT) with the highest attention
weight in the title. Both Transformer and our DLCT can attend to corresponding regions when generating words. When gener-
ating words like “yellow” and “tracks”, our DLCT can attend to corresponding grids with detailed and contextual information.

B-1 B-4 M R C S
Grid (G) 81.2 39.0 29.0 58.6 131.2 22.4
Region (R) 80.1 39.0 28.9 58.6 130.1 22.4
G + R 80.9 38.9 29.2 58.6 131.6 22.7
DLCT (G+R) 81.4 39.8 29.5 59.1 133.8 23.0

Table 3: Performance comparison of different feature set-
tings.

Feature Model B-4 M R C S

G Transformer 39.0 29.0 58.6 131.2 22.4
Transformer+PE 39.0 29.2 58.9 131.7 22.6
Transformer+CRA 39.3 29.4 58.9 132.5 22.9

R Transformer 39.0 28.9 58.6 130.1 22.4
Transformer+PE 38.3 29.0 58.4 129.7 22.5
Transformer+CRA 39.0 29.2 58.6 131.0 22.5

G+R DLCT w/o CRA 39.3 29.3 58.8 133.0 23.0
DLCT 39.8 29.5 59.1 133.8 23.0

Table 4: Performance with / without CRA for grids(G) and
regions(R). PE represents traditional positional encoding
method which directly adds positional encoding to inputs.

LCCA We also conduct several experiments to demon-
strate the effectiveness of our LCCA, which are shown in
Table 5. Two alternatives are considered: one is our DLCT
without LCCA, and the other is LCCA with a complete
bipartite graph (CBG) in which cross attention is applied
between all grid nodes and region nodes. They both show
worse performance than LCCA, which demonstrate the su-
periority of our LCCA. Note that DLCT with CBG is even
worse than standard Transformer with grid feature inputs,
which shows the damage of semantic noises introduced by
coarsely modeling relationships between regions and grids.

Qualitative Results and Visualization
Fig. 4 illustrates several example image captions generated
by Transformer and DLCT. As indicated by these examples,
generally, our DLCT can grab detailed and contextual infor-

B-1 B-4 M R C S
DLCT w/o LCCA 81.2 39.2 29.2 58.6 132.6 22.8
LCCA + CBG 80.8 38.7 29.0 58.7 130.8 22.7
DLCT 81.4 39.8 29.5 59.1 133.8 23.0

Table 5: Performance with / without LCCA, where CBG
means the complete bipartite graph.

mation to generate more accurate and descriptive captions.
In order to better qualitatively evaluate the encoded visual

representations, we visualize the contribution of each visual
feature to the model output in Fig 5. Technically, we aver-
age attention weights of 8 heads in the last Enc-Dec Multi-
head Attention Layer. We can see that both Transformer
and DLCT are able to attend to the corresponding regions
when generating words. In addition, our DLCT can attend
to corresponding grids when it generates the word “blue”
and “yellow”. When generating the word “tracks”, the atten-
tion heatmap on grids provides a more fine-grained semantic
segmentation of tracks, which demonstrates the advantages
of our DLCT.

Conclusion
In this paper, we proposed a Dual-Level Collaborative
Transformer to achieve the complementarity of region and
grid features for image captioning. Our model integrates ap-
pearance and geometry features of regions and grids by ap-
plying intra-level fusion via Comprehensive Relation Atten-
tion (CRA) and Dual-Way Self Attention (DWSA). We also
proposed a geometric alignment graph to apply Locality-
Constrained Cross Attention (LCCA) which helps reinforce
two kinds of features effectively and address the issue of se-
mantic noises aroused by the direct fusion of two sources of
features. Extensive results demonstrate the superiority of our
approach that achieves a new state-of-the-art on both offline
and online test splits. In our feature work, we plan to extend
the proposed collaborative features to other multi-media ar-
eas which requires detailed and contextual information.
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