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Abstract

Many real-world classification problems often have classes
with very few labeled training samples. Moreover, all possi-
ble classes may not be initially available for training, and may
be given incrementally. Deep learning models need to deal
with this two-fold problem in order to perform well in real-
life situations. In this paper, we propose a novel Few-Shot
Lifelong Learning (FSLL) method that enables deep learn-
ing models to perform lifelong/continual learning on few-shot
data. Our method selects very few parameters from the model
for training every new set of classes instead of training the full
model. This helps in preventing overfitting. We choose the
few parameters from the model in such a way that only the
currently unimportant parameters get selected. By keeping
the important parameters in the model intact, our approach
minimizes catastrophic forgetting. Furthermore, we minimize
the cosine similarity between the new and the old class proto-
types in order to maximize their separation, thereby improv-
ing the classification performance. We also show that inte-
grating our method with self-supervision improves the model
performance significantly. We experimentally show that our
method significantly outperforms existing methods on the
miniImageNet, CIFAR-100, and CUB-200 datasets. Specif-
ically, we outperform the state-of-the-art method by an abso-
lute margin of 19.27% for the CUB dataset.

Introduction
Deep learning models have successfully matched human be-
ings in many real-world problems. As a result, the number
and diversity of applications of deep learning are increasing
at a rapid rate. However, deep learning models require train-
ing on a large amount of labeled data. Labeled data is not
always available for many real-world problems, and manu-
ally labeling data is a costly and time-consuming process.
Therefore, recent works have investigated few-shot learning
methods (Snell, Swersky, and Zemel 2017; Sung et al. 2018;
Finn, Abbeel, and Levine 2017), which involve a special-
ized training of models to help them perform well even for
classes with very few training samples.

Another common characteristic of real-world problems
is that all the training data may not be available initially
(Rebuffi et al. 2017; Li and Hoiem 2018; Castro et al.
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2018). New sets of classes may become available incremen-
tally. Therefore, the model has to perform lifelong/continual
learning in order to perform well in such settings. The life-
long learning problem generally involves training a model
on a sequence of disjoint sets of classes (task) and learning a
joint classifier for all the encountered classes. This setting is
also known as the class-incremental setting of lifelong learn-
ing (He et al. 2018; Rebuffi et al. 2017; Castro et al. 2018).
Another simpler setting, known as the task-incremental set-
ting, involves learning disjoint classifiers for each task.

In this paper, we proposed a framework for the few-shot
class-incremental learning (FSCIL) problem. The incremen-
tal nature of training makes the few-shot learning (FSL)
problem even more challenging. On the other hand, humans
can continuously learn new categories from very few sam-
ples of data. Therefore, to achieve human-like intelligence,
we need to equip deep learning models with the ability to
deal with the few-shot class-incremental learning problem.

Training the entire network on classes with very few sam-
ples will result in overfitting, which will hamper the net-
work’s performance on test data. Additionally, since the
model will not have access to old classes when new classes
become available for training, the model will suffer from
catastrophic forgetting (French 1999) of the old classes.
Therefore, in order to solve the FSCIL problem, we have
to address the two issues of overfitting and catastrophic for-
getting simultaneuously, which makes it even harder.

A common approach of preventing catastrophic forget-
ting is to ensure that, while training on new classes, the
model’s output logits corresponding to the older classes re-
main unchanged. To achieve this, many methods (Rebuffi
et al. 2017; Saihui et al. 2018; Hou et al. 2019; Castro et al.
2018) use a knowledge distillation loss (Hinton, Vinyals, and
Dean 2015). The distillation loss can be computed on a few
“replay”-ed samples from the old classes. However, the dis-
tillation loss is generally biased towards classes with more
samples and the new classes. Recently, the authors in (Tao
et al. 2020) proposed a method TOPIC to solve the few-shot
class-incremental learning problem, using a cognition-based
knowledge representation technique. TOPIC uses a neural
gas (NG) network (Thomas and Klaus 1991; Fritzke 1995)
to model the topology of feature space. While training on
new classes, it keeps the topology of NG stable and pushes
the samples of new classes to their respective NG node to
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preserve old knowledge.
We propose a novel method, called few-shot lifelong

learning (FSLL) for the FSCIL problem by addressing the
overfitting and catastrophic forgetting problems from the
perspective of the trainable parameters. When a new set of
classes becomes available for training, we do not train the
entire model on it since the new classes have very few exam-
ples, and the full model will quickly overfit to these exam-
ples. Instead, we choose very few session trainable parame-
ters to train on these new classes, which reduces the overfit-
ting problem. Our method selects these session trainable pa-
rameters in such a way that only unimportant parameters of
the model get chosen. As a result, the training on the new set
of classes only affects a few unimportant model parameters.
Since the important parameters in the model are not affected,
the model can retain the old knowledge, thereby minimizing
catastrophic forgetting. We encourage the session trainable
parameters to be properly updated, but not deviate far from
their previous values. To ensure this, we add a regulariza-
tion loss on the session trainable parameters. Additionally,
we maximize the separation between the new and the old
class prototypes by minimizing their cosine similarity to im-
prove the network classification performance. We also ex-
plore a variant of our method that uses self-supervision as
an auxiliary task to improve the model performance further.

We perform experiments on the miniImageNet (Vinyals
et al. 2016), CIFAR-100 (Krizhevsky and Hinton 2009), and
CUB-200 (Wah et al. 2011) datasets in the FSCIL setting
and compare our performance with state-of-the-art method
and other baselines. Our experimental results show the effec-
tiveness of our method. We also perform extensive ablation
experiments to validate the components of our method. Our
main contributions are as follows:

• We propose a novel method for the few-shot class-
incremental learning problem. Our proposed method se-
lects very few unimportant model parameters to train ev-
ery new set of classes in order to minimize overfitting and
the catastrophic forgetting problem.

• We empirically show that using self-supervision as an
auxiliary task can further improve the performance of the
model in this setting.

• We experimentally show that our proposed method signif-
icantly outperforms all baselines and the state-of-the-art
methods for all the compared datasets.

Proposed Method
Problem Setting
In the FSCIL setting , we have a sequence of labeled train-

ing sets D(1), D(2), · · · , where D(t) = {(x(t)
j , y

(t)
j )}|D

(t)|
j=1 .

L(t) represents the set of classes of the tth training set,
where ∀i, j, L(i) ∩ L(j) = ∅ for i 6= j. The first train-
ing set, D(1), consist of base classes with a reasonably large
number of training examples per class. The remaining train-
ing sets D(t>1) are few-shot training sets of new classes,
where each class has very few training samples. The model
has to be incrementally trained on D(1), D(2), · · · and only

Figure 1: Our proposed few-shot lifelong learning method.
We initially train the network on the base training set D(1)

that contains many examples per class. In the first session,
all the parameters are trainable (marked in green). After fin-
ishing the training on D(1), we find the important (marked
in deep blue) and unimportant parameters (marked in light
blue) in the model. For training on the few-shot training set
D(t>1), we select a few unimportant parameters as the ses-
sion trainable parameters (marked in green). After complet-
ing the training on each few-shot training set D(t>1), we
re-identify the important and unimportant parameters and
select the few session trainable parameters for the next ses-
sion. By preserving the important parameters in the model,
the model can preserve the old knowledge. Further, by train-
ing only a few session trainable parameters for each few-shot
training set, overfitting is also reduced.

D(t) is available at the tth training session. After training on
D(t), the model is evaluated on all the encountered classes
in L(1), · · · , L(t). Each of the few-shot training sets D(t>1),
contain C classes and K training examples per class. This
setting is referred a C-way K-shot FSCIL setting.

Since every few-shot training set has very few examples
per class, storing examples from such classes will effectively
violate the incremental learning setting. Therefore, our pro-
posed method does not store any examples from the previ-
ously seen classes. Also, since FSCIL is based on the class-
incremental setting, no task information is available during
test time, and the model has to perform classification jointly
for all the seen classes.
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Method Overview
In the FSCIL setting, the naive approach is to incremen-
tally train on the training sets D(1), D(2), · · · . However, this
approach will lead to a catastrophic forgetting of the older
classes. Additionally, since the training set D(t>1) has very
few training examples per class, the model will overfit to
these few examples. We propose a novel method to deal with
these two challenges.

Our network consists of a feature extractor ΘF and a fully
connected classifier ΘC . In our approach, we first train the
complete network on the base training set D(1) for classifi-
cation using the cross-entropy loss similar to TOPIC. This is
a common practice in the few-shot learning setting. During
this session, all the parameters of the network are trainable
(Fig. 1).

LD(1)(x, y) = FCE(ΘC(ΘF (x)), y) (1)

where x and y refer to an image and its label, (x, y) ∈ D(1),
FCE refers to the cross entropy loss.

We discard ΘC after completing the training onD(1). Us-
ing the trained feature extractor ΘF , we extract the features
of all the training samples of D(1) and average them class-
wise to obtain the class prototypes of the base classes.

Pr[c] =
1

Nc

N∑
k=1

I(yk=c)(ΘF (xk)) (2)

where Pr[c] is the prototype of class c in D(t), Nc is the
number of training examples in the class c, N is the number
of training examples in D(t), ∀k (xk, yk) ∈ D(t). I(yk=c) is
an indicator function that returns 1 only when the label of
the sample xk is the class c, otherwise it returns 0.

The session 1 test examples belong to all the classes en-
countered till now, i.e., all the base training set classes. For
each test example, in session 1, we find the nearest class pro-
totype and predict that class as the output class.

When the session t > 1 starts, the D(t>1) training
set becomes available and data from all previous training
sets {D(1), D(2), · · ·D(t−1)} become inaccessible. We se-
lect very few unimportant parameters from ΘF for train-
ing on the few-shot classes in session t (Fig. 1). We refer
to these parameters as the session trainable parameters P t

ST
for session t. Parameters/weights with low absolute magni-
tude contribute very less to the final accuracy and are, there-
fore, unimportant (Han et al. 2015). In order to select the
session trainable parameters, we choose a threshold for each
layer in ΘF . All parameters in a layer having absolute value
lower than the threshold are chosen as the session trainable
parameters P t

ST for session t. We provide an ablation to
show the effect of the proportion of session trainable param-
eters on the final accuracy. Since we choose the parameters
with the lowest absolute weight values, it is highly unlikely
that the “high” importance/absolute weight valued param-
eter will get selected as a less important parameter for the
subsequent tasks.

We refer to the remaining parameters as the knowledge
retention parameters P t

KR for session t, and we keep them

frozen during this session. Since we choose only the unim-
portant parameters for training, the important parameters re-
main intact in the model. Therefore, our approach prevents
the loss of knowledge from the previously seen classes and
reduces catastrophic forgetting.

We train the session trainable parameters P t
ST on a triplet

loss, in order to bring examples from the same class closer
and push away those from different classes.

LTL(xi, xj , xk) = max(d(ΘF (xi),ΘF (xj))−
d(ΘF (xi),ΘF (xk)), 0) (3)

where xi, xj , xk are the images in D(t>1), LTL refers to
the triplet loss, d refers to euclidean distance. Let yi, yj , yk
be the corresponding class labels of xi, xj , xk and yi =
yj , yi 6= yk.

We encourage the session trainable parameters to be prop-
erly updated, but not deviate far from their previous values.
We apply a regularization loss on P t

ST to achieve this goal.
For the regularization loss, we use `1-regularization between
the current P t

ST parameters weights and their previous val-
ues.

LRL =

Nt
p∑

i=1

||wt
i − wt−1

i ||1 (4)

where N t
p refers to the number of session trainable parame-

ters P t
ST for the training set t. wt

i , w
t−1
i refer to the current

and previous weights of the ith parameter in P t
ST .

Additionally, we apply a cosine similarity loss to min-
imize the similarity between the prototypes of the older
classes Prprev and those of the new classes Prt. The new
class prototypes are computed using Eq. 2 for D(t).

LCL =

Nt
Pr∑

i=1

Nprev
Pr∑
j=1

Fcos(Pr
t[i], P rprev[j]) (5)

where Prt refers to the prototypes of D(t), Prprev refers to
set of prototypes from all the previous classes. N t

Pr, N
prev
Pr

refer to the number of class prototypes in the current training
set and all the previous training sets respectively. Fcos refers
to the cosine distance loss. Prt[i] Prprev[j] refer to the ith
and jth prototypes in Prt and Prprev , respectively.

Therefore, the total loss for the training set D(t>1) is as
follows:

L(D(t>1)) = LTL + LCL + λLRL (6)

where λ is a hyper-parameter that determines the contribu-
tion of the regularization loss.

After completing the training on D(t>1), we extract the
features of the training samples of all the classes in the
current training set using the trained feature extractor ΘF

and compute the class-wise mean/prototype of these features
(Eq. 2). We perform the nearest prototype-based classifica-
tion using the prototypes of all classes to predict the nearest
class for each test example in the current session.

2339



Self-Supervised Auxiliary Task
We also experiment with a variant of our method, where we
train the complete network onD(1) using the standard cross-
entropy loss and an auxiliary self-supervision loss. We use
rotation prediction as our auxiliary task (Gidaris, Singh, and
Komodakis 2018).

In order to add the auxiliary task, we add a rotation pre-
diction network ΘR after ΘF , in parallel with ΘC . We ro-
tate the each training sample in D(1) by either 0, 90, 180,
and 270 degrees and train the network to predict the angle
of rotation using ΘR. The image feature extracted by ΘF is
given to ΘR for the rotation prediction task. The total loss
for training on D(1) in this case is as follows:

LD(1)(x, y) = FCE(ΘC(ΘF (x)), y)+

FCE(ΘR(ΘF (x)), yr) (7)

where (x, y) ∈ D(1) and yr is the angle of rotation that x
was rotated by.

We empirically show that the performance of our method
can be improved further using self-supervision. In the ab-
lation studies section, we experimentally show that the ro-
tation prediction-based self-supervision task performs bet-
ter than SimClr and patch location prediction methods when
used as an auxiliary task in our method.

Related Work
The lifelong/continual learning problem can have two set-
tings: class-incremental setting and task-incremental setting.

Class-Incremental Lifelong Learning
Class-incremental lifelong learning involves training a
model on multiple sets of disjoint classes in a sequence and
testing on all the encountered classes. iCaRL, is a popular
method proposed in (Rebuffi et al. 2017), which stores class
exemplars and learns using the nearest neighbor classifica-
tion loss on the new classes and a distillation loss on the old
class exemplars. The work in (Castro et al. 2018) proposes
EEIL, which trains the model using a cross-entropy loss and
a distillation loss. NCM (Hou et al. 2019) uses cosine dis-
tance metric to reduce the bias of the model towards the new
classes. Similarly, BIC (Yue et al. 2019) learns a correction
model to reduce the bias in the output logits. We focus on
class-incremental learning but in a few-shot setting, which
is a more challenging problem due to the few-shot nature of
the classes.

Task-Incremental Lifelong Learning
Task-incremental lifelong learning involves training a model
on multiple tasks (which are disjoint sets of classes) in a
sequence but maintaining a separate classifier for each task.
As a result of a reduced search space, this setting is simpler
than the class-incremental setting. Task-incremental lifelong
learning methods can be of three types: a) regularization-
based, b) replay-based, and c) dynamic network-based.

Regularization-based methods try to reduce changes in
the output logits/ important parameters of the network while

training on new tasks in order to preserve the old task knowl-
edge (Lee et al. 2017; Zenke, Poole, and Ganguli 2017; Liu
et al. 2018). The work in (Li and Hoiem 2018) uses knowl-
edge distillation to achieve this goal. EWC (Kirkpatrick
et al. 2017) decreases the learning rate for the parameters
that are important to the older tasks.

Replay-based methods (Lopez-Paz et al. 2017; Chaudhry
et al. 2018), store exemplars from old tasks and include
them in the training process of the new tasks in order to
reduce catastrophic forgetting. Some methods utilize gen-
erative models to generate data for the old tasks instead of
storing the exemplars (Shin et al. 2017; Wu et al. 2018; Zhai
et al. 2019; Xiang et al. 2019).

Dynamic network-based methods modify the network to
train on new tasks (Mallya and Lazebnik 2018; Mallya,
Davis, and Lazebnik 2018; Aljundi et al. 2018; Serrà et al.
2018; Yoon et al. 2017). These methods employ techniques
such as dynamic expansion, network pruning, and param-
eter masking to prevent catastrophic forgetting. PackNet, a
method proposed in (Mallya and Lazebnik 2018), utilizes
pruning to free parameters for training new tasks. The work
in (Serrà et al. 2018) proposes to learn attention masks for
old tasks to constrain the parameters when training on the
new task. The authors in (Xu and Zhu 2018) utilize rein-
forcement learning to decide the number of additional neu-
rons needed for each new task.

Since we focus on the class incremental setting in this pa-
per, the task-incremental methods do not apply to this set-
ting. Therefore, we have to exclude them for comparison in
the experimental section.

Few-Shot Learning
Few-shot learning (FSL) methods train models to perform
well for classes with very few training examples (few-shot
classes). Many research works deal with the few-shot learn-
ing problem. Few-shot learning methods generally employ
meta-learning and metric learning techniques (Vinyals et al.
2016; Snell, Swersky, and Zemel 2017; Sung et al. 2018;
Finn, Abbeel, and Levine 2017; Sun et al. 2019). However,
most of them are focused solely on the few-shot classes.
Recently some methods have also explored the loss of per-
formance in the non few-shot classes due to the techniques
used to benefit the few-shot classes (Gidaris and Komodakis
2018; Ren et al. 2019). The method proposed in (Gidaris and
Komodakis 2018) extends an object recognition system with
an attention-based few-shot classification weight generator
and redesigns the classifier as a similarity function between
feature representations and classification weight vectors. It
combines the recognition of both the few-shot and non few-
shot classes.

Most of the standard few-shot learning methods perform
testing on few-shot episodes, containing a few classes with
very few labeled samples. By reducing the search space
to the few classes present in the episode, the problem be-
comes much simpler. On the other hand, the few-shot class-
incremental learning setting performs testing on all the en-
countered classes, which is more realistic and challeng-
ing. TOPIC, proposed in (Tao et al. 2020), utilizes a neu-
ral gas network (Thomas and Klaus 1991; Fritzke 1995) to
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model the topology of feature space and stabilizes the topol-
ogy while introducing new classes in order to preserve old
knowledge. This method achieves state-of-the-art results in
the FSCIL setting, and we have compared our results with
this method.

Self-Supervised Learning
While obtaining labeled data is expensive and time-
consuming, recent work has considered alternative mecha-
nisms that can substitute for such explicitly labeled super-
vision. In particular, the self-supervised learning paradigm
trains a network on data using labels extracted from the
data itself. Self-supervised learning helps the network to
learn better features. To perform self-supervised learning,
various types of pseudo tasks/labels are used to train the
network, such as image inpainting or image completion
(Pathak et al. 2016), image colorization (Larsson, Maire, and
Shakhnarovich 2016; Zhang, Isola, and Efros 2016), predic-
tion of relative patch position (Doersch, Gupta, and Efros
2015), solving Jigsaw puzzles in (Noroozi and Favaro 2016).
In (Gidaris, Singh, and Komodakis 2018), the authors pro-
pose to rotate the images by a fixed set of angles, and the
network is trained to predict the angle of rotation. It is a very
popular method for self-supervision.

Contrastive Multiview Coding (CMC) (Tian, Krishnan,
and Isola 2019) trains the network to maximizes the mu-
tual information between the different views of an image
but requires a specialized architecture, including separate
encoders for different views of the data. Momentum Con-
trast (MoCo) (He et al. 2020) matches encoded queries q to
a dictionary of encoded keys using a contrastive loss, but
it requires a memory bank to store the dictionary. SimCLR
(Chen et al. 2020) augments the input to produce two dif-
ferent but correlated views and uses contrastive loss to bring
them closer in the feature space. It does not require special-
ized architectures or a memory bank and still achieves state-
of-the-art unsupervised learning results, outperforming the
CMC and MoCo self-supervision techniques.

Experiment
In this section, we describe the datasets and implementation
details of the experiments that we conduct.

Datasets
We perform experiments in the FSCIL setting using three
image classification datasets CIFAR-100 (Krizhevsky and
Hinton 2009), miniImageNet (Vinyals et al. 2016) and CUB-
200 (Wah et al. 2011). The CIFAR-100 dataset consists of
100 classes with each class containing 500 training images
and 100 testing images. Each of the 60,000 images is of
size 32 × 32. The miniImageNet dataset also consists of
60,000 images from 100 classes, chosen from the ImageNet-
1k dataset (Deng et al. 2009). There are 500 training and 100
test images of size 84 × 84 for each class. The CUB-200
dataset consists of about 6,000 training images and 6,000
test images for 200 categories of birds. The images are re-
sized to 256×256 and then cropped to 224×224 for training.

In the case of the CIFAR-100 and miniImageNet datasets,
we choose 60 and 40 classes as the base and new classes, re-
spectively. For every few-shot training set, we use a 5-way 5-
shot setting, i.e., each few-shot training set has 5 classes with
5 training examples per class. Therefore, we have 1 base
training set and 8 few-shot training sets (total 9 training ses-
sions) for the CIFAR-100 and miniImageNet datasets. For
the CUB-200 dataset, we choose 100 and 100 classes as the
base and new classes, respectively. For every few-shot train-
ing set of CUB-200, we use a 10-way 5-shot setting, i.e.,
each few-shot training set has 10 classes with 5 training ex-
amples per class. Therefore, we have 1 base training set and
10 few-shot training sets (total 11 training sessions) for the
CUB-200 dataset. We construct each few-shot training set
by randomly choosing 5 training examples per class, while
the test set contains test examples from all the encountered
classes. For a fair comparison, we used the same dataset set-
tings as used in (Tao et al. 2020).

Implementation Details
We use ResNet-18 (He et al. 2015) architecture for our ex-
periments on all the three datasets. The last classification
layer of ResNet-18 is ΘC , and the remaining network serves
as the feature extraction network ΘF . We train Θ

(1)
F , and

Θ
(1)
C on the base training set D(1) with an initial learning

rate of 0.1 and mini-batch size of 128. After the 30 and 40
epochs, we reduce the learning rate to 0.01 and 0.001, re-
spectively. We train on D(1) for a total of 50 epochs and
then discard Θ

(1)
C .

We finetune the feature extractor on each of the few-shot
training sets D(t>1) for 30 epochs, with a learning rate of
1e-4 (and 1e-3 for CUB-200). We set the threshold val-
ues for each layer in such a way that only 10% of ΘF get
selected as the session trainable parameters in all our ex-
periments. Since the few-shot training sets contain very few
training examples, the mini-batch contains all the examples.
After training the feature extractor on D(t), we test Θt

F on
the combined test sets of all encountered classes. Session t
accuracy refers to the total accuracy over all the the classes
encountered till that session (L(1), L(2) · · · , L(t)).

We perform standard random cropping and flipping for
data augmentation proposed in (He et al. 2015; Hou et al.
2019) for all methods. Since we have very few new class
training samples, we use the batchnorm statistics computed
on D(1) and fix the batchnorm layers while finetuning on
D(t>1) as done in (Tao et al. 2020). We run each experiment
10 times and report the average test accuracy over all the en-
countered classes. The standard deviations among the runs
are low (around 0.5% on average) for all the experiments.
For the experiments with the auxiliary self-supervision task,
we use a convolutional neural network as ΘR to predict the
rotation angle. ΘR consists of 4 convolutional layers, each
containing 512 filters of filter size of 3, stride 1, and padding
1. We use an adaptive average pooling layer and a linear
layer of output size 4 after the last convolutional layer. For
reporting the results, we also include the base set D(1) accu-
racy for a fair comparison with TOPIC and other methods.
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Method Sessions Our Relative
1 2 3 4 5 6 7 8 9 10 11 Improvements

Ft-CNN (Tao et al. 2020) 68.68 44.81 32.26 25.83 25.62 25.22 20.84 16.77 18.82 18.25 17.18 +28.37
Joint-CNN (Tao et al. 2020) 68.68 62.43 57.23 52.80 49.50 46.10 42.80 40.10 38.70 37.10 35.60 +9.95
iCaRL (Rebuffi et al. 2017) 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 +24.39
EEIL (Castro et al. 2018) 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 +23.44
NCM (Hou et al. 2019) 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 +25.68
TOPIC (Tao et al. 2020) 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 +19.27
FSLL (Ours) 68.72 65.67 62.33 58.10 55.44 52.66 51.17 50.27 48.31 47.25 45.55 0
FSLL* (Ours) 72.77 69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 55.39 54.21 -
FSLL*+SS (Ours) 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82 -

Table 1: Results on CUB-200 using the ResNet-18 architecture on the 10-way 5-shot FSCIL setting. We compare our method
with TOPIC (CVPR’20) which is the state-of-the-art method for this setting. Session t accuracy refers to the total accuracy over
all the the classes encountered till that session (L(1), L(2) · · · , L(t)).

Figure 2: Results on miniImageNet using the ResNet-18 ar-
chitecture on the 5-way 5-shot FSCIL setting

Baselines and Compared Methods
We compare our method with iCARL (Rebuffi et al. 2017),
EEIL (Castro et al. 2018) and NCM (Hou et al. 2019) in
the FSCIL setting as in (Tao et al. 2020). We compare our
method with the Ft-CNN, which involves only finetuning the
model on the few training examples ofD(t>1). We also com-
pare our method with the Joint-CNN method, which trains
on the combined data of the base and few-shot classes.

CUB-200 Results
The results in Table 1 indicate that our method significantly
outperforms the Ft-CNN model on CUB-200. Our method
performs significantly better than the Joint-CNN. This is be-
cause CUB-200 contains 100 few-shot classes in this setting
and the Joint-CNN model overfits to these classes, result-
ing in lower overall performance. Our method outperforms
the state-of-the-art TOPIC method by an absolute margin of
19.27%. Even if we exclude the base training set (D(1)) ac-
curacy, our method achieves an average accuracy of 27% on
the few-shot training sets.

While training on the model onD(1), we observed that us-
ing an initial learning rate of 0.01 achieves a better session
1 accuracy than reported in (Tao et al. 2020). For complete-

Figure 3: Results on CIFAR-100 using the ResNet-18 archi-
tecture on the 5-way 5-shot FSCIL setting.

ness, we also provide the results for this model (FSLL*).
We perform an additional experiment (FSLL*+SS), where
we also train the network on an auxiliary self-supervised ro-
tation prediction task during the training of D(1).

miniImageNet Results
Fig. 2 depicts the performance of different methods on the
miniImageNet FSCIL setting. Our method significantly out-
performs the Ft-CNN model and performs slightly better
than the Joint-CNN model because the Joint-CNN model
overfits due to the presence of many few-shot classes. Our
method significantly outperforms the state-of-the-art TOPIC
model by around 15.07%. We observe that the performance
can be improved further by tuning the weight decay option
of the SGD optimizer, which we take as 1e-3 (FSLL*).

CIFAR-100 Results
Fig. 3 depicts the performance of different methods on the
CIFAR-100 FSCIL setting. Our method significantly out-
performs the state-of-the-art TOPIC model, by an abso-
lute margin of 9.09%. We perform an additional experiment
(FSLL+SS), where we have also trained the network on an
auxiliary self-supervised rotation prediction task during the
training of D(1).
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Figure 4: Performance of FSLL on the CUB-200 FSCIL set-
ting with and without regularization using different propor-
tions of session trainable parameters.

Ablation Experiments
We perform various ablation experiments to validate our
method.

Proportion of Session Trainable Parameters
Fig. 4 shows the effect of increasing the proportion of ses-
sion trainable parameters on the final accuracy for CUB-200.
The final accuracy in Fig. 4 refers to the session 11 test result
(S11). If we choose a high threshold for selecting unimpor-
tant parameters, then there will be a high proportion of ses-
sion trainable parameters, and it may include high absolute
value/important parameters. We observe that FSLL perfor-
mance suffers in such a case. FSLL achieves the best per-
formance when the session trainable parameters are 10% of
ΘF . As we decrease the proportion of session trainable pa-
rameters, the proportion of knowledge retention parameters
increases, and the performance of the model improves till we
reach 10%. If we choose less than 10% of ΘF as the session
trainable parameters, the model performance starts dropping
due to the shortage of trainable parameters (underfitting).

Significance of Regularization
Fig. 4 shows the effect of removing the regularization loss
from our method. When the proportion of session trainable
parameters is high, the corresponding proportion of knowl-
edge retaining parameters is low, and therefore, the regular-
ization loss plays a critical role in the model performance.
Even when the proportion of session trainable parameters is
low (≈10%), the regularization loss provides improvement
to the performance, as shown in Fig. 4.

Choice of Regularization Hyper-Parameter
Table 2, reports the effect of changing the regularization
hyper-parameter λ on the performance of the model for the

λ 1 3 5 7 9
S11 44.66% 44.83% 45.55% 44.96% 44.87%

Table 2: Session 11(S11) classification results on CUB-200
using the ResNet-18 architecture on the 10-way 5-shot FS-
CIL setting for different values for the regularization hyper-
parameter λ values.

Auxiliary SS Patch SimClr Rotation w/o SS
S11 54.56% 54.71% 55.82% 54.21%

Table 3: Session 11 classification results on CUB-200 us-
ing FSLL* for the 10-way 5-shot FSCIL setting for different
types of auxiliary self-supervised (SS) task.

CUB-200 dataset in the FSCIL setting. We have reported the
session 11 (S11) test results in this table. We observe the best
model performance for λ = 5, and we use this value of the
regularization hyper-parameter for all our experiments.

Significance of Cosine Similarity Loss
We performed ablations to verify the significance of the
prototype cosine similarity loss. We observe that in the ab-
sence of the prototype cosine similarity loss, the session 11
model performance (S11) for the CUB-200 dataset drops
from 45.55% to 44.32%.

Choice of Self-Supervised Auxiliary Task
We perform experiments with the auxiliary task as rela-
tive patch location prediction (Doersch, Gupta, and Efros
2015) (Patch), rotation angle prediction (Rotation) (Gidaris
et al. 2019) and SimCLR (Chen et al. 2020). SimCLR uti-
lizes contrastive learning and is the state-of-the-art self-
supervision technique. Table 3, shows that the rotation-
based auxiliary self-supervised task performs significantly
better than patch and SimCLR methods.

Self-Supervision for Few-Shot Classes
We also perform experiments to include the self-supervised
auxiliary task in the training process for the few-shot train-
ing sets (D(t>1)) along with the base training set D(1). Our
experiments on the CUB-200 dataset show that this results
in a session 11 (S11) accuracy of 54.34%, which is lower
than 55.82% achieved by FSLL*+SS. Therefore, using the
self-supervised auxiliary task for training on D(t>1) does
not produce any benefits.

Conclusion
We propose a novel Few-Shot Lifelong Learning (FSLL)
method for the few-shot class-incremental learning prob-
lem. Our method selects very few unimportant parameters
as the session trainable parameters to train on every new
set of few-shot classes to deal with the problems of over-
fitting and catastrophic forgetting. We empirically show that
FSLL significantly outperforms the state-of-the-art method.
We experimentally show that using self-supervision as an
auxiliary task can further improve the performance of the
model in this setting.
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