
Embodied Visual Active Learning for Semantic Segmentation

David Nilsson1,2∗, Aleksis Pirinen1, Erik Gärtner1,2∗, Cristian Sminchisescu1,2

1Department of Mathematics, Faculty of Engineering, Lund University
2Google Research

{david.nilsson, aleksis.pirinen, erik.gartner, cristian.sminchisescu}@math.lth.se

Abstract

We study the task of embodied visual active learning, where
an agent is set to explore a 3d environment with the goal
to acquire visual scene understanding by actively selecting
views for which to request annotation. While accurate on
some benchmarks, today’s deep visual recognition pipelines
tend to not generalize well in certain real-world scenarios,
or for unusual viewpoints. Robotic perception, in turn, re-
quires the capability to refine the recognition capabilities for
the conditions where the mobile system operates, including
cluttered indoor environments or poor illumination. This mo-
tivates the proposed task, where an agent is placed in a novel
environment with the objective of improving its visual recog-
nition capability. To study embodied visual active learning,
we develop a battery of agents – both learnt and pre-specified
– and with different levels of knowledge of the environment.
The agents are equipped with a semantic segmentation net-
work and seek to acquire informative views, move and ex-
plore in order to propagate annotations in the neighbourhood
of those views, then refine the underlying segmentation net-
work by online retraining. The trainable method uses deep
reinforcement learning with a reward function that balances
two competing objectives: task performance, represented as
visual recognition accuracy, which requires exploring the en-
vironment, and the necessary amount of annotated data re-
quested during active exploration. We extensively evaluate
the proposed models using the photorealistic Matterport3D
simulator and show that a fully learnt method outperforms
comparable pre-specified counterparts, even when requesting
fewer annotations.

1 Introduction
Imagine a household robot in a home it has never been be-
fore and equipped with a visual sensing module to perceive
its environment and localize objects. If the robot fails to
recognize some objects, or to adapt to changes in the en-
vironment, over time, it may not be able to properly perform
its tasks. Much of the recent success of visual perception
has been achieved by deep CNNs, e.g. in image classifi-
cation (Krizhevsky, Sutskever, and Hinton 2012; Simonyan
and Zisserman 2014; He et al. 2016), semantic segmenta-
tion (Long, Shelhamer, and Darrell 2015; Chen et al. 2017)

∗Work was partially performed during a Google internship.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and object detection (Ren et al. 2015; Redmon et al. 2016).
Such systems may however be challenged by unusual view-
points or domains, as noted e.g. by Ammirato et al. (2017)
and Yang et al. (2019b). Moreover, a mobile household
robot should ideally operate with lightweight, re-trainable
and task-specific perception models, rather than large and
comprehensive ones, which could be demanding computa-
tionally and not tailored to the needs of a specific house.

In practice, even in closed but large environments, devel-
oping robust scene understanding by exhaustive approaches
may be difficult, as looking everywhere requires an exces-
sive amount of annotation labor. All views are however not
equally informative, as a view containing many diverse ob-
jects is likely more useful than one covering a single seman-
tic class, e.g. a wall. This suggests that in learning visual per-
ception one does not have to label exhaustively. As new, po-
tentially difficult arrangements appear in an evolving envi-
ronment, it would be useful to identify those automatically,
based on the task and demand, rather than programmatically,
by periodically re-training a complete model. Moreover, the
agent could make the most out of its embodiment by prop-
agating a given ground truth annotation using motion – as
measured by the perceived optical flow – in that neighbor-
hood. The agent can then self-train, online, for increased
performance. The key questions are how should one explore
the environment, how to select the most informative views
to annotate, and how to make the most out of them. We an-
alyze these questions in an embodied visual active learning
framework, illustrated in fig. 1.

To ground the embodied visual active learning task, in this
work we measure visual perception ability as semantic seg-
mentation accuracy. The agent is equipped with a seman-
tic segmentation system and must move around and request
annotations in order to refine it. After exploring the scene
the agent should be able to accurately segment all views in
the explored area. This requires an exploration policy cover-
ing different objects from diverse viewpoints and selecting
sufficiently many annotations to train the perception model.
The agent can also propagate annotations to different nearby
viewpoints using optical flow and then self-train. We de-
velop a battery of methods, ranging from pre-specified ones
to a fully trainable deep reinforcement learning-based agent,
which we evaluate extensively in the photorealistic Matter-
port3D environment (Chang et al. 2017).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

2373



3d Environment Observation Perception

Explore

Agent

Request
annotation

Refine

?

??
…

Figure 1: Embodied visual active learning. An agent in a 3d environment must explore and occasionally request annotation
in order to efficiently refine its visual perception. The navigation component makes this task significantly more complex than
traditional active learning, where the data pool over which the agent queries annotations, either in the form of image collections
or pre-recorded video streams, is static and given.

In summary, our main contributions are:
• We study the task of embodied visual active learning,

where an agent should explore a 3d environment to ac-
quire visual scene understanding by actively selecting
views for which to request annotation. The agent then
propagates information by moving in the neighborhood
of those views and self-trains;

• In our setup, visual learning and exploration can inform
and guide one another since the recognition system is se-
lectively and gradually refined during exploration, instead
of being trained at the end of a trajectory on a full set of
densely annotated views;

• We develop a variety of methods, both learnt and pre-
specified, to tackle our task in the context of semantic
segmentation;

• We perform extensive evaluation in a photorealistic 3d
environment and show that a fully learnt method outper-
forms comparable pre-specified ones.

2 Related Work
The embodied visual active learning setup leverages several
computer vision and machine learning concepts, such as em-
bodied navigation, active learning and active vision. There is
substantial recent literature on embodied agents navigating
in real or simulated 3d environments, especially given the re-
cent emergence of large-scale simulators (Savva et al. 2019;
Kolve et al. 2017; Xia et al. 2018; Dosovitskiy et al. 2017;
Savva et al. 2017).

We here briefly review variants of embodied learning. In
Embodied Question Answering (Das et al. 2018; Wijmans
et al. 2019; Yu et al. 2019), an agent is given a question,
e.g. ”What color is the car?”. The agent must typically ex-
plore the environment quite extensively in order to be able
to answer. Zhu et al. (2017); Mousavian et al. (2019) task
the agent with reaching a target view using as few steps as
possible. The agent receives the current view and the target
as inputs in each step. In point-goal navigation (Mishkin,
Dosovitskiy, and Koltun 2019; Sax et al. 2019; Savva et al.

2019; Gupta et al. 2017) the agent is given coordinates of a
target to reach using visual information and ego-motion. In
visual exploration (Ramakrishnan, Jayaraman, and Grauman
2020; Fang et al. 2019; Chen, Gupta, and Gupta 2019; Qi
et al. 2020; Zheng et al. 2019; Chaplot et al. 2020) the task
is to explore an unknown environment as quickly as possi-
ble, by covering the whole scene area. In Ammirato et al.
(2017); Yang et al. (2019b) an agent is tasked to navigate an
environment to increase the accuracy of a pre-trained recog-
nition model, e.g. by moving around occluded objects. This
is in contrast to our work where the goal is to collect views
for training a perception model. Whereas in Ammirato et al.
(2017); Yang et al. (2019b) the agent is spawned close to
the target object, we cannot make such assumptions, as our
task is not only to accurately recognize a single object or
view, but to do so for all views in the potentially large area
explored by the agent.

There are relations to curiosity-driven learning (Pathak
et al. 2017; Yang et al. 2019a), in that we also seek an agent
which visits novel views (states). In Pathak et al. (2017),
exploration is aided by giving rewards based on the predic-
tion error of a self-supervised inverse-dynamics model. This
is a task-independent exploration strategy useful to search
2d or 3d environments during training. In our setup, explo-
ration is task-specific in that it is aimed specifically at re-
fining a visual recognition system in a novel environment.
Moreover, we use semi-dense rewards for both visual learn-
ing and for exploration. Hence we are not operating using
sparse rewards where curiosity approaches often outperform
other methods.

Our work is also related to Song, Zhang, and Xiao (2015);
Pot, Toshev, and Kosecka (2018); Zhong et al. (2018); Wang
et al. (2019). Differently from us, Song, Zhang, and Xiao
(2015) uses hand-crafted annotation and exploration strate-
gies, aiming to label all voxels in a 3d reconstruction by
selecting a subset of frames covering all voxels. This is a
form of exhaustive annotation and a visual perception sys-
tem is not trained. Hence the system can only analyze ob-
jects in annotated voxels. In our setup the agent is instead
tasked with both exploration and the selection of views to

2374



!"($|&)

Movement
action

Perception
action

Update
position

Training data

Annotate

Collect

Segmentation
Network

Propagate
annotation

Policy input

Figure 2: Embodied visual active learning for semantic segmentation. A first-person agent is placed in a room and a deep net-
work predicts the semantic segmentation of the agent’s view. Based on the view and its segmentation, the agent can either select
a movement action to change position and viewpoint, or select a perception action (Annotate or Collect). Annotate adds
the current view and its ground truth segmentation to the pool of training data for the segmentation network, while Collect
is a cheaper version (no additional supervision required) where the current view and the last annotated view – propagated to
the agent’s current position using optical flow – is added to the training set. The propagated annotation is also a policy input
for the learnt agent in §3.3. After a perception action, the segmentation network is refined on the current training set. The
embodied visual active learning process is considered successful if, after selecting a limited number of Annotate actions or
an exploration budget is exhausted, the segmentation network can accurately segment any other view in the environment where
the agent operates. Note that the map (left) is not provided as input to the learnt agent in §3.3.

annotate, and we learn a perception module aiming to gen-
eralize to unseen views. In contrast to us, Pot, Toshev, and
Kosecka (2018); Zhong et al. (2018); Wang et al. (2019) do
not consider an agent choosing where to move in the envi-
ronment, nor which parts to label. Instead, they use all views
seen when following a pre-specified path for training a vi-
sual recognition system. Pot, Toshev, and Kosecka (2018)
use an object detector obtained by self-supervised learning
and clustering. Zhong et al. (2018); Wang et al. (2019) use
constraints from SLAM to improve a given segmentation
model. This approach could in principle complement our la-
bel propagation, and is orthogonal to our main proposals.

Next-best-view (NBV) prediction (Jayaraman and Grau-
man 2018; Xiong and Grauman 2018; Johns, Leutenegger,
and Davison 2016; Jayaraman and Grauman 2016; Song
et al. 2018; Gärtner, Pirinen, and Sminchisescu 2020) is su-
perficially similar to our task. In Jayaraman and Grauman
(2018) an agent is trained to reveal parts of a panorama and
a model is built to complete all views of the panorama. Our
setup allows free movement in an environment, hence it fea-
tures a navigation component which makes our task more
comprehensive. While NBV typically integrates information
from all predicted views, our task requires the adaptive se-
lection of only a subset of the views encountered during the
agent’s navigation trajectory.

Active learning (Settles 2009; Fang, Li, and Cohn 2017;
Lughofer 2012; Woodward and Finn 2017; Pardo et al. 2019;
Feng et al. 2019) can be seen as the static version of our
setup, as it considers approaches for learning what parts of
a larger pre-existing and static training set should be fed
into the training procedure, and in what order. We instead
consider the active learning problem in an embodied setup,
where an agent can move and actively select views for which
to request annotation. Embodiment makes it possible to use

motion to propagate annotations, hence effectively generate
new ones at no additional annotation cost. In essence, our
work lays groundwork towards marrying the active vision
and the active learning paradigms.

3 Embodied Visual Active Learning
Embodied visual active learning is an interplay between
a first-person agent, a 3d environment and a trainable
perception module. See fig. 1 for a high-level abstraction
and fig. 2 for details of the particular task considered
in this paper. The perception module processes images
(views) observed by the agent in the environment. The
agent can request annotations for views in order to refine
the perception module. It should ideally request very few
annotations as these are costly. The agent can also generate
more annotations for free by neighborhood exploration
using label propagation, such that when trained on that data
the perception module becomes increasingly more accurate
in the explored environment. To assess how successful an
agent is on the task, we test how accurate the perception
module is on multiple random viewpoints selected uni-
formly in the area explored by the agent.

Task overview. The agent begins each episode randomly
positioned and rotated in a 3d environment, with a randomly
initialized semantic segmentation network. The ground
truth segmentation mask for the first view is given for the
initial training of the segmentation network. The agent can
choose movement actions (MoveForward, MoveLeft,
MoveRight, RotateLeft, RotateRight with 25 cm
movements and 15 degree rotations), or perception actions
(Annotate, Collect). If the agent moves or rotates, the
ground truth mask is propagated using optical flow. At any
time, the agent may choose to insert the propagated annota-

2375



tion into its training set with the Collect action, or to ask
for a new ground truth mask with the Annotate action.
After an Annotate action the propagated annotation mask
is re-initialized to the ground truth annotation. After each
perception action, the segmentation network S is refined on
the training set, which is expanded with the new data point.

The agent’s performance is evaluated at the end of the
episode. The goal is to maximize the mIoU and mean ac-
curacy of the segmentation network on the views in the area
explored by the agent. Specifically, a set of reference views
are randomly sampled within a disc of radius r centered at
the starting location, and the segmentation network is evalu-
ated on these. Hence to perform well the agent is required to
explore its surroundings, and it should refine its perception
module in regions of high uncertainty.

3.1 Methods for the Proposed Task
We develop several methods to evaluate and study the
embodied visual active learning task. All methods except
the RL-agent issue the Collect action when 30% of the
propagated labels are unknown and Annotate when 85%
are unknown. The intuition is that the pre-specified methods
should request annotation when most pixels are unlabeled.
The specific hyperparameters of all models were set based
on a validation set.

Random. Uniformly selects random movement actions.
This baseline is thus a lower bound in terms of embodied
exploration for this task.

Rotate. Continually rotates left. This method is useful
in comparing with trainable agents that move and explore,
i.e. to monitor what improvements can be expected from
embodiment.

Bounce. Explores by walking straight forward until it
hits a wall, then samples a new random direction and moves
forward until it collides with a new wall, and so on. This
agent quickly explores the environment.

Frontier exploration. This method builds a map, on-
line, by using using depth and motion from the simulator
(Yamauchi 1997). All pixels with depth within a 4m
threshold are back-projected in 3d and then classified as
either obstacles or navigable, based on height relative to the
ground plane. This agent is confined to move within the
reference view radius r, which is a choice to its advantage1

as annotated views will more likely be similar to reference
views that reside within that same radius.

Space filler. Follows a shortest space filling curve within
the reference view radius r, and as r increases the entire
environment is explored. This baseline makes strong and
somewhat less general (or depending on the application,
altogether unrealistic) assumptions in order to create a
path: knowing the floor plan in advance, as well as which

1This ensures it is evaluated under ideal conditions in contrast
to the RL-agent in §3.3.

Figure 3: An example of a space filling curve in a Matter-
port3D floor plan. Methods based on the space filler assume
complete spatial knowledge of the environment.

locations are reachable from the start. It also only moves
within the reference view radius, and knows the shortest
geodesic paths to take on the curve. Hence, this method can
be considered an upper bound for other methods. The space
filling curve is computed by placing a grid of nodes onto the
floor plan (1m resolution, using a sampling and reachability
heuristic), and then finding the shortest path around it with
an approximate traveling salesman solver. Fig. 3 shows a
space filling curve in a Matterport3D floor plan.

RL-agent. This fully trainable method we develop jointly
learns exploration and perception actions in a reinforcement
learning framework. See the full description in §3.3.

3.2 Semantic Segmentation Network
Each method uses the same FCN-inspired deep network
(Long, Shelhamer, and Darrell 2015) for semantic segmenta-
tion. The network consists of 3 blocks of convolutional lay-
ers, each containing 3 convolutional layers with kernels of
size 3× 3. The first convolutional layer in each block uses a
stride of 2, which halves the resolution. For each block the
number of channels doubles, using 64, 128 and 256 channels
respectively. Multiple predictions are made using the final
convolutional layers of each block. The multi-scale predic-
tions are resized to the original image resolution using bilin-
ear interpolation and are finally summed up, resulting in the
final segmentation estimate. Note that we have deliberately
chosen to make the network small so that it can be efficiently
refined on new data.

At the beginning of each episode, the parameters are ini-
tialized randomly, and we train the network on the very first
view, for which we always supply the ground truth segmen-
tation. Each time Annotate or Collect is selected, we
refine the network. Mini-batches of size 8, which always in-
clude the latest added labeled image, are used in training. We
use random cropping and scaling for data augmentation. The
network is refined either until it has trained for 1, 000 itera-
tions or until the accuracy of a mini-batch exceeds 95%. We
use a standard cross-entropy loss averaged over all pixels.
The segmentation network is trained using stochastic gradi-

2376



ent descent with learning rate 0.01, weight decay 10−5 and
momentum 0.9. To propagate semantic labels, we compute
optical flow between consecutive viewpoints using PWC-
Net (Sun et al. 2018). The optical flow is computed bidi-
rectionally and only pixels where the difference between the
forward and backward displacements is less than 2 pixels are
propagated (Sundaram, Brox, and Keutzer 2010). We found
that labels were reliably tracked over several frames when
using 2 pixels as a threshold.

3.3 Reinforcement Learning Agent
To present the reinforcement-learning agent for our task, we
begin with an explanation of the state-action representation
and policy network, followed by the reward structure and
finally policy training.

Actions, states and policy. The agent is repre-
sented as a deep stochastic policy πθ(at|st) that
samples an action at in state st at time t. The ac-
tions are MoveForward, MoveLeft, MoveRight,
RotateLeft, RotateRight, Annotate and
Collect. The full state is st = {It,St,P t,F t} where
It ∈ R127×127×3 is the image, St = St(It) ∈ R127×127×3

is the semantic segmentation mask predicted by the deep
network St (this network is refined over an episode; t in-
dexes the network parameters at time t), P t ∈ R127×127×3

is the propagated annotation, and F t ∈ R7×7×2048 is a deep
representation of It (a ResNet-50 backbone feature map).

The policy consists of a base processor, a recurrent
module and a policy head. The base processor con-
sists of two learnable components: φimg and φres. The
4-layer convolutional network φimg takes as input the
depth-wise concatenated triplet {It,St,P t}, producing
φimg(It,St,P t) ∈ R512. Similarly, the 2-layer convolu-
tional network φres yields an embedding φres(F t) ∈ R512

of the ResNet features F t. An LSTM (Hochreiter and
Schmidhuber 1997) with 256 cells constitutes the re-
current module, which takes as input φimg(It,St,P t)
and φres(F t). The input has length 1024. The hidden
LSTM state is fed to the policy head, consisting of a
fully-connected layer followed by a 7-way softmax which
produces action probabilities.

Rewards. In training, the main reward is related to
the mIoU improvement of the final segmentation network
ST over the initial S0 on a reference set R. The set R is
constructed at the beginning of each episode by randomly
selecting views within a geodesic distance r from the agent’s
starting location, and contains views with corresponding
ground truth semantic segmentation masks. At the end of
an episode of length T , the underlying perception module
is evaluated on R. Specifically, after an episode (with T
steps), the agent receives as final reward:

RT = mIoU(ST ,R)−mIoU(S0,R) (1)

To obtain a denser signal, tightly coupled with the final ob-
jective, we also give a reward proportional to the improve-
ment of S on the reference set R after each Annotate

(ann) and Collect (col) action:

Rannt = mIoU(St,R)−mIoU(St−1,R)− εann (2)

Rcolt = mIoU(St,R)−mIoU(St−1,R) (3)

To ensure the agent does not request costly annotations too
frequently, each Annotate action is penalized with a nega-
tive reward−εann (we set εann = 0.01), as seen in (2). Such
a penalty is not given for the free Collect action. More-
over, the dataset we use has 40 different semantic classes,
but some are very rare and apply only to small objects, and
some might not even be present in certain houses. We ad-
dress this imbalance by computing the mIoU using only the
10 largest classes, ranked by the number of pixels in the set
of reference views for the current episode.

While the rewards (1) - (3) should implicitly encourage
the agent to explore the environment in order to request
annotations for distinct, informative views, we empirically
found useful to include an additional explicit exploration re-
ward. Denote by {xi}t−1

i=1 = {(xi, yi)}t−1
i=1 the positions the

agent has visited up to time t− 1 in its current episode, and
let xt = (xt, yt) denote its current position. We define the
exploration (exp) reward based on a kernel density estimate
of the agent’s visited locations:

Rexpt = a− bpt(xt) := a− b

t− 1

t−1∑
i=1

k(x,xi) (4)

where a and b are hyperparameters (both set to 0.003). Here
pt(xt) is a Gaussian kernel estimate of the density with
bandwidth 0.3m. It is large for previously visited positions
and small for unvisited positions, thereby encouraging the
agent’s expansion towards new places in the environment.
The exploration reward is only given for movement actions.
Note that the pose xi is only used to compute the reward
Rexpt and is not available to the policy via the state space.

Policy training. The policy network is trained using
PPO (Schulman et al. 2017) based on the RLlib rein-
forcement learning package (Liang et al. 2018), as well
as OpenAI Gym (Brockman et al. 2016). For optimization
we use Adam (Kingma and Ba 2014) with batch size 512,
learning rate 10−4 and discount rate 0.99. During training,
each episode consists of 256 actions. The agent is trained
for 4k episodes, which totals 1024k steps.

Our system is implemented in TensorFlow (Abadi et al.
2016), and it takes about 3 days to train an agent using 4
Nvidia Titan X GPUs. An episode of length 256 took on
average about 3 minutes using a single GPU, and during
training we used 4 workers with one GPU each, collecting
rollouts independently. The runtime per episode varies de-
pending on how frequently the agent decides to annotate, as
training the segmentation network is the bottleneck and ac-
counts for approximately 90% of the run-time. We used op-
tical flow from the simulator to speed up policy training. For
evaluation, the RL-agent and all other methods use PWC-
Net to compute optical flow. The ResNet-50 feature extrac-
tor is pre-trained on ImageNet (Jia Deng et al. 2009) with
weights frozen during policy training.

2377



0 50 100 150 200 250
Steps

0.15

0.20

0.25

0.30

0.35

0.40

0.45
m

Io
U

Space filler
RL-agent
Frontier exploration

Bounce
Rotate
Random

0 50 100 150 200 250
Steps

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

Space filler
RL-agent
Frontier exploration

Bounce
Rotate
Random

Figure 4: Mean segmentation accuracy and mIoU versus number of actions (steps), evaluated on the Matterport3D test scenes.
The RL-agent was trained on 256-step episodes. This agent fairly quickly outperforms all other comparable pre-specified agents.
Rotate is strong initially since it quickly gathers many annotations in a 360 degree arc, but is eventually outperformed by most
other methods that move around in the houses. Frontier exploration yields similar accuracy as the RL-agent after about 170
steps, but uses significantly more annotations (cf. table 1) and assumes perfect pose and depth information. The space filler,
which assumes full knowledge of the environment, yields the best results after about 100 steps.

4 Experiments
In this section we provide empirical evaluations of various
methods. The primary metrics are mIoU and segmentation
accuracy but we emphasize that we test the exploration
and annotation selection capability of policies – the mIoU
and accuracy measure how well agents explore in order
to refine their perception. Differently from accuracy, the
mIoU does not become overly high by simply segmenting
large background regions (such as walls), hence it is more
representative of overall semantic segmentation quality.

Experimental setup. We evaluate the methods on the
Matterport3D dataset (Chang et al. 2017) using the em-
bodied agent framework Habitat (Savva et al. 2019). This
setup allows the agent to freely explore photorealistic 3d
models of large houses, that have ground truth annotations
for 40 diverse semantic classes. Hence it is a suitable
environment for evaluation. To assess the generalization
capability of the RL-agent we train and test it in different
houses. We use the same 61, 11 and 18 houses for training,
validation and testing as Chang et al. (2017). The RL-agent
and all pre-specified methods except the space filler are
comparable in terms of assumptions, cf. §3.1. The space
filler assumes full spatial knowledge of the environment
(ground truth map) and hence has inherent advantages over
the other methods.

During RL-agent training we randomly sample starting
positions and rotations from the training houses at the start
of each episode. An episode ends after 256 actions. Hyper-
parameters of the learnt and pre-specified agents are tuned
on the validation set. For validation and testing we use 3 and
4 starting positions per scene, respectively, so each agent is
tested for a total of 33 episodes in validation and 72 episodes
in testing. The reported metrics are the mean over all these
runs. All methods are evaluated on the same starting posi-
tions in the same houses. The reference views used to eval-

uate the semantic segmentation performance are obtained
by sampling 32 random views within a 5 m geodesic dis-
tance of the agent’s starting position at the beginning of each
episode. In training the reference views are sampled ran-
domly. During validation and testing, for fairness, we sam-
ple the same views for a given starting position when we test
different agents. Note that there is no overlap between refer-
ence views during policy training and testing, since training,
validation and testing houses are non-overlapping.

Recall that the RL-agent’s policy parameters are denoted
by θ. Let θseg denote the parameters of the underlying se-
mantic segmentation network, in order to clarify when we
reset, freeze and refine θ and θseg , respectively. For RL-
training, we refine θ during policy estimation in the train-
ing houses. When we evaluate the policy on the validation
or test houses we freeze θ and only use the policy for in-
ference. The parameters of the segmentation network θseg
are always reset at the beginning of an episode, regardless
of which house we deploy the agent in, and regardless of
whether the policy network is training or not. During an
episode, we refine θseg exactly when the agent selects the
Annotate or Collect actions (this applies also to all the
other methods described in §3.1). Thus annotated views in
an episode are used to refine θseg in that episode only, and
are not used in any other episodes.

4.1 Main Results
We measure the performances of the agents in two settings:
(a) with unlimited annotations but limited total actions (max
256, as during RL-training), or (b) for a limited annotation
budget (max 100) but unlimited total actions. All methods
were tuned on the validation set in a setup similar to (a)
with 256 step episodes. Note however that the number of
annotations can differ for different methods in a 256 step
episode. The setup (b) is used to assess how the different
methods compare for a fix number of annotations.

2378



0 20 40 60 80 100
Annotations

0.1

0.2

0.3

0.4

0.5

0.6
m

Io
U

Space filler
RL-agent
Frontier exploration

Bounce
Rotate
Random

0 20 40 60 80 100
Annotations

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Space filler
RL-agent
Frontier exploration

Bounce
Rotate
Random

Figure 5: Mean segmentation accuracy and mIoU for a varying number of requested annotations evaluated on the Matterport3D
test scenes. The RL-agent outperforms all comparable pre-specified methods (although frontier exploration matches it in accu-
racy after about 40 annotations), indicating that it has learnt an exploration policy which generalizes to novel scenes. The space
filler, as expected, outperforms the RL-agent, except for less than 15 annotations. Thus the RL-agent is best before and around
its training regime, where on average annotates 16.7 times per episode, cf. table 1.

Method mIoU Acc # Ann # Coll
Space filler 0.439 0.769 24.7 23.9
RL-agent 0.394 0.727 16.7 15.2

Frontier exploration 0.385 0.735 24.2 21.6
Bounce 0.357 0.708 29.6 26.0
Rotate 0.295 0.661 34.3 32.7

Random 0.204 0.566 29.1 19.5

Table 1: Comparison of different agents for a fixed episode
length of 256 actions on the Matterport3D test scenes. The
RL-agent gets higher mIoU using far fewer annotations than
comparable pre-specified methods, implying that the RL-
agent’s policy selects more informative views to annotate.

Fixed episode length. Table 1 and fig. 4 show results on
the test scenes for episodes of length 256. The RL-agent
outperforms the comparable pre-specified methods in mIoU
and accuracy, although frontier exploration – which uses
perfect pose and depth information, and is idealized to
always move within the reference view radius – yields
similar accuracy after about 170 steps. The RL-agent uses
much fewer annotations than other methods, hence those
annotated views are more informative. The space filler,
which assumes perfect knowledge of the map, outperforms
the RL-agent but uses significantly more annotations. Note
that the Rotate baseline saturates, supporting the intuition
that an agent has to move around in order to increase
performance in complex environments.

Fixed annotation budget. In table 2 and fig. 5 we
show test results when the annotation budget is limited to
100 images per episode. As expected, the space filler yields
the best results, although the RL-agent gets comparable per-
formance when using up to 15 annotations. The RL-agent
outperforms comparable pre-specified methods in mIoU
and accuracy. Frontier exploration obtains similar accuracy.

Method mIoU Acc # Steps # Coll
Space filler 0.600 0.863 1048 91
RL-agent 0.507 0.796 1541 94

Frontier exploration 0.485 0.796 998 84
Bounce 0.464 0.776 861 87
Rotate 0.303 0.668 752 96

Random 0.242 0.595 910 64

Table 2: Comparison of different agents for a fixed budget of
100 annotations on Matterport3D test scenes. The RL-agent
gets a higher mIoU than comparable pre-specified agents,
despite not being trained in this setting.

We also see that the episodes of the RL-agent are longer.

Qualitative examples. Fig. 6 shows examples of views that
the RL-agent choose to annotate. The agent explores large
parts of the space and the annotated views are diverse, both
in their spatial locations and in the types of semantic classes
they contain. Fig. 7 shows how the segmentation network’s
performance on two reference views improves during an
episode. The two views are initially poorly segmented, but
as the agent explores and acquires annotations for novel
views, the accuracy on the reference views increases.

4.2 Ablation Studies of the RL-agent
Ablation results of the RL-agent on the validation set are
in table 3. We compare to the following versions: i) Pol-
icy without visual features φimg; ii) Policy without ResNet
features φres; iii) No additional exploration reward (4), i.e.
Rexpt = 0; iv) No Collect action and P t is not an input
to φimg; and v) Only exploration trained, using the heuristic
strategy for annotations. We trained the ablated models for
4,000 episodes as for the full model.

Both the validation accuracy and mIoU are higher for the
full RL-model compared to all ablated variants, justifying

2379



1
2

3 4

5

6

1 2 3 4 5 6

Figure 6: The first six requested annotations by the RL-agent in a room from the test set. Left: Map showing the agent’s
trajectory and the six first requested annotations (green arrows). The initially given annotation is not indicated with a number.
Blue arrows indicate Collect actions. Right: For each annotation (numbered 1 - 6) the figures show the image seen by the
agent and the ground truth received when the agent requested annotations. As can be seen, the agent quickly explores the room
and requests annotations containing diverse semantic classes.

Variant mIoU Acc # Ann # Coll
Full model 0.427 0.732 16.4 16.4

No collect nor P t 0.415 0.727 17.9 0.0
Only exploration 0.411 0.727 16.1 14.4

Rexpt = 0 0.401 0.719 17.7 47.4
No φimg 0.378 0.696 14.3 3.8

No ResNet 0.375 0.705 23.3 0.3

Table 3: Ablation study of different RL-based model vari-
ants for 256-step episodes on the validation set. The full
RL-agent outperforms all ablated models at a comparable
or lower number of requested annotations.

design choices. The model not relying on propagating an-
notations and using the Collect action performs some-
what worse than the full model despite a comparable amount
of annotations. The learnt annotation strategy yields higher
mIoU and accuracy compared to the heuristic one, at compa-
rable number of annotations. The exploration reward is im-
portant in encouraging the agent to navigate to unvisited po-
sitions – without it performance is worse, despite a compa-
rable number of annotations. The agent trained without the
exploration reward uses an excessive number of Collect
actions, so this agent often stands still instead of moving.
Finally, omitting either visual or ResNet features from the
policy significantly harms accuracy for the resulting recog-
nition system.

4.3 Analysis of Annotation Strategies
In this section we examine how different annotation strate-
gies affect the task performance on the validation set for the
space filler and bounce methods. Specifically, the annotation
strategies are:
• Threshold perception. This is the variant evaluated in
§4.1, i.e. it issues the Collect action when 30% of
the propagated labels are unknown and Annotate when
85% are unknown.

• Learnt perception. We train a simplified RL-agent where

Variant mIoU Acc # Ann # Coll
Threshold perception 0.472 0.770 20.8 19.9

Learnt perception 0.454 0.755 22.8 37.4
Random perception 0.446 0.747 24.2 24.4

Table 4: Results for different model variants of the space
filler method. We report the mean on the validation scenes.
The threshold perception strategy – which is the one used in
the main evaluations in §4.1 – yields the best results.

the movement actions are restricted to follow the ex-
ploration trajectory of the baseline method (space filler
and bounce, respectively). This model has 3 actions:
move along the baseline exploration path, Annotate
and Collect. All other training settings are identical to
the full RL-agent.

• Random perception. In each step, this variant follows
the baseline exploration trajectory with 80% probability,
while annotating views and collecting propagated labels
with 10% probability each.

As can be seen in table 4, the best results for the space filler
are obtained by using the threshold strategy, which also an-
notates slightly less frequently than other variants. Using
learnt perception actions yields better results compared to
random perception actions, and takes slightly fewer annota-
tions per episode. Similar results carry over to the bounce
method in table 5, i.e. the best results are again obtained
by the threshold variant. The model with a learnt annota-
tion strategy fails to converge to anything better than heuris-
tic perception strategies. In fact, it converges to selecting
Collect almost 40% of the time, which indicates a lack
of movement for this variant.

In table 3 we saw that a learnt exploration method with a
heuristic annotation strategy yields worse results than a fully
learnt model. Conversely, the results from table 4 and table 5
show that a heuristic exploration method using a learnt anno-
tation strategy yields worse results than an entirely heuristic
model. Together these results indicate that it is necessary to

2380



1

2

3

a

b
1 2 3

a

b

Requested Annotations
Reference Views 1 2 3

Predicted Segmentations

Figure 7: Example of the RL-agent’s viewpoint selection and how its perception improves over time. We show results of two
reference views after the first three annotations of the RL-agent. Left: Agent’s movement path is drawn in black on the map. The
annotations (green arrows) are numbered 1 - 3, and the associated views are shown immediately right of the map (the initially
given annotation is not shown). Red arrows labeled a - b indicate the reference views. Right: Reference views and ground truth
masks, followed by predicted segmentation after one, two and three annotations. Notice clear segmentation improvements as
the agent requests more annotations. Specifically, note how reference view a improves drastically with annotation 2 as the bed
is visible in that view, and with annotation 3 where the drawer is seen. Also note how segmentation improves for reference view
b after the door is seen in annotation 3.

Variant mIoU Acc # Ann # Coll
Threshold perception 0.388 0.706 27.4 24.5

Learnt perception 0.375 0.699 14.6 98.8
Random perception 0.379 0.698 25.9 24.6

Table 5: Results for different model variants of the bounce
method. We report the mean on the validation scenes. The
threshold perception strategy – which is the one used in the
main evaluations in §4.1 – yields the best results, but also
uses the largest amount of annotations on average.

learn how to annotate and explore jointly to provide the best
results, given comparable environment knowledge.

4.4 Pre-training the Segmentation Network
Recall that our semantic segmentation network is randomly
initialized at the beginning of each episode. In this sec-
tion we evaluate the effect of instead pre-training the seg-
mentation network2 on the 61 training houses using about
20,000 random views. In table 6 we compare using this pre-
trained segmentation network as initialization for the RL-
agent with the case of random initialization. We also show
results when not further fine-tuning the pre-trained segmen-
tation network, i.e. when not performing any embodied vi-
sual active learning.

The weak result obtained when not fine-tuning (first row)
indicates significant appearance differences between the
houses. This is further suggested by the fact that the RL-
agent gets a surprisingly modest boost from pre-training the
segmentation network (third row vs second row). Note the
different number of annotated views used here – the agent
without pre-training uses only 16.4 views on average, while
the other uses about 20, 000 + 14.4 annotated views, if we

2In this pre-training experiment, we use the same architecture
and hyperparameters for the segmentation network as when it is
trained and deployed in the embodied visual active learning task.

Variant mIoU Acc # Ann # Coll
Pre-train, no RL 0.208 0.549 20k 0.0
No pre-train, RL 0.427 0.732 16.4 16.4

Pre-train, RL 0.461 0.780 20k + 14.4 13.3

Table 6: Results for different training regimes for the seman-
tic segmentation network. A pre-trained segmentation net-
work generalizes poorly to unseen environments (first row),
and there is relatively little gain for the RL-agent by having
a pre-trained segmentation network (third row). Note that
pre-training uses over 1000x more annotations compared to
performing embodied active visual learning from scratch.

count all the images used for pre-training. Due to relatively
marginal gains for a large number of annotated images, we
decided to evaluate all agents without pre-training the seg-
mentation network.

5 Conclusions
In this paper we have explored the embodied visual active
learning task for semantic segmentation and developed a di-
verse set of methods, both pre-designed and learning-based,
in order to address it. The agents can explore a 3d envi-
ronment and improve the accuracy of their semantic seg-
mentation networks by requesting annotations for informa-
tive viewpoints, propagating annotations via optical flow at
no additional cost by moving in the neighborhood of those
views, and self-training. We have introduced multiple base-
lines as well as a more sophisticated fully learnt model, each
exposing different assumptions and knowledge of the en-
vironment. Through extensive experiments in the photore-
alistic Matterport3D environment we have thoroughly in-
vestigated the various methods and shown that the fully
learning-based method outperforms comparable non-learnt
approaches, both in terms of accuracy and mIoU, while re-
lying on fewer annotations.

2381



Acknowledgments
This work was supported in part by the European Research
Council Consolidator grant SEED, CNCS-UEFISCDI PN-
III-P4-ID-PCE-2016-0535 and PCCF-2016-0180, the EU
Horizon 2020 Grant DE-ENIGMA, Swedish Foundation for
Strategic Research (SSF) Smart Systems Program, as well
as the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg
Foundation.

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen,
Z.; Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin,
M.; et al. 2016. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .
Ammirato, P.; Poirson, P.; Park, E.; Košecká, J.; and Berg,
A. C. 2017. A dataset for developing and benchmarking
active vision. In ICRA, 1378–1385. IEEE.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540 .
Chang, A.; Dai, A.; Funkhouser, T.; Halber, M.; Niessner,
M.; Savva, M.; Song, S.; Zeng, A.; and Zhang, Y. 2017. Mat-
terport3D: Learning from RGB-D Data in Indoor Environ-
ments. International Conference on 3D Vision.
Chaplot, D. S.; Gandhi, D.; Gupta, S.; Gupta, A.; and
Salakhutdinov, R. 2020. Learning To Explore Using Active
Neural SLAM. In ICLR.
Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2017. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully
connected crfs. TPAMI 40(4): 834–848.
Chen, T.; Gupta, S.; and Gupta, A. 2019. Learning explo-
ration policies for navigation. In ICLR.
Das, A.; Datta, S.; Gkioxari, G.; Lee, S.; Parikh, D.; and
Batra, D. 2018. Embodied question answering. In CVPR,
volume 5, 6.
Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; and
Koltun, V. 2017. CARLA: An Open Urban Driving Sim-
ulator. In CoRL, 1–16.
Fang, K.; Toshev, A.; Fei-Fei, L.; and Savarese, S. 2019.
Scene Memory Transformer for Embodied Agents in Long-
Horizon Tasks. In CVPR.
Fang, M.; Li, Y.; and Cohn, T. 2017. Learning how to Ac-
tive Learn: A Deep Reinforcement Learning Approach. In
Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, 595–605.
Feng, D.; Wei, X.; Rosenbaum, L.; Maki, A.; and Dietmayer,
K. 2019. Deep Active Learning for Efficient Training of a
LiDAR 3D Object Detector. In 2019 IEEE Intelligent Vehi-
cles Symposium (IV), 667–674.
Gärtner, E.; Pirinen, A.; and Sminchisescu, C. 2020. Deep
Reinforcement Learning for Active Human Pose Estimation.
In AAAI, 10835–10844.

Gupta, S.; Davidson, J.; Levine, S.; Sukthankar, R.; and Ma-
lik, J. 2017. Cognitive mapping and planning for visual nav-
igation. In CVPR, 2616–2625.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.
Jayaraman, D.; and Grauman, K. 2016. Look-ahead before
you leap: end-to-end active recognition by forecasting the
effect of motion. In ECCV, 489–505. Springer.
Jayaraman, D.; and Grauman, K. 2018. Learning to look
around: Intelligently exploring unseen environments for un-
known tasks. In CVPR.
Jia Deng; Wei Dong; Socher, R.; Li-Jia Li; Kai Li; and Li
Fei-Fei. 2009. ImageNet: A large-scale hierarchical image
database. In CVPR. ISBN 978-1-4244-3992-8. doi:10.1109/
CVPRW.2009.5206848.
Johns, E.; Leutenegger, S.; and Davison, A. J. 2016. Pair-
wise decomposition of image sequences for active multi-
view recognition. In CVPR, 3813–3822.
Kingma, D.; and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 .
Kolve, E.; Mottaghi, R.; Han, W.; VanderBilt, E.; Weihs, L.;
Herrasti, A.; Gordon, D.; Zhu, Y.; Gupta, A.; and Farhadi,
A. 2017. AI2-THOR: An Interactive 3D Environment for
Visual AI. arXiv preprint arXiv:1712.05474 .
Krizhevsky, A.; Sutskever, I.; and Hinton, G. 2012. Im-
agenet classification with deep convolutional neural net-
works. In NeurIPS.
Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gold-
berg, K.; Gonzalez, J.; Jordan, M.; and Stoica, I. 2018.
RLlib: Abstractions for distributed reinforcement learning.
In International Conference on Machine Learning, 3053–
3062.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully con-
volutional networks for semantic segmentation. In CVPR,
3431–3440.
Lughofer, E. 2012. Single-pass active learning with conflict
and ignorance. Evolving Systems 3(4): 251–271.
Mishkin, D.; Dosovitskiy, A.; and Koltun, V. 2019. Bench-
marking Classic and Learned Navigation in Complex 3D
Environments. arXiv preprint arXiv:1901.10915 .
Mousavian, A.; Toshev, A.; Fišer, M.; Košecká, J.; Wahid,
A.; and Davidson, J. 2019. Visual representations for seman-
tic target driven navigation. In ICRA, 8846–8852. IEEE.
Pardo, A.; Xu, M.; Thabet, A.; Arbelaez, P.; and Ghanem,
B. 2019. BAOD: Budget-Aware Object Detection. arXiv
preprint arXiv:1904.05443 .
Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven exploration by self-supervised prediction.
In ICML, volume 2017.
Pot, E.; Toshev, A.; and Kosecka, J. 2018. Self-supervisory
Signals for Object Discovery and Detection. arXiv preprint
arXiv:1806.03370 .

2382



Qi, W.; Mullapudi, R. T.; Gupta, S.; and Ramanan, D. 2020.
Learning to Move with Affordance Maps. In ICLR.

Ramakrishnan, S. K.; Jayaraman, D.; and Grauman, K.
2020. An Exploration of Embodied Visual Exploration.
arXiv preprint arXiv:2001.02192 .

Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016.
You only look once: Unified, real-time object detection. In
CVPR, 779–788.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster R-
CNN: Towards real-time object detection with region pro-
posal networks. In NeurIPS, 91–99.

Savva, M.; Chang, A. X.; Dosovitskiy, A.; Funkhouser,
T.; and Koltun, V. 2017. MINOS: Multimodal In-
door Simulator for Navigation in Complex Environments.
arXiv:1712.03931 .

Savva, M.; Kadian, A.; Maksymets, O.; Zhao, Y.; Wijmans,
E.; Jain, B.; Straub, J.; Liu, J.; Koltun, V.; Malik, J.; et al.
2019. Habitat: A platform for embodied ai research. In
ICCV, 9339–9347.

Sax, A.; Emi, B.; Zamir, A. R.; Guibas, L. J.; Savarese, S.;
and Malik, J. 2019. Mid-Level Visual Representations Im-
prove Generalization and Sample Efficiency for Learning
Visuomotor Policies. In CoRL.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347 .

Settles, B. 2009. Active learning literature survey. Techni-
cal report, University of Wisconsin-Madison Department of
Computer Sciences.

Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 .

Song, S.; Zeng, A.; Chang, A. X.; Savva, M.; Savarese, S.;
and Funkhouser, T. 2018. Im2pano3d: Extrapolating 360
structure and semantics beyond the field of view. In CVPR,
3847–3856.

Song, S.; Zhang, L.; and Xiao, J. 2015. Robot in a room:
Toward perfect object recognition in closed environments.
CoRR, abs/1507.02703 .

Sun, D.; Yang, X.; Liu, M.-Y.; and Kautz, J. 2018. Pwc-
net: Cnns for optical flow using pyramid, warping, and cost
volume. In CVPR, 8934–8943.

Sundaram, N.; Brox, T.; and Keutzer, K. 2010. Dense point
trajectories by GPU-accelerated large displacement optical
flow. In ECCV, 438–451. Springer.

Wang, K.; Lin, Y.; Wang, L.; Han, L.; Hua, M.; Wang, X.;
Lian, S.; and Huang, B. 2019. A unified framework for mu-
tual improvement of slam and semantic segmentation. In
ICRA, 5224–5230. IEEE.

Wijmans, E.; Datta, S.; Maksymets, O.; Das, A.; Gkioxari,
G.; Lee, S.; Essa, I.; Parikh, D.; and Batra, D. 2019. Em-
bodied Question Answering in Photorealistic Environments
with Point Cloud Perception. In CVPR.

Woodward, M.; and Finn, C. 2017. Active one-shot learning.
arXiv preprint arXiv:1702.06559 .
Xia, F.; R. Zamir, A.; He, Z.-Y.; Sax, A.; Malik, J.; and
Savarese, S. 2018. Gibson env: real-world perception for
embodied agents. In CVPR. IEEE.
Xiong, B.; and Grauman, K. 2018. Snap angle prediction for
360 panoramas. In ECCV, 3–18.
Yamauchi, B. 1997. A frontier-based approach for au-
tonomous exploration. In CIRA, 146–151. IEEE.
Yang, H.-K.; Chiang, P.-H.; Ho, K.-W.; Hong, M.-F.; and
Lee, C.-Y. 2019a. Never Forget: Balancing Exploration
and Exploitation via Learning Optical Flow. arXiv preprint
arXiv:1901.08486 .
Yang, J.; Ren, Z.; Xu, M.; Chen, X.; Crandall, D. J.; Parikh,
D.; and Batra, D. 2019b. Embodied Amodal Recognition:
Learning to Move to Perceive Objects. In ICCV, 2040–2050.
Yu, L.; Chen, X.; Gkioxari, G.; Bansal, M.; Berg, T. L.; and
Batra, D. 2019. Multi-Target Embodied Question Answer-
ing. In CVPR.
Zheng, L.; Zhu, C.; Zhang, J.; Zhao, H.; Huang, H.; Niess-
ner, M.; and Xu, K. 2019. Active scene understanding via
online semantic reconstruction. In Computer Graphics Fo-
rum, volume 38, 103–114. Wiley Online Library.
Zhong, F.; Wang, S.; Zhang, Z.; and Wang, Y. 2018. Detect-
slam: Making object detection and slam mutually beneficial.
In WACV, 1001–1010. IEEE.
Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J. J.; Gupta, A.; Fei-
Fei, L.; and Farhadi, A. 2017. Target-driven visual naviga-
tion in indoor scenes using deep reinforcement learning. In
ICRA, 3357–3364. IEEE.

2383


