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Abstract

Human attention mechanisms often work in a top-down man-
ner, yet it is not well explored in vision research. Here, we
propose the Top-Down Attention Framework (TDAF) to cap-
ture top-down attentions, which can be easily adopted in most
existing models. The designed Recursive Dual-Directional
Nested Structure in it forms two sets of orthogonal paths, re-
cursive and structural ones, where bottom-up spatial features
and top-down attention features are extracted respectively.
Such spatial and attention features are nested deeply, there-
fore, the proposed framework works in a mixed top-down
and bottom-up manner. Empirical evidence shows that our
TDAF can capture effective stratified attention information
and boost performance. ResNet with TDAF achieves 2.0%
improvements on ImageNet. For object detection, the perfor-
mance is improved by 2.7% AP over FCOS. For pose es-
timation, TDAF improves the baseline by 1.6%. And for ac-
tion recognition, the 3D-ResNet adopting TDAF achieves im-
provements of 1.7% accuracy.

Introduction
When observing an unfamiliar scene, its natural for humans
to first take a glimpse to grasp the part of interest and then
look closer to its details. Such a top-down attention mecha-
nism allows global context information to be considered by
humans at an early stage so that they can quickly and pre-
cisely understand the surroundings (Corbetta and Shulman
2002; Buschman and Miller 2007). In contrast to humans
vision system, deep neural networks(DNN), the most pow-
erful vision tools, work in a bottom-up manner. They extract
local features first then integrate them into global features.
Thus, in DNN, local features are aggregated step by step
to help networks interpret global context. Observing from
above we intend to build a model that works in a mixed top-
down and bottom-up manner, incorporating the strong traits
of deep model and mimicking the human attention.

Despite that the design of attention mechanism has been
intensively studied in previous literature, little research has
been conducted to introduce the human-like top-down at-
tention into mainstream deep models. Some works formu-
late attention mask as a residual module (Li, Zhu, and Gong
2018; Zhang et al. 2018; Wang et al. 2017) or built-in
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Figure 1: Top-Down Attentions. The model introduces
global information at “top” attention stage to focus on coarse
areas and then gradually adjusts the attention to elaborate ar-
eas that contain the most important features. Such a manner
can generate fine-grained attention maps with high-level se-
mantics and reduce the loss of information.

block (Hu, Shen, and Sun 2018; Woo et al. 2018), where
hierarchical attention features are extracted along with basic
bottom-up spatial features. Thus, this kind of attention has
to focus on local details first then on the global information.
Since these bottom-up mechanisms only access to local fea-
tures at early stages, they will first generate trivial attention
features, failing to focus models on the part of interest.

In this paper, to extract the top-down attention features
(see Fig. 1), we cannot simply extract the attention along
with the basic features, instead, we utilize a recursive struc-
ture. By adding the recursive dimension, the proposed model
can establish the top-down features step by step. It con-
sists of two principal techniques, namely Recursive Dual-
Directional Nested Structure (R2DNS) and Attention Net-
work across Recurrence (ANAR). As its name, R2DNS is a
recursive structure and information flows in two nested di-
rections: recursive and structural directions. At each recur-
sive step, it takes as input the images with different scales,
from small to large. The small scale inputs contain global
but coarse information while the large ones contain local
but detailed information. Thus, in the recursive direction,
information flows from “global” to “local”, forming the top-
down path. While in the structural direction, the multi-layer
deep model still works in the bottom-up scheme. Therefore,
R2DNS works in a mixed top-down and bottom-up manner.

Attention Network across Recurrence (ANAR) serves as
a recursive bridge and takes charge of propagating atten-
tion features along the recursive paths of R2DNS. It is an
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Figure 2: Structure of R2DNS. a) The R2DNS consists of multiple stages and at each stage, there is a spatial feature extractor
hl[·] and an attention module gl[·] (ANAR). The dashed line denotes that it is a path across the timestamps. b) R2DNS first
samples the original input down to different scales as inputs of each recursive stamp (vertical flow). hl[·] and gl[·] share the
same parameters among different flows. The attention module outputs “top” attention maps and multiplies them on “down”
features to form the top-down flows in horizontal paths as the red lines show, while in vertical flows, the spatial blocks extract
basic features in a bottom-up manner as the blue lines show. Note that the front vertical flows are shorter than the hind ones

hourglass-like network which has been successfully applied
to human pose estimation (Newell, Yang, and Deng 2016;
Fang et al. 2017; Xiu et al. 2018) and image segmenta-
tion (Long, Shelhamer, and Darrell 2015; Fang et al. 2019).
We adopt such a structure to compute attention maps based
on features of previous recursive step and then add them as
soft weights on next step’s spatial features. Thus, it is ANAR
that acts as the connection bridges of the recursive steps, in-
stead of the hidden states and it deep nests top-down atten-
tion to bottom-up features to work cooperatively.

We conduct comprehensive experiments on several tasks
to evaluate our proposed Top-Down Attention Framework.
Results reveal that: 1) The ANAR can generate effective at-
tention maps with top-down characteristics. 2) The R2DNS
is easy to train in the end-to-end setting. 3) The Top-Down
Attention Framework can enjoy accuracy gained from the
mixed top-down and bottom-up features, greatly surpassing
the corresponding baselines and other attention methods.

We evaluate our framework on several visual tasks: image
classification on CIFAR-10 (Krizhevsky, Hinton et al. 2009)
and ImageNet (Russakovsky et al. 2015), action recogni-
tion on Kinetics (Kay et al. 2017), objection detection, and
human pose estimation on COCO (Lin et al. 2014). For
image classification and action recognition, TDAF modi-
fied on ResNet50 (He et al. 2016) and 3D-ResNet50 (Hara,
Kataoka, and Satoh 2018) achieves performances better than
ResNet152 and 3D-ResNet101. For object detection, TDAF
improves FCOS’s (Tian et al. 2019) performance by 2.7%
AP. For pose estimation, the performances improve 1.6% AP
on the SimplePose (Xiao, Wu, and Wei 2018).

Related Work
Attention Mechanisms Attention mechanisms widely
exist in the information processing system of human

brains (Buschman and Miller 2007; Corbetta and Shulman
2002). Many recent works have incorporated them into arti-
ficial neural networks. In sequential problems of NLP (Bah-
danau, Cho, and Bengio 2014; Vaswani et al. 2017; Lin et al.
2017c; Xu et al. 2015), attention mechanisms are widely
adopted in recurrent neural networks (RNN) (Pang et al.
2019), Long Short Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997), SCS (Pang et al. 2020b), and Trans-
former (Vaswani et al. 2017) to capture the relationships be-
tween words or sentences. In computer vision, many tasks
like fine-grained recognition (Fu, Zheng, and Mei 2017;
Wang et al. 2015; Fang et al. 2018; Pang et al. 2020c),
image captioning (Anderson et al. 2018; Anne Hendricks
et al. 2016; Xu et al. 2015), classification (Mnih et al. 2014;
Hu, Shen, and Sun 2018; Woo et al. 2018; Wang et al.
2017; Tang et al. 2020), and segmentation (Ren and Zemel
2017; Chen et al. 2016; Cao et al. 2020) also utilize atten-
tion mechanisms based on soft attention maps or bounding-
boxes to search salient areas. Moreover, self-attention struc-
tures (Wang et al. 2018; Zhu et al. 2019; Huang et al. 2018;
Dai et al. 2019) focusing on the combination weight of el-
ements (pixels in vision) are another attention method that
adopts adjacent matrix to present attentions.

The above attention mechanisms work in the bottom-up
pattern. They capture attentions first from local informa-
tion, leading to neglect of context information (Oliva et al.
2003). To this end, we propose the new recurrent top-down
attention which is closer to human’s attention (Corbetta and
Shulman 2002; Buschman and Miller 2007), and inchoate
attempts (Oliva et al. 2003) have proved its effectiveness.
Multi-Scale Structures Multi-scale structures which have
great scale invariance are widely adopted in vision models.
In (Chen et al. 2016; Piao et al. 2019; Tian et al. 2019; Lin
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et al. 2017b; Pang et al. 2020a), different scales take charge
of detecting the object with different sizes. DLA (Yu et al.
2018) aggregates features from different layers to form more
efficient ones. SlowFast network (Feichtenhofer et al. 2018)
adopts different scales both in the spatial dimension and
temporal dimension to split the works of temporal and spa-
tial feature extracting and reduce the resource consumption.
HRNet (Sun et al. 2019) consists of several parallel flows
with inputs of different scales, which aims at maintaining
the high-resolution feature map across the whole network,
instead of regaining them from the low-resolution map.

In our model, multi-scale inputs are not treated equally
like previous works. The attention information flows only
from small scale inputs to large ones. Because the attention
features from small scale inputs are used as soft masks added
onto large ones, these attention features can also be treated
as control gates working on the spatial features.

Approach
To imitate human brains that observe environment with a
top-down attention mechanism, we propose the Top-Down
Attention Framework (TDAF) with a recursive structure. In
this section, we will introduce its two main parts in turn: 1)
the Recursive Dual-Directional Nested Structure (R2DNS)
designed to form the mixed top-down and bottom-up infor-
mation paths in dual directions; 2) the Attention Network
across Recurrence (ANAR) designed to generate and propa-
gate top-down attention along top-down (recursive) paths.

Recursive Dual-Directional Nested Structure
Inspired from the working manner of human attention, we
need to build top-down information flow paths in the model,
which gradually form attentions from coarse to detailed.
Challenge It is not easy to endow the existing deep vision
models a top-down information flow, as the stacked CNN
layers need to combine low-level local features into high-
level global ones and this is a bottom-up process. Adopting
residual or parallel modules like (He et al. 2016; Wang et al.
2017; Zhang et al. 2018) can add more flows but they still
behave like traditional CNN, working in a bottom-up man-
ner. Adding a reverse flow from high layers like (Lin et al.
2017a,b; Tian et al. 2019) cannot combine the bottom-up
spatial features and top-down attention maps.
Overall Structure Therefore, we go down to consider how
to form the top-down path and keep the high-level spa-
tial features simultaneously. For this, we design the Recur-
sive Dual-Directional Nested Structure (R2DNS). It adds
another dimension, the recursive dimension, into the tradi-
tional bottom-up networks, with which the model can form
orthogonal information paths in recursive and structural di-
rections marked as horizontal paths (red lines) and vertical
flows (blue lines) in Fig. 2 b. The same as other CNN net-
works, vertical flows are bottom-up ones which are respon-
sible for capturing deep spatial representations. And in hor-
izontal direction, the recursive paths extract top-down atten-
tion features with a tailored multi-scale mechanism.

As shown in Fig. 2 a, in vertical flows, the computing
units are {hl}, responsible for capturing deep spatial repre-
sentations as other CNN networks, where l ∈ {1, 2, ..., L}
and L is the number of stages in R2DNS. Besides {hl}, we

design recursive modules {gl}. They take spatial features of
the last vertical flow as input to generate attention maps and
map them onto the next flow. These recursive operations be-
tween adjacent flows form the horizontal information paths.
Vertical Flows The unrolled and detailed calculation pro-
cedure is shown in Fig. 2 b. In each vertical flow, the net-
work is a typical deep CNN model with multiple stages:
{hl|l ∈ {0, 1, ..., L}}. It can be implemented based on popu-
lar image or video backbones. Note that we apply the asym-
metric recursive structure: the front vertical flows are shorter
(have fewer stages) than the hind ones. With an original
backbone having L stages, the number of stages S in ver-
tical flow n can be formalized as:

S(n) = L− (N − n) , (1)
where N ≤ L is the total number of flows. And weights are
shared among the vertical flows.

In order to form top-down information along the horizon-
tal paths, we adopt a down-sample function (DSF) to gener-
ate the input x1 of each vertical flow n as:

x
(N)
1 = X

x
(n)
1 = downsample[x

(n+1)
1 ] ,

(2)

where X is the original input of the whole framework. DSF
removes details, therefore, the same receptive field will con-
tain more global information after DSF. This setting makes
front vertical flows access to global but coarse information
while hind flows get local and detailed one, which form top-
down flows in horizontal paths.
Horizontal Paths In the horizontal direction, gl takes global
coarse spatial features from the last vertical flow as input,
generates attention maps based on them, and maps the atten-
tion onto local detailed spatial features of next flow. These
recursive operations link up the vertical flows to form new
horizontal information paths, and at each stage of R2DNS,
due to the global-to-local setting, a series of attention maps
from “top” to “down” are formed in these paths. Note that
weights of gl are shared among the recursive steps. The de-
tailed structure of gl is introduced in Sec. .
Formal Representation The calculation procedure can be
written as:

x
(n)
l+1 = hl[x

(n)
l ] ∗ gl[x(n−1)

l+1 ] , (3)

where x
(n)
l is the input of the lth stage in the nth flow and

∗ is the element-wise multiplication. Note that at the start of
each horizontal path, the attention feature gl[x

(n−1)
l+1 ] is ini-

tialized to 1 as Fig. 2 b shows. From Eq. 3, we can see that
x
(n)
l+1 is generated by merging the output of the spatial block
hl in the last stage and the output of attention module gl in
the front flow. As hl[·] extracts bottom-up features, and gl[·]
works in a top-down manner, the R2DNS is a mixed top-
down and bottom-up model. gl[·] outputs attention masks
and they are multiplied onto the basic CNN features gen-
erated by hl[·]. These two different information flows trans-
fer in different directions and they are nested deeply at each
element-wise multiplication junction.

Let’s take a fresh look at the asymmetric recursive struc-
ture. From the viewpoint of vertical flows, inputs of front
flow with small scales and fewer details do not need deep
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Figure 3: a) Structure of ANAR. As an hourglass module, ANAR first reduces the resolution to enlarge the receptive field. Then
DeCNN layers are adopted to map the features to the same size of basic features in the next flow. “SC”, a single layer CNN,
denotes the skip connects which assist to capture the multi-scale information. b) Attention feature maps with different degrees
of fineness generated in different recursive flows. As expected, the front flows capture coarse attention heat-maps to form the
“top” attention and the following flows refine them to more accurate ones and gradually form the “down” attention. This can
reduce the information loss caused by the inaccurate attention generated by a single-step. Here we only exhibit the maps of the
first stage. c) Besides the top-down attention in the recursive direction, the deep model also forms the bottom-up feature maps
along the structural direction

models. While for horizontal paths, high-level spatial fea-
tures that are more abstract and have smaller scales do not
need long attention chains to form top-down attention fea-
tures gradually. Thus, this asymmetric structure can reduce
unnecessary calculations.
Multi-Flow Batch Normalization Batch normalization
(BN) (Ioffe and Szegedy 2015) is a powerful module de-
signed to facilitate the training process of deep model. As
a recursive structure, multiple vertical flows share the same
batch normalization module at each stage. However, the ac-
tivation of different flows does not share the same distribu-
tion. Because the hind flows are masked by the front ones’
attention maps, they usually have smaller mean. To this end,
we propose the Multi-Flow Batch Normalization (MFBN),
which shares the affine parameters among the vertical flows,
while for each flow, it has independent mean and variance:

x̂
(n)
i =

x
(n)
i − µβ(n)√
σ2
β(n) + ε

y
(n)
i = γx̂

(n)
i + α ≡ MFBNγ,α(x

(n)
i ) ,

(4)

where β(n) = x
(n)
1...m is a mini-batch of x(n), γ and α are the

affine parameters shared among the flows. The mean µβ(n)

and variance σβ(n) are independent among the flows.

Attention Network across Recurrence
Attention Network across Recurrence (ANAR) is the com-
puting module responsible for transferring information
among the recursive flows of R2DNS. It is also the attention
module (gl) that generates soft attention maps and masks
them on basic spatial features outputted by hl[·]. This soft
attention mechanism can be seen as a control gate of spa-
tial features like (Srivastava, Greff, and Schmidhuber 2015;
Wang et al. 2017; Pang et al. 2019), aiming at strengthening
foreground features and weakening background ones.
Structure Extracting attention feature maps is a pixel-level
task, thus we design ANAR following the hourglass net-
work (Newell, Yang, and Deng 2016) which is usually used

in pose estimation. The detailed structure is shown in Fig. 3
a. In the first half, we apply CNN with stride 2 to reduce the
feature space and extract the attention related information.
Transposed CNN (DeCNN) is adopted in the second half
to map attention maps back to the same size of basic fea-
tures in the next flow. Like (Newell, Yang, and Deng 2016;
Wang et al. 2017), we also add skip connections between the
corresponding down-sample and up-sample parts to main-
tain the multi-scale spatial information. The final activation
of ANAR is the sigmoid function which converts feature
maps to soft attention masks. To fit different backbones and
balance performances with computational requirements, we
propose three ANAR structures with different depths. De-
tails are shown in Tab. 1.

Due to the sigmoid activation function which generates
values less than 1, the soft attention mask can only reduce
the strength of basic spatial activation. In a deep nested and
recursive structure, this property will largely degrade the
value of final features. To deal with these two problems, we
add a scaled shortcut connection based on Eq. 3 as the fol-
lowing equation shows.

x
(n)
l+1 = hl[x

(n)
l ] ∗ gl[x(n−1)

l+1 ] + η ∗ hl[x
(n)
l ]

= hl[x
(n)
l ] ∗ (gl[x(n−1)

l+1 ] + η) ,
(5)

where η ∈ [0, 1] is the shortcut parameter. When η is set as
1, this shortcut connection forms a residual learning struc-
ture (He et al. 2016), which will solve the problem of activa-
tion value drop. However, if η = 1, (gl[x

(n−1)
l+1 ]+η) ∈ (1, 2)

holds true, therefore, the soft mask instead can only enhance
the spatial activation. In order to both enhance useful fea-
tures and suppress noise features, we set η as 0.5, and we
call this “half-scale” residual learning.

In summary, ANAR forms a series of top-down attention
features by a group of recursive operations: firstly generate
small coarse attention maps based on the global information,
then map this attention onto the more detailed basic spa-
tial feature in the next flow and again, utilize this mapped
spatial feature to generate larger and more detailed atten-
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Stage ANAR-7 ANAR-5 ANAR-3
Trans (CNN) 1×1, c/4 1×1, c/4 1×1, c/8

Down-SP (CNN) 3×3, c/8, /2
3×3, c/8, /2 3×3, c/8, /2 -

Up-SP (DeCNN)
4×4, c/16, /2
4×4, c/16, /2
4×4, c/32, /2

4×4, c/16, /2
4×4, c/32, /2 4×4, c/32, /2

Trans (CNN) 1×1, 1 1×1, 1 1×1, 1

Table 1: Detailed settings of ANAR architecture. The struc-
ture is shown in Fig. 3 a. c denotes the number of input
channels which depends on hl[·], “Down-SP” denotes down-
sample and “/2” means the stride is 2. We adopt MFBN after
convolutional layers. Except for the last layer which adopts
sigmoid function, ReLU is the activation function of each
CNN and DeCNN layer
tion maps. Different from existing attention works (Wang
et al. 2017; Xu et al. 2015), besides the multi-level attention
formed alone the structural direction, our model also out-
puts multiple attention maps with different degrees of fine-
ness (bottom-up and top-down attentions in Fig. 3 b, c). This
process can significantly reduce the information loss caused
by the one-step generated inaccurate attention.

Comparsion with Other Attention Models
Main stream attention mechanisms can be divided into soft
attention (Hu, Shen, and Sun 2018; Woo et al. 2018; Chen
et al. 2016; Wang et al. 2017; Fukui and et al. 2019) and self-
attention (Wang et al. 2018; Huang et al. 2018; Zhou et al.
2018; Chen et al. 2018; Yue and et al. 2018). Of course, there
are some attention achieved by detecting bounding-box (Fu,
Zheng, and Mei 2017; Anderson et al. 2018; Mnih et al.
2014), but this is not the focus of this paper. The main pur-
pose of conventional bottom-up soft attention is to build a
group of new weights that is relevant to the input, instead of
the fixed convolutional kernel. One problem of this mech-
anism is that in low layers the receptive field of attention
module is too small to form effective attentions. For self-
attention, it replaces convolutional operation by attention
mechanism in order to enlarge the receptive field, where the
essence is to construct high-level features by calculating the
“relevance” between pixels. But its computing complexity is
too large to applied on low layers. While our TDAF aims at
forming top-down attention chains, building attention maps
from coarse to fine, solving the above problems. In the term
of design purpose, the TDAF is a new attention mechanism.

Experiments
In this section, we evaluate our TDAF on four vision tasks:
image classification, object detection, pose estimation, and
action recognition. The results reveal TDAF’s great perfor-
mance and universality.

Image Classification
We first evaluate TDAF on image classification with
CIFAR-10 (Krizhevsky, Hinton et al. 2009) and ImageNet-
2012 (Russakovsky et al. 2015) datasets and compare it with
the following baselines: VGG (Simonyan 2014), ResNet (He
et al. 2016), ResNeXt (Xie et al. 2017), MobileNet (Howard
et al. 2017), and SENet (Hu, Shen, and Sun 2018).
Implementation For VGG, we insert 5 ANAR modules af-
ter each max-pooling layer to form the recursive attention

Backbone Attention Params Acc

VGG16
No Att 138.4M 92.64

ANAR-2 138.4M 93.02
ANAR-3 138.5M 93.43

VGG19 No Att 143.7M 93.13
ANAR-3 143.8M 93.78

Res50 No Att 25.6M 93.62
ANAR-3 29.9M 94.13

Res101 No Att 44.5M 93.75
ANAR-3 48.9M 94.21

Table 2: Performance (Acc) on CIFAR-10 test set. The 2-
layer ANAR replaces the up-sample layer in ANAR-3 with
a parameter-free interpolation. All the models with attention
recur three times, i.e. 3 recursive flows

structure. While for the ResNe(X)t, we insert ANARs after
each stage respectively. All the BN layers are replaced by
our MFBN. Baseline network and its TDAF counterpart are
trained with identical optimization scheme following (He
et al. 2016). The parameters are initialized by “Kaiming ini-
tialization” proposed in (He et al. 2015). We use SGD opti-
mizer with 256 mini-batch on 8 GPUs to train.
CIFAR-10 and Analysis We first evaluate TDAF on the
small dataset CIFAR-10 to reveal its effectiveness. As the
resolution is only 32 × 32, we adopt the 3-layer ANAR. We
also replace the DeCNN layer in ANAR-3 with a parameter-
free interpolation function to build a much smaller ANAR-2
specifically for this small-scale task.

The experiment results are shown in Tab. 2. We observe
that TDAF consistently improves the performance across
different backbones and model depths with a small increase
in parameters. VGG19 with attention exceeds baseline by
0.65%, and ResNet-50 by 0.51%, even better than the much
deeper baseline ResNet-101 with much fewer parameters
(29.9M vs. 45.5M). In order to test whether we can get great
attention with nearly no parameters in ANAR, we replace
ANAR-3’s DeCNN layer with a parameter-free interpola-
tion to build a much smaller ANAR-2. Unfortunately, this
trial leads to a great drop in performance, revealing the im-
portance of the learnable parameters in ANAR.
ImageNet and Analysis We further analyze different atten-
tion settings on ImageNet-2012 (Russakovsky et al. 2015).
Training images are resized randomly to [256, 480] with its
shorter side and a 224 × 224 crop is sampled from it or
its horizontal flip. With larger input size, we apply deeper
ANAR and more recursive steps to maximize its potential.

The results are shown in Tab. 3a. The networks with
TDAF outperform all the baselines significantly. Note that
even applying the smallest attention setting (ANAR-3 with
3 recursive flows), our model adopting ResNet50 as the
backbone exceeds deeper ResNet-101 (78.4% vs. 78.2%)
with much fewer parameters and FLOPs. And this pattern
holds at ResNet101 which outperforms ResNet152 by 1.3%
in Top-1 Accuracy. On ResNeXt50 and ResNeXt101 (Xie
et al. 2017), there are still considerable improvements (0.9%
and 0.8%). For MobileNet (Howard et al. 2017), our ANAR
adopts depthwise convolutional filters proposed in (Howard
et al. 2017) and the performance is improved by 2.4%.

As for different attention settings, the results reveal that a
deeper ANAR module or more recursive steps will lead to
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Backbone ANAR Params GFlops Accuracy
# L # F Top-1 Top-5

VGG16
- - 138.4M 15.7 74.7 92.0
5 3 138.9M 21.6 75.9 92.7
5 2 138.9M 20.6 75.5 92.4

Res50

- - 25.6M 4.1 77.1 93.3
3 3 29.9M 5.4 78.4 94.1
5 3 30.3M 5.8 78.6 94.3
7 3 30.5M 5.8 78.8 94.5
3 4 29.9M 5.4 78.7 94.4

Res101
- - 44.5M 7.9 78.2 93.9
3 3 48.9M 10.0 79.9 94.8
3 4 48.9M 10.0 80.2 95.0

Res152 - - 60.2M 11.6 78.6 94.3
3 3 64.5M 14.8 80.4 95.1

ResX50 - - 25.0M 4.3 79.4 94.7
3 3 29.4M 5.6 80.3 95.0

ResX101 - - 88.8M 16.5 81.0 95.5
3 3 93.1M 20.8 81.8 95.8

MobNets
- - 4.2M 0.57 68.6 88.49
3 2 5.1M 0.71 71.0 90.01

(a)

Baseline Model GFLOPs PI

VGG16 TDAF +37.5% +1.3
ABN (Fukui and et al. 2019) - +0.7

Res50

TDAF +31.7% +1.7
A2-Net (Chen et al. 2018) +58.5% +1.7

NL (Wang et al. 2018) +12.5% +0.8
ResAtt (Wang et al. 2017) +53.6% +1.1

GCNL (Yue and et al. 2018) - +1.2
SAST (Parmar et al. 2019) +34.5% +1.2
AAAtt (Bello et al. 2019) +1.3% (29%) +1.3

Res152
TDAF +27.5% +2.0

ABN (Fukui and et al. 2019) - +0.8
GCNL (Yue and et al. 2018) - +1.1

ResX101
TDAF +24.5% +0.9

NL (Wang et al. 2018) +9.9% +0.4
CBAM (Woo et al. 2018) +0.1% +0.4

SENet
TDAF +26.0% +1.3

ABN (Fukui and et al. 2019) - +0.8
CBAM (Woo et al. 2018) +0.1% +0.5

CBAM
TDAF +25.9% +0.7

ABN (Fukui and et al. 2019) - +0.3
NL (Wang et al. 2018) +12.5% +0.3

(b)

Table 3: a) Performance on ImageNet validation set (10-crop test). “# L” and “# F” denote the number of ANAR’s layers and
flows (recursive steps). b) Comparison of performance improvement (PI) on Top-1 accuracy (1-crop test) and computational
overheads on ImageNet between different attention mechanisms

better results due to better abilities to extract attention fea-
tures and longer top-down attention paths which endows the
model larger initial receptive fields.
Performance Comparison of Attention Models Here, we
compare our TDAF with other attention models on Ima-
geNet. As shown in table 3b, on different baselines, TDAF
is competitive among all the mechanisms, achieving great
performance boost with relatively small Flops overheads.
As for parameter overhead, TDAF adopts 10% more pa-
rameter on ResNet101 and 7% on ResNet152. This over-
head less than 10% leads to 2% Top-1 accuracy improve-
ments. Other attention models like Non-local (20% over-
head, 0.8% improvements), A2 Net (10%, 1.7%), ResAtt
(24%, 1.1%), ABN (>20%, 0.8%), and GCNL (>20%,
1.2%) adopt more parameters and gains less improvements.
For each unit of parameters increase, our model delivers
3∼5 times performance increases of Non-Local, ResAtt,
ABN, and GCNL. Note that compared with CBAM which
directly generates maps based on the original convolutional
features, which cannot be adjusted to top-down attention,
TDAF introduces more overhead like other attention meth-
ods. To further demonstrate the performance of TDAF, we
treat CBAM as an advanced baseline. After adopting TDAF,
it achieves a considerable performance boost, revealing that
the top-down and bottom-up soft attentions can work coop-
eratively and propel each other to better performances.

Object Detection
We also evaluate TDAF on detection task with the COCO-
2017 dataset (Lin et al. 2014). We choose the one-stage
anchor-free model FCOS (Tian et al. 2019) as baseline.
Implementation Still, the downsample stride is 2. We
modify the backbone of FCOS with our TDAF. The data
pre-processing and training methods follow the original
FCOS (“2×” training schedule with multi-scale input). The

Backbone ANAR AP APS APM APL Params

ResNet50
No Att 37.1 21.3 41.0 47.8 32.244M
ANAR-3, 3F 39.6 23.9 43.4 51.1 32.462M
ANAR-5, 3F 39.8 24.0 43.3 51.2 32.885M

ResNet101

No Att 41.5 24.4 44.8 51.6 51.184M
ANAR-3, 3F 42.0 25.5 46.4 54.4 51.454M
ANAR-3, 4F 42.3 25.3 46.7 55.1 51.454M
ANAR-5, 3F 42.2 25.3 46.6 55.3 51.877M

Iteration
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0.95

0.90
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R50, ANAR-3, 3F
R50, ANAR-5, 3F

R101, No Att
R101, ANAR-3, 3F
R101, ANAR-3, 4F
R101, ANAR-5, 3F

60k 80k 100k 120k 140k 160k 180k
Iteration

60k 80k 100k 120k 140k 160k 180k

Table 4: Performance and training curve on COCO-2017.
“4F” denotes the number of recursive flows is 4
weights of all the backbones are initialized by the parame-
ters pre-trained on the ImageNet dataset.

Tab. 4 reports the performances. TDAF-Res50-FCOS out-
performs Res50-FOCS by 2.7% on the standard AP met-
ric (7.3% relatively). Top-down attention also benefits the
deeper Res101-FCOS and achieves 0.9% improvements.

To provide some insights into the influence of Top-Down
Attention Framework on the optimization process, the train-
ing curves are depicted in Tab. 4. The TDAF yields lower
training errors throughout the optimization procedure and
more recursive steps or deeper ANAR lead to lower training
losses throughout the optimization procedure.

Pose Estimation
We further evaluate TDAF on pose estimation task using the
COCO-2017 dataset. The mainstream methods of this task
utilize heat-maps to localize key point positions. To some
extent, this is a kind of attention-based solution. We want
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Backbone Top-Down Att Detector
GT FRCNN YOLO

ResNet50

No Att 72.7 70.1 70.4
ANAR-3, 3F 73.8 71.3 71.4
ANAR-5, 3F 74.1 71.5 71.5
ANAR-7, 3F 74.3 71.6 71.7

ResNet101
No Att 73.7 70.9 71.3
ANAR-3, 3F 74.4 71.9 72.4
ANAR-5, 3F 74.5 72.0 72.3

Table 5: Performance (AP in %) of the SimplePose (Xiao,
Wu, and Wei 2018) on COCO-2017 validation set. “3F”
denotes 3 recursive flows. “FRCNN” and “YOLO” denote
Faster-RCNN and YOLO-V3 detectors

to evaluate whether our top-down attention mechanism can
benefit this already attention-driven task.
Implementation We adopt SimplePose (Xiao, Wu, and Wei
2018) as our baseline and modify its deconvolutional layers
into our TDAF version with 3 recursive flows. The details of
training processes maintain the same with the original base-
line. We adopt Faster-RCNN (Girshick 2015) and YOLO-
v3 (Redmon and Farhadi 2018) detectors.

The results are shown in Tab. 5. With ResNet50 as the
backbone, our TDAF improves AP by 1.6%, while for
ResNet101, the improvements are 0.8%. Considering pose
estimation is already based on attention, these promotions
are considerable, demonstrating the potential of the top-
down manner in attention mechanism. Also, a deeper ANAR
structure leads to better performances.

Action Recognition
Next, we apply the proposed framework onto the video ac-
tion recognition task. We adopt 3D-ResNet (Hara, Kataoka,
and Satoh 2018) as our baseline and the experiments are con-
ducted on Kinetics-400 dataset (Kay et al. 2017).
Implementation In these experiments, the downsample
function is conducted on 3 dimensions, where we treat the
temporal and spatial dimensions equally, just as the 3D-
CNN does. In 3D-ResNet, all the 2D kernels are extended
to 3D, therefore, we also adopt a 3D version ANAR. Here,
the ANAR-5 with 3 recursive steps is utilized. Similar to
(Carreira and Zisserman 2017), we inflate the 2D weights
pre-trained on ImageNet to initialize the model.

We split the video into clips of 16 frames as input and the
frames are resized to 112 × 112. The other training and in-
ference settings all follow (Hara, Kataoka, and Satoh 2018).

Results on the Kinetics dataset shown in Tab. 6 demon-
strate consistent performances of TDAF with the above
tasks. It outperforms 3D-ResNet50 by 1.8% without Ima-
geNet pre-training and 1.2% with pre-training. The same,
TDAF with ResNet50 outperforms the ResNet101 baseline
(67.5% vs. 67.2%), revealing that the TDAF also has great
performances in capturing the spatial and temporal attention
simultaneously and can be applied to video tasks.

Analysis
On Multi-Scale and Attention Until now, there is a ques-
tion that whether the great improvements are achieved by
our top-down attention mechanism or simply by the multi-
scale information. Note that we only feed the features from
the last flow into the task heads as shown in Fig. 2, thus

Model Params Acc (%)
3D-ResNet50 47.019M 65.7
3D-ResNet50, Pre-trained 47.019M 68.9
3D-ResNet101 86.065M 67.2
TDAF-3D-ResNet50 48.417M 67.5
TDAF-3D-ResNet50, Pre-trained 48.417M 70.1

Table 6: Performance on the Kinetics validation set. We
adopt ANAR-5 and 3 recursive flows in our TDAF models

from the view of the task head, TDAF does not access to the
multi-scale spatial features, instead, it only utilizes the at-
tention features from other flows. Even so, we conduct con-
trolled trials on ImageNet to show that it is the top-down at-
tention that works in the whole framework. On ResNet-50,
we adopt the same R2DNS setting (3 flows) and remove the
attention modules among the recursive steps. In this way the
multiple flows are standalone without attention connections.
Then the features of all the flows are concatenated to con-
duct the classification in a multi-scale way. Compared with
the corresponding TDAF with ANAR-3, the performance of
this multi-scale setting drops 1.1% Top-1 accuracy on Ima-
geNet, achieving 77.5%, only 0.4% improvements over the
baseline without multi-scale setting (more results in supple-
mentary files). This reveals that multi-scale information can
lead to better performances, but the great improvements are
actually achieved by our top-down attention mechanism.
On Time Overhead One may be concerned that the recur-
rent structure cannot be parallelled and lead to a long time
delay. But actually, only the ANAR parts cannot be paral-
lelled, while the multiple backbone flows can. As Fig. 2b
shows, in first stage, we could calculate h(1)1 to h(N)

1 paral-
lelly, then calculate g(1)1 to g(N−1)

1 recursively, so can other
stages. Thus, the total time of our model is just the sum
of the time of the original backbone and the attention lay-
ers. Because the attention layers and the additional back-
bone flows are much lighter than the original backbone, the
latency overhead is less than 25% for Res50 and 15% for
Res101. On TitanXP with 256 batch size, the forward time
of Res50 and its attention version is 0.015s and 0.018s, and
0.031s vs 0.035s for Res101. Compared with GALA (Lins-
ley et al. 2018) (86%), CBAM (56%), and AAAtt (29%)
(these results are published in (Bello et al. 2019)), this la-
tency is in a reasonable range. For detection, because the
head and NMS consume much time, the total time overhead
on Res50 is less than 10%.

Conclusion
In this paper, we proposed TDAF to mix top-down atten-
tion features with bottom-up spatial features. The first part
of our framework is the Recursive Dual-Directional Nested
Structure (R2DNS) designed to form the orthogonal top-
down and bottom-up information paths and the second part
is the Attention Network across Recurrence (ANAR) aiming
at extracting attention maps to enhance useful features and
suppress noises. Compared with baselines and other atten-
tion mechanisms, our TDAF achieves remarkable improve-
ments on image classification, object detection, pose estima-
tion, and action recognition. Comprehensive analyses were
presented to further validate different settings of TDAF.
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