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Abstract

Although AI systems archive a great success in various soci-
etal fields, there still exists a challengeable issue of outputting
discriminatory results with respect to protected attributes (e.g.,
gender and age). The popular approach to solving the issue
is to remove protected attribute information in the decision
process. However, this approach has a limitation that benefi-
cial information for target tasks may also be eliminated. To
overcome the limitation, we propose Fairness-aware Disentan-
gling Variational Auto-Encoder (FD-VAE) that disentangles
data representation into three subspaces: 1) Target Attribute
Latent (TAL), 2) Protected Attribute Latent (PAL), 3) Mu-
tual Attribute Latent (MAL). On top of that, we propose a
decorrelation loss that aligns the overall information into each
subspace, instead of removing the protected attribute infor-
mation. After learning the representation, we re-encode MAL
to include only target information and combine it with TAL
to perform downstream tasks. In our experiments on CelebA
and UTK Face datasets, we show that the proposed method
mitigates unfairness in facial attribute classification tasks with
respect to gender and age. Ours outperforms previous meth-
ods by large margins on two standard fairness metrics, equal
opportunity and equalized odds.

Introduction
Despite tremendous advances in AI systems, there still ex-
ists a problem of outputting discriminatory results regarding
different demographic groups (Wang et al. 2019a; Alvi, Zis-
serman, and Nellåker 2018; Wang et al. 2019b). Particularly,
unfair decisions in terms of protected attributes (e.g., gender,
age, and ethnicity) cause social-ethical problems (Dougherty
2015; Lomas 2018; J. Angwin and Kirchner 2016). For ex-
ample, Google photos, an image recognition algorithm, rec-
ognizes an African-American as being gorillas (Dougherty
2015). Besides, FaceApp, a face editing application, deploys
a racist hot filter that is intended to edit a user’s face more
attractive. When a user with a dark skin tone uses this filter, it
makes the user look like Caucasian by brightening the user’s
skin tone (Lomas 2018). These ethical issues raise the neces-
sity of AI models that make a fair decision in terms of the
protected attributes.
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To address this problem, many previous works (Wang et al.
2019b; Kim et al. 2019; Zhang, Lemoine, and Mitchell 2018)
adversarially train models not to discriminate protected at-
tribute labels. These works remove information related to
protected attributes in data representation, thereby outputting
invariant results in terms of the attributes. However, there is a
limitation that they potentially remove some useful informa-
tion for target tasks due to its correlation with the protected
attributes (cf., Figure 1(a)).

On the other hand, (Creager et al. 2019), the research most
relevant to this work, tries to solve the unfairness problem by
utilizing a disentanglement learning method (Kim and Mnih
2018). They disentangle data representation into subspaces
relevant to protected attributes or not, then exclude the sub-
spaces with protected attribute information for downstream
tasks. However, it is difficult to disentangle protected attribute
information and beneficial information for target tasks explic-
itly due to their correlation. For this reason, the information
for target tasks is inevitably included in the subspaces for
protected attributes, thus the information is removed in down-
stream tasks as the adversarial approaches. (cf., Figure 1(b)).

In this paper, we aim to learn representation that is fair in
terms of protected attributes and preserves beneficial informa-
tion for target tasks. To this end, we propose a Fairness-aware
Disentangling Variational Auto-Encoder (FD-VAE) that dis-
entangles data representation into three subspaces. As shown
in Figure 1(c), Target Attribute Latent (TAL) and Protected
Attribute Latent (PAL) include target attribute information
and protected attribute information, respectively. Mutual At-
tribute Latent (MAL) includes intersected information be-
tween target and protected attributes. This is derived from the
intuition that there are the intersection and complementary
sets of target and protected attribute information. The comple-
mentary set is not necessary to be concerned to achieve our
goal, but the intersected information needs to be addressed
carefully. If the intersected information is included in TAL,
it causes unfair results to protected attributes. Conversely,
being it included in PAL, it causes loss of useful information
for target attributes. We solve this dilemma by introducing
an additional subspace (MAL) that includes the intersected
information.

Specifically, each subspace is learned to include its appro-
priate information by our proposed decorrelation loss. This
loss encourages each subspace to maximize mutual infor-
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Figure 1: The motivation of our work. The red circle and blue circle denote protected and target attribute information, respectively.
This figure conceptually shows how each latent space (or subspace) includes the information in the adversarial training
method (Wang et al. 2019b; Kim et al. 2019) (a), disentanglement method (Creager et al. 2019) (b), and ours (c). The dotted
boxes represent the information not used for target tasks.

mation with appropriate attributes and exclude information
of inappropriate attributes based on adversarial training (cf.
Figure 1(c)). Unlike previous works with the adversarial
training (Wang et al. 2019b; Kim et al. 2019), the excluded
information of each subspace is not removed in data repre-
sentation but it is aligned to its proper subspace.

After learning this disentangled representation, we lever-
age TAL and MAL to perform downstream tasks. To this end,
we propose a framework that re-encodes MAL to remain
only beneficial information for the target tasks and combine
it with TAL. This combined feature is informative to the tar-
get tasks and invariant to protected attributes, which enables
fair classifications.

In the experiment section, we conduct facial attribute clas-
sifications on CelebA and UTK Face datasets (Liu et al.
2015; Zhang and Qi 2017). As indicated in previous stud-
ies, facial attributes are correlated with each other in the
datasets (Kärkkäinen and Joo 2019; Celona, Bianco, and
Schettini 2018; Torfason et al. 2016a), which causes unfair
classification results in terms of protected attributes (Crea-
ger et al. 2019; Sattigeri et al. 2019; Wang et al. 2020). Our
method is exploited to solve this problem and achieves the
fairest results in comparison with previous methods. We mea-
sure the degree of fairness with two standard fairness metrics,
equal opportunity and equalized odds (Hardt, Price, and Sre-
bro 2016). Moreover, we propose a new metric, equalized ac-
curacy, to fairly measure classification accuracy on a skewed
test dataset. Through ablation study, we extensively validate
the contribution of each component of our method on CelebA
dataset.

The Main Contributions
We summarize our main contributions as follows: 1) We
propose a novel FD-VAE that disentangles data representa-
tion into three independent subspaces: Target Attribute La-
tent (TAL), Protected Attribute Latent (PAL), and Mutual
Attribute Latent (MAL). 2) The decorrelation loss encour-

ages each subspace of our model to contain its appropriate
information. 3) To utilize both MAL and TAL properly in
downstream tasks, we introduce a downstream classification
framework that re-encodes MAL and combines it with TAL.
4) To fairly measure classification accuracy in biased datasets,
we propose a new metric, equalized accuracy.

Related Works
Disentangled Representation Learning
Previous studies (Higgins et al. 2017; Kim and Mnih 2018;
Chen et al. 2018) propose disentangled representation learn-
ing methods to learn latent variables to be independent of
each other. (Higgins et al. 2017) proves KL-divergence term
in the VAE objective function encourages latent variables
to be disentangled and proposes β-VAE to weight this term
with a larger hyper-parameter β (> 1). However, (Kim and
Mnih 2018) indicates that β-VAE has a trade-off between
a disentangling performance and reconstruction quality. To
reduce the trade-off, they exploit Total Correlation (Watanabe
1960), a measure to estimate the dependency between latent
variables, to learn disentangled representation. They approxi-
mate it with adversarial learning using a discriminator. (Chen
et al. 2018) also optimizes the equivalent objective function to
FactorVAE (Kim and Mnih 2018) but propose a new stochas-
tic estimation method on Total Correlation, enabling more
stable training than FactorVAE. In this paper, our method
leverages the disentangling algorithm proposed in (Kim and
Mnih 2018) to separate subspaces of representation.

Fairness-aware Algorithms in Machine Learning
In this section, we describe fairness algorithms based on ad-
versarial training and disentanglement learning, which are
the most relevant to our work. Firstly, (Wang et al. 2019b;
Kim et al. 2019; Zhang, Lemoine, and Mitchell 2018) adver-
sarially train models not to discriminate protected attributes.
It encourages the models to output fair results by not using
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Figure 2: The overview of our FD-VAE framework. (a) shows the overall architecture of FD-VAE and (b) shows details of the
decorrelation module.

information related to the protected attributes. Inspired by
(Ganin et al. 2016), (Wang et al. 2019b) apply a Gradient Re-
versal Layer (GRL) to various intermediate representation to
remove unwanted bias in visual recognition tasks. Similarly,
(Kim et al. 2019) remove unwanted bias by minimizing the
mutual information between data representation and bias us-
ing the GRL. Besides, (Zhang, Lemoine, and Mitchell 2018)
propose an adversarial debiasing method to maximize the
ability of the predictor for target classes and to minimize the
ability of the adversary network for protected attributes.

On the other hand, (Hwang et al. 2020; Gong, Liu, and Jain
2020; Creager et al. 2019; Sarhan et al. 2020) propose meth-
ods that disentangle data representation into subspaces in-
cluding protected attributes information or not. (Hwang et al.
2020) learn disentangled representation to prevent unwanted
translation of protected attributes in image-to-image transla-
tion tasks. In addition, (Gong, Liu, and Jain 2020) mitigate
unfairness in face recognition tasks by separating representa-
tion of gender, ethnicity, age, and identity. FFVAE (Creager
et al. 2019) exploits the disentangled representation learning
method from (Kim and Mnih 2018) to separate representa-
tion into sensitive latents and non-sensitive latents which
are relevant to protected attributes or not, respectively. Since
the model is trained without target labels during the repre-
sentation learning, it flexibly performs various downstream
classification tasks only by excluding corresponding sensitive
latents. Lastly, (Sarhan et al. 2020) propose an orthogonal
constraint that disentangles representation into two orthogo-
nal subspaces to learn invariant representation to protected
attributes.

Proposed Method
When observed data X = (x1, ..., xn), target attribute la-
bels Yt = (yt1 , ..., ytn), and protected attribute labels Yp =
(yp1

, ..., ypn) are given, our goal is to encode representation
that is fair to Yp and preserves beneficial information for Yt.
To this end, we design FD-VAE that disentangles represen-
tation z into three subspaces: Target Attribute Latent (zt),
Protected Attribute Latent (zp), and Mutual Attribute Latent
(zm). As illustrated in Figure 2, our model is composed of a
VAE network, discriminator, and decorrelation module. It is
optimized by VAE objective function, disentanglement loss,
discriminator loss, and decorrelation loss. We specify each
loss function in this section.

VAE
Our model is based on Variational Auto-Encoder (VAE)
(Kingma and Welling 2014), which is composed of an en-
coder and a decoder. We learn the VAE network by maximiz-
ing the Evidence Lower BOund (ELBO):

LV AE =
n∑

i=1

EqΦ(zt,zp,zm|xi)[log pΘ(xi|zt, zp, zm)]

−KL[qΦ(zt, zp, zm|xi)||p(zt, zp, zm)],

(1)

where Φ and Θ are parameters of the encoder and decoder, re-
spectively. The first term of Equation 1 denotes a reconstruc-
tion loss that encourages the encoder to map the observed
data X into representation z and the decoder to reconstruct
X from z. z is sampled from qΦ(z|x) = N(µqΦ

(x), σqφ(x))
using the reparameterization trick, where µ and σ are the
outputs of the encoder. The second term indicates a regular-
ization loss that makes the distribution qΦ(z|x) similar to the
Gaussian prior distribution p(z) by KL divergence.
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Figure 3: The architecture of the downstream classification framework. FC and ⊕ denote a single fully connected layer and
element-wise summation.

Disentanglement Loss
To disentangle the representation z into subspaces as zt, zp,
and zm, we minimize Total Correlation (Watanabe 1960) by
following objective function:

LDE = KL[qΦ(zt, zp, zm)||
∏
j⊆S

qΦ(zj)]

= EqΦ(zt,zp,zm)[log
qΦ(zt, zp, zm)∏
j⊆S

qΦ(zj)
],

(2)

where S = {t, p, m}. Total Correlation is one of the most
popular measures that estimate the dependency between la-
tent variables and minimizing this term encourages latent
variables to be disentangled (Kim and Mnih 2018; Chen et al.
2018; Creager et al. 2019). Following the methods in (Kim
and Mnih 2018; Creager et al. 2019), we approximate log
density ratio instead of optimizing KL divergence directly by
leveraging a discriminator as the following equation:

LDE ≈ EqΦ(zt,zp,zm)[log
D(zt, zp, zm)

1−D(zt, zp, zm)
], (3)

where D(zt, zp, zm) is the output probability of the discrim-
inator D that classifies the samples from qΦ(zt, zp, zm) as
real and the samples from

∏
j⊆S

qΦ(zj) as fake. The encoder

is trained for the discriminator not to classify whether the
samples are real or fake. The fake samples z∗=[z∗t ;z∗p ;z∗m]
are generated by subspace-wise random shuffling within a
mini-batch. The loss function for training the discriminator
is as follows:

LD = −EqΦ(zt,zp,zm)[logD(zt, zp, zm)

+ log(1−D(z∗t , z
∗
p , z
∗
m)].

(4)

Decorrelation Loss
On top of the disentanglement loss that encourages the sub-
spaces to be independent of each other, we introduce a decor-
relation loss that aligns appropriate information into each
subspace. The decorrelation loss is composed of LCLS and
LADV as follows:

LDC = LCLS + λLADV , (5)

LCLS = −
n∑

i=1

EqΦ(zt,zp,zm|xi)[log pt(yt|zt))

+ log pp(yp|zp))],

LADV = min
Φ

max
t̃,p̃

n∑
i=1

EqΦ(zt,zp,zm|xi)[log pp̃(yp|zt))

+ log pt̃(yt|zp))],

(6)

where t and t̃ denote classifiers for target attributes, and p
and p̃ denote classifiers for protected attributes. λ is a hyper-
parameter. ∼ means the classifiers are trained adversarially.
LCLS encourages zt and zp to contain target and protected
attribute information, respectively. Meanwhile, LADV en-
courages zt and zp to exclude protected attribute and target
attribute information, respectively, in an adversarial way. The
intersected information of protected and target attributes is
excluded in both TAL and PAL by LADV . This information
is included in MAL through the reconstruction loss.

Total Loss
In conclusion, the total loss function of FD-VAE is as follows:

LTOTAL = LV AE − (αLDE + βLD + γLDC), (7)

where α, β, and γ are hyper-parameters.

Downstream Classification Framework
After learning the fair representation, we perform down-
stream classifications for the target attributes. The overall
architecture of our downstream classification framework is
shown in Figure 3. The loss function of the framework is
defined by:

min
d̃

max
d,f

n∑
i=1

EqΦ(źt,źp,źm|xi)[log pd(yt|źt ⊕ f(źm))

− log pd̃(yp|f(źm))],

(8)

where d, d̃, and ⊕ indicate a target attribute classifier, pro-
tected attribute classifier, and element-wise summation, re-
spectively. The learned representation źt, źp, and źm are fixed
in downstream classification tasks.

First, we exclude źp in order not to exploit the protected at-
tribute information in downstream tasks. Then, we re-encode
źm to latent variables zn that includes only information re-
lated to the target attributes through a single fully connected
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Method TA PA Opp. ↓ Odds ↓ Acc. ↑ TA PA Opp. ↓ Odds ↓ Acc. ↑
M=1 M=0 EAcc. ↑ Y=1 Y=0 EAcc. ↑

VAE (Kingma and Welling 2014) A=1 54.3 81.5 27.2 28.7 70.6 A=1 77.4 67.6 9.7 11.3 70.9
A=0 77.8 47.5 65.3 A=0 60.8 72.7 69.6

β−VAE (Higgins et al. 2017) A=1 57.7 78.8 21.1 22.1 68.7 A=1 72.9 65.6 7.2 5.8 67.5
A=0 73.1 48.8 64.6 A=0 61.1 65.4 66.4

FactorVAE (Kim and Mnih 2018) A=1 59.7 80.4 20.7 23.4 69.0 A=1 76.0 66.8 9.2 9.1 68.9
A=0 72.8 46.6 64.9 A=0 58.9 68.1 67.5

FFVAE (Creager et al. 2019) A=1 53.9 68.9 15.0 16.6 62.2 A=1 68.3 62.4 5.8 3.4 63.7
A=0 66.1 47.9 59.2 A=0 60.2 59.1 62.5

FFVAE (Creager et al. 2019)+TAC A=1 60.4 76.1 15.6 17.2 66.3 A=1 71.7 65.0 6.7 4.6 65.4
A=0 67.6 48.7 63.2 A=0 58.8 61.3 64.2

Adversarial training (Ganin et al. 2016) A=1 63.9 71.6 7.6 10.7 64.5 A=1 69.9 64.1 5.8 4.9 65.5
A=0 64.9 51.0 62.8 A=0 59.9 64.0 64.4

Ours A=1 66.2 67.6 1.3 4.9 64.1 A=1 76.5 72.7 3.7 1.9 65.5
A=0 64.4 55.8 63.5 A=0 55 55.2 64.8

Table 1: Classification results on CelebA dataset. TA and PA are the abbreviations of the target and protected attributes,
respectively. We utilize four metrics: equal opportunity (Opp.), equalized odds (Odds), accuracy (ACC.), and equalized accuracy
(EAcc.). A, M, and Y denote attractiveness, male, and young, respectively. The third and fourth columns show TPR and TNR of
each demographic group.

layer f . f and d̃ are adversarially trained so that zn can not
classify Yp. Finally, zn and źt are element-wise summed and
feed into d for the target attribute classification.

Experiments
Dataset
CelebA dataset: It consists of about 200k face images with
40 binary attribute annotations. Among the attributes, we first
set male and young to the protected attributes. Next, we set
attractiveness to the target attribute since it has high Pearson
correlation with male (p=-0.40) and young (p=-0.39) (Torfa-
son et al. 2016b).
UTK Face dataset: It has a total of 23,705 images without
the specification of train, validation, and test dataset. Among
its annotations of age, ethnicity, and gender, we set gender to
the protected attribute and the others to the target attributes.
We conduct binary attribute classification tasks with the fol-
lowing two settings: Caucasians and the others, age under 35
and the others. To establish a high correlation between target
and protected attributes, we compose train dataset (10k) as
follows. For ethnicity, the ratio of Caucasian females and
males is 1:4, and the ratio of the other ethnicity group is
opposite. Likewise, the ratio of males and females with age
under 35 is 1:4, and the ratio of the other group is oppo-
site. Meanwhile, we compose the validation (2.4k) and test
(2.4k) datasets to be balanced sets for a fair comparison. (cf.,
Appendix A).

Comparable Models
We note that all networks of comparable models have the
same structures as ours.
Beta-VAE (Higgins et al. 2017), Factor-VAE (Kim and
Mnih 2018): Both models disentangle representation with-
out protected attribute labels, thus it is not explicitly known
which subspaces include protected attribute information.

Therefore, we manually remove a few subspaces most cor-
related to protected attributes to perform downstream tasks
fairly as in (Creager et al. 2019).
Adversarial training (Ganin et al. 2016): As previous
works (Wang et al. 2019b; Kim et al. 2019), this model is
composed of one encoder followed by two classifiers for tar-
get and protected attribute predictions. By adding a Gradient
Reversal Layer (GRL) (Ganin et al. 2016) to the protected
attribute classification branch, we remove protected attribute
information in data representation.
FFVAE (Creager et al. 2019), FFVAE+TAC: Both models
disentangle representation into two subspaces with the same
dimensionality. Since FFVAE is trained without target at-
tribute labels, for fair comparison, we construct the model
(FFVAE+TAC) by adding a target attribute classifier (TAC)
to classify the labels using non-sensitive latents.

Evaluation Metrics
In our experiments, we measure the degree of fairness with
two metrics, equal opportunity and equalized odds (Hardt,
Price, and Srebro 2016). Equal opportunity represents the
parity of True Positive Rate (TPR) between the groups with
different protected attribute labels (p0 and p1). Furthermore,
equalized odds represents the parity of TPR and True Neg-
ative Rate (TNR) between the groups. These metrics are
formulated as |TPRp0

− TPRp1
| and 1

2 [|TPRp0
− TPRp1

| +
|TNRp0 − TNRp1 |], respectively.

On the other hand, demographic parity (Dwork et al. 2012;
Kusner et al. 2017), which represents parity in the proportion
of positive decisions between p0 and p1, is also one of the
popular metrics for measuring fairness. However, since the
proportion of positive target labels (ground truth) is different
between p0 and p1 in our tasks, this metric does not ensure
fairness of models. Therefore, we show experimental results
measured by demographic parity only in Appendix B.
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Method TA PA Opp. ↓ Odds ↓ Acc. ↑ TA PA Opp. ↓ Odds ↓ Acc. ↑G=1 G=0 G=1 G=0

VAE (Kingma and Welling 2014) E=1 70.5 54.3 16.1 17.4 65.2 A=1 50.8 75.5 24.6 29.8 60.7E=0 58.6 77.4 A=0 75.8 40.7

β−VAE (Higgins et al. 2017) E=1 72.1 59.4 12.7 12.1 60.1 A=1 45.3 62.5 17.1 20.8 54.3E=0 48.7 60.2 A=0 67.1 42.5

FactorVAE (Kim and Mnih 2018) E=1 72.5 60.3 12.1 12.9 59.4 A=1 43.5 66.7 23.2 27.1 54.6E=0 45.8 59.5 A=0 69.6 38.5

FFVAE (Creager et al. 2019) E=1 70.0 63.4 6.6 8.3 59.4 A=1 45.2 58.9 13.6 17.2 54.5E=0 47.3 57.3 A=0 67.4 46.5

FFVAE (Creager et al. 2019)+TAC E=1 69.0 60.6 8.3 9.7 59.9 A=1 43.6 61.3 17.6 22.2 54.1E=0 49.4 61.1 A=0 68.8 42.1

Adversarial training (Ganin et al. 2016) E=1 59.3 52.7 6.5 4.6 60.8 A=1 26.1 37.6 11.5 13.2 54.7E=0 64.0 66.8 A=0 85.6 70.5

Ours E=1 65.8 63.5 2.3 1.1 60.3 A=1 47.9 45.8 2.0 2.9 54.1E=0 56.0 56.0 A=0 63.3 59.4

Table 2: Classification results on UTK Face dataset. G, E, and A indicate gender (1: male, 0: female), ethnicity (1: Caucasian, 0:
others), and age (1: under 35, 0: others), respectively.

FFVAE (Creager et al. 2019)

Subspace TA (Acc. ↑) PA (Acc. ↑)
Non-sensitive Latents 62.2 69.1

Sensitive Latents 67.4 76.7

FD-VAE (Ours)

Subspace TA (Acc. ↑) PA (Acc. ↑)
TAL 60.3 63.0
PAL 56.6 67.3
MAL 67.2 68.9

Table 3: Amount of attribute information in each subspace.
We perform target attribute (TA) and protected attribute (PA)
classifications using each the learned subspace. TA and PA
are set to attractiveness and male, respectively.

In addition, we propose a new metric equalized accu-
racy to fairly measure the classification accuracy in a bi-
ased test dataset. If train and test datasets have similar data
distributions, the over-fitted model to the distribution of
train dataset is favorable in standard classification accuracy.
In UTK Face dataset, we solve this problem by compris-
ing a balanced test dataset. However, since test dataset in
CelebA has a similar distribution as train dataset, we uti-
lize equalized accuracy which has the same effect as test-
ing on the balanced dataset. The proposed metric is defined
as 1

4 [TPRp0
+ TNRp0

+ TPRp1
+ TNRp1

]. More details are
described in Appendix C.

Implementation Details
The detailed structures of our networks are specified in Ap-
pendix D. For a fair comparison, the dimensionality of data
representation is set to 60 identically in all models. In our
model, the dimensionality of TAL, PAL, and MAL is set
to 20. The hyper-parameters are found by the grid search

method: α=50, β=1, γ=5, and λ= 2. We note that all results
presented in our table are the best performances in terms of
fairness and converged enough.

Comparison with Previous Methods
To validate the effectiveness of the proposed method, we com-
pare the performance of ours with previous methods (Higgins
et al. 2017; Kim and Mnih 2018; Creager et al. 2019). Ta-
ble 1 shows the classification accuracy and fairness scores
on CelebA dataset. VAE, β-VAE (Higgins et al. 2017), and
FactorVAE (Kim and Mnih 2018) show highly discrimina-
tory results in terms of male and young, since they do not
consider the protected attributes in representation learning.
FFVAE (Creager et al. 2019) improves both equal opportu-
nity (Opp.) and equalized odds (Odds.). However, it shows
the lowest classification accuracy (Acc.) and equalized ac-
curacy (EAcc.) due to a large loss of target attribute infor-
mation in the disentangling process. FFVAE+TAC (Creager
et al. 2019) and Adversarial training (Ganin et al. 2016)
leverage both protected attribute and target attribute labels
as ours. FFVAE+TAC increases Acc. and EAcc. by increas-
ing mutual information between non-sensitive latents and
target attribute labels. However, it degrades fairness scores
since protected attribute information correlated to the target
attributes is partially included in the latents. Although Adver-
sarial training (Ganin et al. 2016) shows comparable Acc. and
EAcc. to ours, it shows a large trade-off between fairness and
accuracy. Our method significantly outperforms all the pre-
vious methods above with comparable Acc. and EAcc. The
better trade-off of our results indicates that our method can re-
move more protected attribute information while preserving
a similar amount of target attribute information.

The classification results on UTK Face dataset are shown
in Table 2. Similarly to CelebA dataset, VAE, β-VAE, and
FactorVAE output unfair results in terms of equal opportu-
nity and equalized odds. Although previous fairness-aware
methods (Creager et al. 2019; Ganin et al. 2016) improve
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Representation learning Downstream Classification TA PA Opp. ↓ Odds ↓ Acc. ↑
LDC zm źt źm zn M=1 M=0

X
A=1 53.9 68.9 15.0 16.6 62.2A=0 66.1 47.9

X X A=1 75.7 72.3 3.4 5.7 64.1A=0 58.7 50.8

X X X A=1 68.1 66.3 1.8 2.1 60.3A=0 55.1 52.6

X X X X A=1 57.9 77.7 19.8 20.8 67.1A=0 69.8 47.8

X X X X
A=1 66.2 67.6 1.3 4.9 64.1A=0 64.4 55.8

Table 4: Ablation study on CelebA dataset. We set FFVAE (Creager et al. 2019) to our baseline (the first row). LDC and zm
denote the decorrelation loss and MAL in representation learning, and źt,źm, and zn denote learned TAL, MAL, and re-encoded
MAL in the downstream classification, respectively. We set the protected attribute to male (M) and the target attribute to
attractiveness (A)

Method Opp .↓ Odds ↓ Acc. ↑
FFVAE (Creager et al. 2019) 15.0 16.6 62.2

FFVAE (Creager et al. 2019) 15.3 17.6 63.5

Ours 1.3 4.9 64.1

Table 5: The role of our downstream classification framework.
FFVAE is FFAVE with the downstream framework. We set
the target and protected attributes to attractiveness and male
on CelebA dataset, respectively.

the fairness scores, they still have a large trade-off between
fairness and accuracy. Our method surpasses the previous
methods in both ethnicity and age classifications, achieving
the lowest scores of 1.3% and 4.9% at equal opportunity and
3.7% and 1.9% at equalized odds with comparable accuracy.

Qualitative Analysis
In Table 3, we intuitively show our method decorrelates the
target and protected attribute information better than FFVAE.
In FFVAE, sensitive latents classifies the target attribute as
well as the protected attribute better than non-sensitive la-
tents. This indicates that beneficial information for the target
attributes is included in the sensitive latents as our assump-
tion. Meanwhile, TAL achieves a better result in the target
attribute classification than PAL, and PAL classifies the pro-
tected attribute better than TAL. It demonstrates that the
target attribute information is less included in PAL than non-
sensitive latents of FFVAE. MAL classifies both the attributes
well since it includes the intersected information.

Ablation Study
We conduct ablation study on CelebA dataset to validate the
contribution of each component in our model as shown in
Table 4. We set FFVAE (Creager et al. 2019) to a baseline
and add each component step-by-step. First, we apply the
decorrlation loss LDC to the baseline. It improves both the
classification accuracy and fairness scores by aligning the
target and protected attributes information to appropriate sub-

spaces. Then, we add MAL (zm) to this model. This subspace
encourages TAL to be more independent of protected at-
tributes, showing the fairest score in terms of equalized odds
(Odds.). The lowest accuracy indicates that it is necessary to
utilize the useful information in MAL for the downstream
task. Therefore, we leverage MAL (źm) with TAL for the
downstream task. It shows that the intersected information in
źm improves the classification accuracy but significantly de-
grades fairness scores. Ours shows that re-encoded MAL (zn)
mitigates the degradation of the fairness scores. It achieves
the fairest equalized opportunity (Opp.) while maintaining
higher accuracy than the baseline.

Besides, we apply our downstream classification frame-
work to FFVAE as shown in Table 5. We re-encode sensitive
latents and combine it with non-sensitive latents by element-
wise summation. In this experiment, the classification accu-
racy is improved, but equal opportunity and equalized odds
are slightly degraded. It indicates that our FD-VAE frame-
work and decorrelation loss are major factors in the improve-
ment of fairness and the role of the downstream framework
is only to increase the classification accuracy.

Conclusion
The objective of our work is to encode fair representation in
terms of protected attributes while preserving beneficial in-
formation for target tasks. To this end, we proposed Fairness-
aware Disentangling Variational Auto-Encoder (FD-VAE)
that disentangles representation into three subspaces. TAL
and PAL include target and protected attribute information,
respectively, and MAL encourages TAL and PAL to be more
independent by including the intersected information. On top
of that, our decorrelation loss aligns appropriate information
to each subspace. We leveraged the disentangled represen-
tation to perform facial attribute classifications on CelebA
and UTK datasets. By re-encoding MAL and combining it
with TAL, we performed fair and accurate classifications. In
all the experiments in both datasets, our method shows the
fairest results in terms of equal opportunity and equalized
odds with comparable accuracy and equalized accuracy.
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