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Abstract

Despite the abundance of multi-modal data, such as image-
text pairs, there has been little effort in understanding the
individual entities and their different roles in the construc-
tion of these data instances. In this work, we endeavour to
discover the entities and their corresponding importance in
cooking recipes automatically as a visual-linguistic associa-
tion problem. More specifically, we introduce a novel cross-
modal learning framework to jointly model the latent repre-
sentations of images and text in the food image-recipe as-
sociation and retrieval tasks. This model allows one to dis-
cover complex functional and hierarchical relationships be-
tween images and text, and among textual parts of a recipe
including title, ingredients and cooking instructions. Our ex-
periments show that by making use of efficient tree-structured
Long Short-Term Memory as the text encoder in our com-
putational cross-modal retrieval framework, we are not only
able to identify the main ingredients and cooking actions
in the recipe descriptions without explicit supervision, but
we can also learn more meaningful feature representations
of food recipes, appropriate for challenging cross-modal re-
trieval and recipe adaption tasks.

Introduction
Computer vision and natural language processing have wit-
nessed outstanding improvements in recent years. Computa-
tional food analysis (CFA) broadly refers to methods that at-
tempt automating food understanding, and as such, it has re-
cently received increased attention, in part due to its impor-
tance in health and general wellbeing (Min et al. 2019). For
instance, CFA can play an important role in assessing and
learning the functional similarity and interaction of ingredi-
ents, cooking methods and meal preferences, while aiding
in computational meal preparation and planning (Teng, Lin,
and Adamic 2012; Helmy et al. 2015). However, despite re-
cent efforts CFA still poses specific and difficult challenges
due to the highly heterogeneous and complex nature of the
cooking transformation process. Further to this, a particu-
lar modality may offer only a partial “view”of the item, for
example, a cooking recipe often describe elements that can
easily be occluded in the visual depiction of a cooked dish,
and/or come in a variety of colors, forms and textures (e.g.,
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ingredients such as tomatoes can be green, yellow or red and
can also be presented as a sauce, chunks or whole).

Recent approaches that aim at learning the translation be-
tween visual and textual representations of food items do
so by learning the semantics of objects in a shared latent
space (Salvador et al. 2017; Chen et al. 2018; Carvalho et al.
2018; Wang et al. 2019; Marı́n et al. 2019). Here, represen-
tations (also called embeddings) derived from multi-modal
evidence sources (e.g., images, text, video, flavours, etc.)
that belong to the same item are matched. In effect, this
type of approach aims to find a common grounding language
that describes items independent of their observed modal-
ity, therefore, allowing cross-modal retrieval. Recently, re-
current neural network (RNN) architectures such as Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber
1997) units and Gated Recurrent Units (GRU) (Cho et al.
2014) have (re-)emerged as two popular and effective mod-
els that are able to capture some long-term dependencies in
sequential data. Previous works on cross-modal image-to-
recipe (test) retrieval in the food domain treat textual ele-
ments (e.g., words) as a linear sequence in a RNN (Salvador
et al. 2017; Chen et al. 2018; Carvalho et al. 2018; Wang
et al. 2019; Marı́n et al. 2019). However, natural language
exhibits syntactic properties that would naturally combine
words into phrases in a not necessarily sequential fashion
(Tai, Socher, and Manning 2015). Chain structured RNNs
(such as LSTMs) struggle to capture this type of relation-
ship. Tree-LSTM offers a generalization of LSTMs to tree-
structured network topologies (Tai, Socher, and Manning
2015; Zhu, Sobihani, and Guo 2015), further to this, re-
cent advancements in Tree-LSTMs allow online learning
of the sequence structure (Choi, Min Yoo, and Lee 2017).
In this work, we argue that these recent advancements in
Tree-LSTM structure learning are specially well suited to
discover the underlying syntactic structure specific to food
cooking recipes, exclusively through the signal provided by
its pairing with its visual representation (food dish image).

Motivation
One of the more general goals of the work proposed here
is to have a system that is able to “understand” food. This
is a very broad and challenging task that requires an under-
standing of not only the visual aspect of a meal, but also un-
derstanding what are its basic constituents and how they are
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processed and transformed into the final dish. Recipes offer
an instruction manual as to how to prepare a dish; they spec-
ify the building blocks (ingredients), how to process them
(instructions) and a succinct summary of the dish in the form
of a title. Additionally, an image of a food also provides a
type of dish summary in visual form, e.g., it is often pos-
sible to see main ingredients and deduce principal cooking
techniques from them. As our main task is to delve deeper
in the understanding of food, we would naturally focus on as
many representations as possible, however, in this work we
will focus primarily on recipes and images.

Some key questions that people regularly ask themselves
regarding food are: what it is and how it is made. In the pro-
posed framework we aim at learning distinct textual entities
that underline a particular dish in an unsupervised way. The
proposed framework, driven solely by information arising
by paired data (images and recipes), is able to understand
concepts such as what is the main ingredient in this dish,
thus answering the “what it is”. This information can be
valuable to recommendation systems, which would benefit
from understanding what is the main ingredient in a recipe.
For example, a person querying for apple recipes is unlikely
to be interested in recipes where apples are only a minor
ingredient. In order to facilitate this, it is important to also
understand the key actions that are required to create a dish.
Food preparation actions describe types of dishes, which can
impact the likelihood of an ingredient being either major
or minor. For example, assuming “apple” is in the list of
ingredients of a dish, while showing the action “bake” as
prominent, it is more likely that apples are main ingredient
as opposed to a recipe that where the action “grill” is the
most prominent. Furthermore, the ability to deeply under-
stand food, through simple pairing of images and recipes,
enables the possibility of better “ingredient swap recipe re-
trieval”, where the goal is to find the dishes similar to the one
described except for the main ingredient, which is replaced.

To address some of the aforementioned challenges, we
propose a novel cross-modal retrieval computational frame-
work that can effectively learn translations between images
of food dishes and their corresponding preparation recipes’
textual descriptions. Special emphasis is given to the func-
tional and hierarchical relationship between text and images
through the use of Tree-LSTMs. We show that using Tree-
LSTMs offers not only a better representation of sentences
in the context of cross-modal retrieval, but also allow us to
discover important aspects of the data, that are normally lost
in sequential RNNs.

In summary our contributions are: (1) a hierarchical cross-
modal retrieval framework that allows the discovery of im-
portant syntactic concepts, such as ingredient importance,
keywords and/or action words, exclusively through visual-
text pairings, while also providing (2) extensive experiments
that demonstrate state-of-the-art performance in the image-
to-recipe retrieval task as well as various recipe modifica-
tions enabled by Tree-LSTM. Source code of our proposed
method is available at https://github.com/haixpham/CHEF.

Cross-Modal Association Model
Cross-modal learning is an active research topic in computer
science. In general terms, it describes a system that given a
view or modality (e.g., image) of an instance, it retrieves the
same instance but as viewed in another modality (e.g., text).
These type models are usually trained using a direct corre-
spondence between pairs of instances in different modalities.
In the case of food recipe retrieval, these modalities are usu-
ally food images and their associated text descriptions (title,
ingredients, recipe, etc.).

In order to extract feature representations from both im-
ages and recipes (text), we base our architecture on a sim-
plified version of the cross-modal association model pre-
sented by Salvador et al. (Salvador et al. 2017). Different
to their model, we additionally make use of titles and re-
place the pre-embedding of instructions with an online in-
struction embedding module. Such model is trained to match
recipes (a concatenation of the encoding of title, ingredients
and instructions) and their corresponding images in a joint
latent space. Our general cross-modal framework is shown
in Fig. 1. During training, the model’s objective is formu-
lated as the minimization of the distance between an anchor
recipe r+ and matching image v+, while also maximizing
(up to a margin ε) the distance between the anchor recipe r+
and a non-matching image v−, that is, it minimizes the mar-
gin triplet loss of (r+,v+,v−). Using two separate neural
networks, one for text encoding Fp and another for image
encoding Fq, each item of the triplet is embedded in a latent
space with coordinates (p+, q+, q−).

Formally, with the text encoder p = Fp(r) and image
encoder q = Fq(v), the training is a minimization of the
following objective function,

V (Fp,Fq) =

Ep̂(r+,v+),p̂(v−) min
([
d
[
p+, q+

]
− d
[
p+, q−]− ε] , 0)+

Ep̂(r+,v+),p̂(r−) min
([
d
[
p+, q+

]
− d
[
p−, q+

]
− ε
]
, 0
)
,
(1)

where d [p, q] = cos [p, q] = pᵀq/
√
(pᵀp)(qᵀq) is the

cosine similarity in the latent space and p̂ denotes the corre-
sponding empirical densities on the training set. The cosine
similarity of the positive pair and that of the negative pair to-
gether are combined with a margin ε, whose goal is to focus
the model on “hard” examples (negatives within the mar-
gin) while ignoring those that are “good enough” (beyond
the margin). We empirically set ε to 0.3 by cross-validation.

LSTM Text Encoder
The text encoder Fp takes the recipe’s title, ingredients and
instructions as input, and outputs their feature representa-
tion in the shared latent space. The goal is to find an em-
bedding that reflects dependencies between a recipe’s tex-
tual and visual depictions, which could facilitate implicit as-
sociations even when some components are present in only
one of the two modalities, e.g., not visible but described in
text or not described in text but visible. For this purpose, the
model first converts word tokens into vectors (wi ∈ R300)
using a word2vec model (Mikolov et al. 2013), treating each
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Figure 1: The general cross-modal retrieval framework, including the image encoder and recipe encoder. Within the recipe
encoder, each sentence is encoded by a sub-network, and their outputs are further mapped into instruction-level latent features
to be concatenated with title and ingredient embeddings.

vector wi as part of a sequenced input to a bi-directional
LSTM. The word2vec model is pre-trained on all textual in-
formation available from the recipes, then fine-tuned while
training the cross-modal retrieval system.

During training, the model learns a contextual vector
hm ∈ R600 for each of the m parts of the textual informa-
tion, that is, title, ingredients and instructions, before con-
catenating them into a single vector h. Finally, h is projected
to the shared space by three fully connected (FC) layers,
each of dimensionality 1024, to yield the latent text features
p ∈ R1024. We therefore consider four LSTM modules, one
each for title and ingredients, and two for instructions. The
first level of the instruction encoder module encodes each
instruction’s word sequence, then the second encodes the se-
quence of instructions into a single vector representation.

Tree-LSTM Text Encoder
As mentioned before, the text encoder Fp is tasked with
encoding all textual information. RNNs are popular tech-
niques to encode text, and more specifically, LSTMs (along
with GRUs) have shown, to some degree, being able to cap-
ture the semantic meaning of text. LSTMs assume a chain
graph can approximate arbitrary word dependencies within
a recipe, however, this structure might not fully capture com-
plex relationships between words. Therefore, it might be
beneficial to model word dependencies as a tree structure.
Tree-LSTM (Choi, Min Yoo, and Lee 2017; Tai, Socher, and
Manning 2015; Zhu, Sobihani, and Guo 2015) offers an ele-
gant generalisation of LSTMs, where information flow from
children to parent is controlled using a similar mechanism to
a LSTM. Tree-LSTM introduces cell state in computing par-
ent representation, which assists each cell to capture distant
vertical dependencies, thus breaking the inherent linearity
of a chain LSTM. The following formulas are used to com-
pute the model’s parent representation from its children in
the special case of a binary tree-LSTM:

i
fl
fr
o
g

 =


σ
σ
σ
σ

tanh


(

Wcomp

[
hl

hr

]
+ bcomp

)
(2)

cp = fl � cl + fr � cr + i� g (3)

hp = o� tanh (cp) (4)

where σ is the sigmoid activation function, the pairs 〈hl, cl〉
and 〈hr, cr〉 are the two input tree nodes popped off the
stack, Wcomp ∈ R5Dh×2Dh , bcomp ∈ R2Dhand � is the
element-wise product. The result of this function, the pair
〈hp, cp〉, is placed back on the stack. Note that the formu-
lation used here follows that of (Choi, Min Yoo, and Lee
2017), which in turn is similar to (Bowman et al. 2016).

(2) is similar to that of traditional LSTM equations ex-
cept that instead of a single forget gate, there is one for each
possible child of a node in the tree. More specifically to
the formulation here, there are two forget gates, fl and fr,
corresponding to left and right children in a binary tree. In
this work, we make use of the Gumbel-softmax Tree-LSTM
model (Choi, Min Yoo, and Lee 2017), which can learn the
tree structure representation without supervision.

Image Encoder
The image encoder Fq takes an image as input and gen-
erates its feature representation in the shared latent space.
ResNet50 (He et al. 2016) pre-trained on ImageNet is used
as the backbone for feature extraction, where the last FC
layer is replaced with three consecutive FC layers (similar
to the recipe encoder) to project the extracted features into
the shared latent space to get q ∈ R1024. Particularly, the
middle FC layer is shared with the recipe encoder in order
to preliminarily align the two modalities’ distributions.

Experiments
In this section we will use L, T, G, and S as shorthand for
LSTM, Tree-LSTM, GRU and Set (Zaheer et al. 2017), re-
spectively. In this work, we use GRU to encode short se-
quences and LSTM for longer ones. Thus, the title encoder
is chosen as G through out our experiments. The ingredi-
ent encoder is chosen amongst {S, G, T}, where S means
all ingredients contribute equally to the final embedding.
The sentence and instruction encoders are either L or T.
Different configurations of the recipe encoder are shown
in Tab. 1 and subsequent tables, in which a 3-tuple such
as [G+T+L] means the model uses GRU as ingredient en-
coder, Tree-LSTM for sentence encoder and LSTM for the
instruction-level encoder. All models are trained end-to-end.
Particularly, the attention-based model introduced by Chen
et al. (Chen et al. 2018) is similar to one variant of our
framework, [G+L+L], where the attention mechanism is
integrated into every text encoder. However, this model is
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trained within our experimental setting, which lead to im-
proved performance in general.

We evaluate our proposed models in four different tasks,
including (i) cross-modal retrieval, (ii) main ingredients de-
tection (including ingredient pruning), (iii) ingredient sub-
stitution and (iv) action words extraction. Additionally, we
compare the performance of our models to that of the origi-
nal R1M pic2rec model (Salvador et al. 2017) and the state-
of-the-art ACME (Wang et al. 2019), retrained to adapt to
our vocabulary (cf. Sec. ), while faithfully following their
original settings. We also retrained Adamine (Carvalho et al.
2018) using publicly available source code, however, we
were unable to make it work adequately with our modified
data, thus we did not include it in this paper.

Dataset
During the preparation of the work presented here, all exper-
iments were conducted using data from Recipe1M (R1M)
(Salvador et al. 2017; Marı́n et al. 2019). This dataset con-
sists of ∼1M text recipes that contain titles, instructions and
ingredients. Additionally, a subset of∼0.5M recipes contain
at least one image per recipe. Data is split into 70% train,
15% validation and 15% test sets. During training at most 5
images from each recipe are used, while a single image is
kept for validation and testing.
Canonical Ingredient Construction. To analyze ingredi-
ent relative importance across different recipes, a standard-
ized version of R1M ingredients was created. R1M contains
∼16k unique ingredients, with the top 4k accounting for
∼95% occurrences. Focusing on these, we reduced them to
∼1.4k through the following operations. First, ingredients
are merged if they have the same name after stemming and
singular/plural conversion. Second, ingredients are merged
if they are close together in our word2vec (Mikolov et al.
2013) embedding space, if they share two or three words or
are mapped to the same item by Nutritionix1. Lastly, merg-
ers are inspected by a human who can accept or reject them.

Cross-Modal Recipe Retrieval
The cross-modal retrieval performance of our proposed
models are compared against the baselines in Tab. 1. We
report results on two subsets of randomly selected 1,000
and 10,000 recipe-image pairs from the test set, similar to
(Wang et al. 2019). These experiments are repeated 10 times,
and we report the averaged results. All variants of our pro-
posed framework, except [S+T+T], outperform the current
state-of-the-art, ACME - retrained on the modified dataset,
across all evaluation metrics. Interestingly, the attention-
based model (Chen et al. 2018), when trained within our
paradigm, achieves significant gain over ACME, and it
scores the best median rank (medR) on the recipe-to-image
retrieval task. It is worth noting that, we were unable to re-
produce the results of ACME as reported by the authors on
the original, unmodified dataset (more analysis of ACME
performance included in the supplement).

Our proposed models have similar performance scores,
and amongst those, [T+L+T] is the best performer in most

1https://www.nutritionix.com/

Methods medR↓ R@1↑ R@5↑ R@10↑
Size of test set: 1k

pic2rec 4.10 26.8 55.8 67.5
ACME 2.00 45.4 75.0 83.7
S+L+L 1.80 48.0 77.0 84.1
S+T+T 2.20 37.7 68.0 78.7
G+L+L 1.60 49.3 78.1 85.2
G+T+L 1.80 49.0 78.0 85.8
G+T+T 1.80 48.7 78.3 85.7
T+L+L 1.80 49.4 79.6 86.1
T+L+T 1.60 49.7 79.3 86.3
T+T+L 1.75 49.0 78.8 85.9
T+T+T 1.70 49.4 78.8 85.9

Size of test set: 10k

pic2rec 33.25 7.7 21.8 30.8
ACME 9.40 18.0 40.3 52.0
S+L+L 8.10 19.6 42.8 54.5
S+T+T 15.90 13.2 31.8 42.8
G+L+L 7.50 20.7 44.7 56.2
G+T+L 7.60 20.7 44.3 55.9
G+T+T 7.50 20.9 44.5 56.0
T+L+L 7.30 20.9 44.8 56.3
T+L+T 7.30 20.7 44.7 56.2
T+T+L 7.50 20.8 44.3 56.3
T+T+T 7.30 20.9 44.6 56.1

Table 1: Image-to-Recipe retrieval performance compari-
son between model variants of our proposed framework and
the baselines. The Recipe-to-Image retrieval performance is
similar, and is included in the supplementary materials. The
models are evaluated on medR (lower is better) and Re-
call@K (R@K - higher is better). In this table and subse-
quent tables, our proposed models are ordered by type of
ingredient - sentence - instruction encoders. Best results are
marked in bold.

Model Split medR↓ R@1↑ R@2↑ R@3↑

Tree-LSTM Test 1.0 47.0 78.9 95.5
Val. 1.0 47.3 79.7 95.5

Attention Test 4.0 9.1 19.5 32.1
Val. 4.0 9.5 19.7 32.2

Table 2: Main ingredient prediction performance. The mod-
els evaluated on medR (lower is better) and Recall@K
(R@K - higher is better).

cases. More importantly, these empirical evidences where
[T+L+L] and [G+L+L] perform better than [S+L+L] sug-
gest that ingredients hold significant information to recog-
nize a dish from its image, thus a more effective ingredient
encoder like Tree-LSTM or GRU with attention will be able
to embed more meaningful information in the food space,
which also improves the capability of the image encoder
when they are trained jointly using our proposed triplet
loss (1), which is not regularized by semantics information,
unlike pic2rec and ACME. Furthermore, Tree-LSTM explic-
itly imposes implicit importance scores to different ingre-
dients due to its inherent hierarchical structure, hence this
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observation encourages us to analyze the roles of ingredi-
ents in the joint food space more thoroughly in the next two
sections. Sec. will also show that Tree-LSTM is better at
attending to the important ingredients than the soft attention
mechanism.

Main Ingredients Detection
One benefit of using Tree-LSTM to encode text is that, the
information flow in the network follows a learned hierar-
chical structure, and the closer the word (its corresponding
leaf node in the tree) is to the root, the more importance it
holds in the text. Thus, intuitively when embedding the list
of ingredients, Tree-LSTM should be able to infer a hierar-
chy that emphasizes the more important ingredients, includ-
ing the main one. We extract tree structures of all ingredi-
ent embeddings generated by Tree-LSTM in the test set, and
calculate their average depths.

We observed that all top ingredients have the average
depths in the range of 2.x, which is very close to the
root. In other words, the Tree-LSTM ingredient encoder has
learned the hierarchical representations that impose higher
importance on some ingredients. An example of ingredi-
ent tree is illustrated in Fig. 2, where the main ingredient,
“green breans” is at the lowest leaf of the tree, meaning it is
the most important ingredient of this dish, as the model has
learned. More examples are included in the supplementary
materials. However, these observations still do not answer
the question, are these top ingredients always the main ones
in their respective recipes?

We conjecture that the main ingredient of each recipe is
likely the one with the largest mass among all ingredients. In
order to validate this intuition, a subset of∼30k test and val-
idation samples (15k each) from Recipe1M has been curated
to include ingredient amounts and units. In this data, ingre-
dient amounts and units have been normalized to a stan-
dard total weight of 1kg, e.g. fluid units were converted to
weight. An experiment was designed where the gold stan-
dard for a recipe’s main ingredient was assumed to be well
aligned with the amount by weight. Therefore, such ingredi-
ent should be predicted as the shallowest during Tree-LSTM
inference. From the Tree-LSTM embedding of each of these
recipes we can quantify the rank of the true main ingredient
with regards to the root, that is, what is the distance between
the true main ingredient and the shallowest ingredient in the
tree. Tab. 2 summarizes these results, and as it can be seen
in ∼47% of the cases the correct main ingredient is identi-
fied. Given the median recipe contains 9 ingredients (with
maximum ingredient depth of 8), a random naı̈ve predictor
would rank ingredients as 4, ∼95% of our predicted ranks
are better than chance. This table also includes the predic-
tion performance of the attention-based approach in(Chen
et al. 2018), which one would expect to “attend” to the main
ingredient in a recipe. However, as the results indicate, the
attention mechanism fails to uncover the main ingredients.

Ingredient Pruning As Tree-LSTM ingredient encoder
has the unique ability to address the importance of ingre-
dients, a set of experiments were conducted in which we
removed the K least important ingredients in the list, corre-

Image-to-Recipe Recipe-to-Image
K medR↓ R@1↑ R@5↑ medR↓ R@1↑ R@5↑
0 1.75 49.0 78.8 1.60 49.7 78.9
1 1.10 51.1 79.9 1.00 51.9 79.9
2 1.50 50.0 79.4 1.20 50.8 79.3
3 1.85 48.7 78.2 1.80 49.4 77.8
4 1.90 46.3 76.6 1.95 47.8 76.6

Table 3: Retrieval performance of [T+T+L] after pruning K
ingredients corresponding to K highest leaves in the ingredi-
ent tree. The results are averaged over 10 runs of 1k random
recipes each.

(-4-)

green beans (-3-)

(-1-)

flour eggs

(-2-)

breadcrumbs vegetable oil

Figure 2: Ingredient tree of “Deep fried green beans”. The
order of flattened leaves from left to right is the same or-
der they appear in the original ingredient list. The labels of
intermediate nodes indicate the order of word combinations
by Tree-LSTM, the higher value means its children are com-
bined later. In this example, “flour” and “eggs” are combined
first, and “green beans” is embedded last into the final ingre-
dient embedding.

sponding to the K highest leaves in the tree, and their occur-
rences in the instructions were also removed. The retrieval
performance of these novel (ingredient pruned) recipes us-
ing the [T+T+L] recipe encoder is demonstrated in Tab. 3.
This table shows that removing the least important ingredi-
ent of each recipe (K=1) actually brought significant perfor-
mance gain: medR of image-to-recipe and recipe-to-image
retrievals are 1.1 and 1.0, respectively, while R@1 improves
by 2 points. Removing two ingredients also improves re-
trieval performance, without learning a new model. The per-
formance after removing three ingredients is roughly equal
to that of the original recipes, and performance starts de-
creasing after removing four ingredients, which makes sense
as on average four ingredients constitute 25% of the ingre-
dient list. Overall, these results reaffirm the ability of Tree-
LSTM ingredient encoder to attend to the more important
ingredients in the recipes, and suggest the exploration of a
self-pruning recipe encoder that may improve performance
of downstream tasks.

Ingredient Substitution
The above observation that Tree-LSTM can put more im-
portance upon main ingredients leads to one interesting ex-
ploration: if the main ingredient of a recipe were replaced
with another, would the embedding of the new recipe re-
flects this change, e.g., by retrieving real recipes contain-
ing this new ingredient? Inspired by earlier research on this
task (Shidochi et al. 2009; Tsukuda et al. 2010; Yokoi et al.
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To Beef To Apple To Pork To Fish

Methods R-2-I R-2-R R-2-I R-2-R R-2-I R-2-R R-2-I R-2-R Med. Rank

pic2rec (Salvador et al. 2017) 17.3 22.5 5.9 9.0 10.6 18.9 2.7 2.9 10.0
ACME (Wang et al. 2019) 18.6 18.9 5.4 6.3 8.2 8.9 3.3 3.1 10.0
S+L+L 29.6 16.1 10.3 8.4 15.9 6.3 8.6 3.5 5.5
S+T+T 29.9 7.3 9.3 7.2 13.9 4.1 5.9 2.6 9.5
G+L+L (Chen et al. 2018) 28.5 16.2 9.2 7.8 15.2 5.8 7.1 3.1 8.0
G+T+L 29.2 16.2 9.9 9.2 15.3 7.1 7.5 3.6 6.0
G+T+T 28.2 17.6 11.4 9.4 13.9 7.1 6.9 3.1 6.5
T+L+L 29.8 20.0 12.0 10.4 14.5 7.0 6.0 3.5 5.0
T+L+T 29.6 20.9 11.3 11.3 15.0 7.4 7.4 4.1 4.0
T+T+L 31.0 21.1 11.7 9.7 13.8 7.6 7.0 4.2 3.5
T+T+T 30.0 20.3 12.2 11.7 15.4 7.8 6.5 4.0 2.5

Table 4: Substitution from “chicken” to other ingredients. The values shown are Success Rate (SR) (higher is better). R-2-I
and R-2-R indicate novel recipe-to-image and novel recipe-to-recipe retrievals, respectively. The last column shows the median
ranks of all models in terms of SR across all experiments (lower is better). Best results are marked in bold.

To Chicken To Beef To Apple To Fish

Methods R-2-I R-2-R R-2-I R-2-R R-2-I R-2-R R-2-I R-2-R Med. Rank

pic2rec (Salvador et al. 2017) 41.2 47.4 25.6 27.6 6.8 13.7 3.2 4.2 11.0
ACME (Wang et al. 2019) 30.0 29.8 30.7 28.4 7.1 9.7 2.5 3.7 10.0
S+L+L 47.2 23.0 39.6 17.7 19.6 21.3 9.0 6.2 5.0
S+T+T 47.7 17.0 41.0 12.8 13.4 18.0 7.4 4.4 9.0
G+L+L (Chen et al. 2018) 47.9 23.6 40.8 17.2 14.6 17.5 7.0 5.4 5.0
G+T+L 47.8 24.6 39.5 18.6 14.4 20.6 8.5 6.4 5.0
G+T+T 46.4 24.8 39.5 21.1 17.5 20.3 7.8 5.5 5.0
T+L+L 49.7 29.9 42.9 21.1 18.1 20.3 6.9 5.3 3.0
T+L+T 44.8 29.2 40.9 22.7 17.8 22.8 8.6 6.5 4.0
T+T+L 47.6 28.4 42.0 22.1 20.3 19.4 8.4 7.5 6.0
T+T+T 45.7 27.7 43.9 23.0 16.9 23.1 6.0 6.2 4.0

Table 5: Substitution from “pork” to other ingredients. Best results are marked in bold.

Grilled chilli 
lime chicken

Ingredients:
 - marinade
 - chicken
 - salt
 - garlic
 - onion

Grilled chilli 
lime chicken

Ingredients:
 - marinade
 - chicken
 - salt
 - garlic
 - onion

Grilled chilli 
lime chicken

Ingredients:
 - marinade
 - chicken
 - salt
 - garlic
 - onion

Smoked beef 
brisket

Ingredients:
 - brown_sugar
 - salt
 - garlic
 - onion
 - beef_brisket

Smoked beef 
brisket

Ingredients:
 - brown_sugar
 - salt
 - garlic
 - onion
 - beef_brisket

Perfect beef 
steaks

Ingredients:
 - seasoning
 - beef_steaks

Perfect beef 
steaks

Ingredients:
 - seasoning
 - beef_steaks

Grilled chilli 
lime chicken

Ingredients:
 - marinade
 - chicken
 - salt
 - garlic
 - onion

Smoked beef 
brisket

Ingredients:
 - brown_sugar
 - salt
 - garlic
 - onion
 - beef_brisket

Perfect beef 
steaks

Ingredients:
 - seasoning
 - beef_steaks

(a) Modifying grilled chicken to grilled beef

Brown sugar 
glazed chicken

Ingredients:
 - brown_sugar
 - cornstarch
 - vinegar
 - water
 - soy_sauce
 - chicken_breasts

Brown sugar 
glazed chicken

Ingredients:
 - brown_sugar
 - cornstarch
 - vinegar
 - water
 - soy_sauce
 - chicken_breasts

Sauteed apples
Ingredients:
 - apples
 - brown_sugar
 - cinnamon
 - butter

Sauteed apples
Ingredients:
 - apples
 - brown_sugar
 - cinnamon
 - butter

Fried apples
Ingredients:
 - apple_juice
 - apples
 - cornstarch
 - brown_sugar
 - allspice
 - butter

Fried apples
Ingredients:
 - apple_juice
 - apples
 - cornstarch
 - brown_sugar
 - allspice
 - butter

Fried apples
Ingredients:
 - apple_juice
 - apples
 - cornstarch
 - brown_sugar
 - allspice
 - butter

Brown sugar 
glazed chicken

Ingredients:
 - brown_sugar
 - cornstarch
 - vinegar
 - water
 - soy_sauce
 - chicken_breasts

Sauteed apples
Ingredients:
 - apples
 - brown_sugar
 - cinnamon
 - butter

Fried apples
Ingredients:
 - apple_juice
 - apples
 - cornstarch
 - brown_sugar
 - allspice
 - butter

(b) Modifying grilled chicken to fried apple

Figure 3: Ingredient substitution and recipe retrieval. “Chicken” in each recipe is replaced with “beef” or “apple” and carry out
retrievals on both image and text embeddings. In each sub-figure: top-right and bottom-right show top-1 image retrieval and
top-1 recipe text retrieval, respectively.

2015; Cordier et al. 2013), we carry out the substitutions
by directly replacing the ingredient token in the input recipe
with another. However, unlike prior endeavors which rely on
standard text ranking, in this work we utilize deep models to
extract the embeddings that can be used to retrieve both im-
ages and recipes. We propose a new metric to compare sub-
stitution performance of different models, namely success
rate (SR), defined as the percentage of recipes containing

ingredient A that were successfully identified as containing
ingredientB by retrieval on a dataset, after replacingA with
B in these recipes. Moreover, we report results where the
original tree structures of the recipes are retained when in-
ferring the new embeddings. There are marginal changes in
performance when we let the text encoders infer new hier-
archies from the modified recipes, suggesting that the new
structures are similar to the originals in most cases.
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We select recipes containing “chicken” and “pork” where
they are identified as main ingredient by the Tree-LSTM in-
gredient encoder, and replacing them with one of the follow-
ing ingredients where applicable: “chicken”, “beef”, “pork”,
“fish” and “apple”. These ingredients are recognized as top
ingredients by Tree-LSTM encoder. The results are shown
in Tab. 4 and 5.

In the experiments converting chicken-based recipes to
beef- and pork-based dishes, we see two contradicting re-
sults between image retrievals and text retrievals. In the R-2-
I task, our proposed models outperform pic2rec and ACME
by ∼50%, however, in the R-2-R task, pic2rec and ACME
perform better, especially in the case of “pork” conversion.
We observe that in the case of “pork” recipes, the titles usu-
ally do not contain the word “pork”, but title contributes
33% of information to the final recipe embedding. Thus, the
novel embeddings encoded by our models do not move to
the correct manifold of “pork” recipes. On the other hand,
pic2rec and ACME models do not include titles in the em-
beddings, hence they can match the novel recipes with real
recipes better. It also suggests that the image embeddings are
influenced more by ingredients in the corresponding recipes
and their titles, hence our models perform better in the R-
2-I task. It is also commonly observed that the meal images
often expose the main ingredients. This explains why our
proposed models perform better in more unrealistic substitu-
tions to “fish” and particularly “apple”, as these substitutions
may generate nonsensical recipes, however, these ingredi-
ents are more effectively emphasized by using the tree hier-
archies, thus the final embeddings are moved towards the re-
spective manifolds of the substituting ingredients. The over-
all median ranks indicate that our proposed models, which
use TreeLSTM ingredient encoder, are generally the better
performers. Similar conclusions can be deduced from Tab. 5.
These results suggest that [T+T+L] and [T+T+T] perform
consistently well across different ingredient substitution ex-
periments. These results also show that using Tree-LSTM
as sentence and instruction encoders does not really have an
effect on boosting successful substitution rates.

Fig. 3 demonstrates replacing “chicken” with “beef” and
“apple”. Replacing “chicken” with “beef” in the original
recipe, “grilled chicken”, in Fig. 3a, will match with real
“grilled beef” recipes. In Fig. 3b, replacing “chicken” will
retrieve “fried apple”. This suggests that the cooking meth-
ods of the original recipes are preserved in the modified em-
beddings. In the next section, we will investigate whether
the Tree-LSTM sentence encoder can capture the cooking
methods, i.e., emphasize the importance of action words.

Action Word Extraction
Previous sections have demonstrated that it is possible to
discover main ingredients with unsupervised training in our
cross-modal retrieval framework. However, a cooking recipe
not only consists of ingredients, but also describes a series of
actions applied to ingredients in order to prepare the meal.
Thus, it is equally important to emphasize these key actions
to understand the recipe. An RNN model encodes a sen-
tence sequentially, hence it is unable to specifically focus on
a word arbitrarily positioned in the sentence. This problem

Validation Set Test Set
Models Verb Count % Verb Count %

G+T+L 229,042 78.44 227,840 78.20
T+T+L 224,709 76.96 224,550 77.07
S+T+T 185,877 63.66 185,599 63.70
G+T+T 164,436 56.32 163,432 56.09
T+T+T 139,972 47.94 139,499 47.88

Table 6: Number of action words as the lowest leaves and
their percentage over the number of sentence trees.

can be partially remedied by applying the attention mech-
anism (Bahdanau, Cho, and Bengio 2015; Vaswani et al.
2017), however, Sec. demonstrates lack of correlation with
importance of words. Tree-LSTM, on the other hand, pro-
vides a natural representation of sentence structure.

We investigate different recipe encoders trained with our
cross-modal retrieval objective, in which sentences are en-
coded using Tree-LSTM, while the ingredient and instruc-
tion encoder sub-networks vary. Tree structures of all sen-
tences in the validation and test sets are thoroughly analyzed.
Based on the intuition that the leaf closest to the root of the
tree might be the most important word, and that a sentence in
a cooking recipe typically has one action word - a verb, we
collect all leaf nodes closest to the root across all sentence
trees, and count how many of them are verbs appearing in
the WordNet database.

The results in Tab. 6 demonstrate that two models using
Tree-LSTM to encode sentences and LSTM to encode the
whole instructions are able to emphasize on the main ac-
tion words in more than 76% of the number of sentences.
[G+T+L] is marginally better than [T+T+L]. It can be ex-
plained that when Tree-LSTM is used for ingredient en-
coder, the recipe encoding network learns to focus more on
ingredients, thus the importance of instructions is somewhat
subsided. It is also noticeable that performance of models
using Tree-LSTM to encode the whole instruction signifi-
cantly declines. This is perhaps because sentences in a recipe
are usually written in chronological order, hence learning
instruction-level Tree-LSTM actually is detrimental to the
ability to encode action words. Examples of inferred sen-
tence trees are included in the supplementary materials.

Conclusion
In this paper, we present a novel cross-modal recipe re-
trieval framework that learns to jointly align the latent rep-
resentations of images and texts. We particularly provide
in-depth analysis of different architectures of the recipe en-
coder through a series of experiments. By using Tree-LSTM
to model the hierarchical relationships between ingredients,
and between words in instructional sentences, it is possi-
ble to capture more meaningful semantics from the recipe
descriptions, such as main ingredient, cooking actions, thus
also gaining better recipe adaptation capability and improv-
ing cross-modal retrieval performance as demonstrated by
variants of our proposed framework, especially the [T+T+L]
model which performs consistently well across different ex-
perimental tasks. In the future, we would like to jointly
model the relationships between entities of the visual and
textual modalities.
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