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Abstract

Popular rotated detection methods usually use five parame-
ters (coordinates of the central point, width, height, and ro-
tation angle) or eight parameters (coordinates of four ver-
tices) to describe the rotated bounding box and `1 loss as
the loss function. In this paper, we argue that the aforemen-
tioned integration can cause training instability and perfor-
mance degeneration. The main reason is the discontinuity of
loss which is caused by the contradiction between the defi-
nition of the rotated bounding box and the loss function. We
refer to the above issues as rotation sensitivity error (RSE)
and propose a modulated rotation loss to dismiss the dis-
continuity of loss. The modulated rotation loss can achieve
consistent improvement on the five parameter methods and
the eight parameter methods. Experimental results using one
stage and two stages detectors demonstrate the effective-
ness of our loss. The integrated network achieves compet-
itive performances on several benchmarks including DOTA
and UCAS AOD. The code is available at https://github.com/
yangxue0827/RotationDetection.

Introduction
Object detection approaches can generally be divided into
horizontal object detectors and rotated object detectors ac-
cording to the description of the bounding box. Specifi-
cally, horizontal detectors, by which all the bounding boxes
are set in the horizontal direction, are often more suitable
for general natural scene images such as COCO (Lin et al.
2014) and Pascal VOC (Everingham et al. 2010). In con-
trast, more accurate detection is often needed on occasions
such as scene text, aerial imagery, face, and license plate.
Until now, many rotated object detection benchmarks such
as aerial dataset (DOTA (Xia et al. 2018), DIOR (Li et al.
2019b), HRSC2016 (Liu et al. 2017)), scene text dataset (IC-
DAR2015 (Karatzas et al. 2015), ICDAR2017 (Gomez et al.
2017)) have been published. The existing region-based ro-
tated object detectors usually regress five parameters (Yang
et al. 2019b, 2018b; Jiang et al. 2017; Ma et al. 2018) or
eight parameters (Xu et al. 2020; Liao et al. 2018; Zhou et al.
2017; Zhang et al. 2019; He et al. 2017) to describe rotated
bounding boxes and use `1-loss as loss functions. However,
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(a) RetinaNet-H (baseline) (b) The proposed RSDet

Figure 1: Detection results before and after solving the RSE
problem with RSDet. The red rectangles in (a) represent
failed examples due to the discontinuity of loss.

these two kinds of detectors both suffer from the loss dis-
continuity.

Firstly, the discontinuity of loss in five-parameter meth-
ods is mainly caused by the angle parameter. The loss value
jumps when the angle reaches its range boundary, as shown
in Fig. 2: a horizontal rectangle is respectively rotated one
degree clockwise and counterclockwise to get the ground
truth and the prediction box. The location of the reference
rectangle has only been slightly moved, but its angle changes
a lot due to the angular periodicity. Moreover, the height and
width are also exchanged according to the five-parameter
definition method commonly used by OpenCV. Moreover,
in the five-parameter system, parameters i.e. angle, width,
height, and center point have different measurement units,
and show rather different relations against the Intersection
over Union (IoU) (see Fig. 5). Simply adding them up for
inconsistent regression can hurt performance.

Secondly, the discontinuity of loss also exists in the eight-
parameter methods, although parameters in this method de-
note coordinate value with no ambiguity. The discontinu-
ity of loss in eight-parameter can be seen in Fig. 2: Starting
from the most left corner, points are clockwise defined. then
we can get a → b → c → d and d → a → b → c to
describe the red rectangle and green rectangle respectively.
If the loss is calculated directly based on the corresponding
order of the points, the loss is huge when the ground-truth
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Figure 2: Loss discontinuity: rectangles in blue, red, and
green respectively denote reference box, ground truth, and
prediction. Here the reference box is rotated one degree
clockwise to get the ground truth and is rotated similarly
counterclockwise to obtain the prediction. Then the three
boxes are described with five parameters: reference (0, 0,
10, 25, -90◦), ground truth (0, 0, 25, 10, -1◦), and prediction
(0, 0, 10, 25, -89◦). Here `1 loss is far more than 0.

and prediction largely overlap with each other.
Loss discontinuity exists in both the five-parameter meth-

ods and eight-parameter methods. We call this phenomenon
as rotation sensitivity error (RSE), which can lead to training
instability (see Fig. 7). In order to address the discontinuity
of loss, a modulated rotation loss `mr is devised to care-
fully handle the boundary constraints for rotation, leading to
a smoother loss curve during training. In other words, we
add a correction term to the original loss and take the min-
imum value of the original loss and correction term. This
correction is particularly large than `1-loss when it does not
reach the range boundary of the angle. However, this correc-
tion becomes normal when `1-loss is abrupt. In other words,
such correction can be seen as the symmetry of `1-loss about
the location of the mutation. Finally, `mr takes the minimum
of `1-loss and the correction, and the curve of `mr is contin-
uous.

To verify the generalization performance of `mr, we de-
sign different experimental frameworks based on one-stage
and two-stage methods and collectively referred to these
frameworks as RSDet. RSDet shows state-of-art perfor-
mance on the DOTA benchmark and UCAS-AOD bench-
mark, and our techniques are all orthogonal to existing meth-
ods. The contributions of this paper are:

i) We formally formulate the important while relatively
ignored rotation sensitivity error (RSE) for region-based ro-
tation detectors, which refers to the loss discontinuity.

ii) For the traditionally widely used five-parameter system
and eight-parameter system, we devise a special treatment to
ensure the loss continuity. The new loss is termed by `mr.

iii) Based on `mr, we respectively extend it to the one-
stage and two-stage detection frameworks, which show
state-of-the-art performance on DOTA and UCAS-AOD
benchmarks.

Related Work
Horizontal Object Detectors Visual object detection has
been a hot topic over the decades. Since the seminal work R-
CNN (Girshick et al. 2014), there have been a series of im-
provements including Fast RCNN (Girshick 2015), Faster
RCNN (Ren et al. 2017), and R-FCN (Dai et al. 2016),

which fall the category of the two-stage methods. On the
other hand, single-stage approaches have also been well
developed which can be more efficient than the two-stage
methods. Examples include Overfeat (Sermanet et al. 2014),
YOLO (Redmon et al. 2016), and SSD (Liu et al. 2016).
In particular, SSD (Liu et al. 2016) combines advantages
of Faster RCNN and YOLO to achieve the trade-off be-
tween speed and accuracy. Subsequently, multi-scale fea-
ture fusion techniques are widely adopted in both single-
stage methods and two-stage ones, such as FPN (Lin et al.
2017a), RetinaNet (Lin et al. 2017b), and DSSD (Fu et al.
2017). Recently, many cascaded or refined detectors are pro-
posed. For example, Cascade RCNN (Cai and Vasconcelos
2018), HTC (Chen et al. 2019), and FSCascade (Zhang et al.
2018) perform multiple classifications and regressions in
the second stage, leading to notable accuracy improvements
in both localization and classification. Besides, the anchor
free methods have become a new research focus, including
FCOS (Tian et al. 2019), FoveaBox (Kong et al. 2019), and
RepPoints (Yang et al. 2019d). Structures of these detectors
are simplified by discarding anchors, so anchor-free meth-
ods have opened up a new direction for object detection.

However, the above detectors only generate horizontal
bounding boxes, which limits their applicability in many
real-world scenarios. In fact, in scene texts and aerial im-
ages, objects tend to be densely arranged and have large
aspect ratios, which requires more accurate localization.
Therefore, rotated object detection has become a prominent
direction in recent studies (Yang et al. 2019d).

Rotated Object Detectors Rotated object detection has
been widely used in natural scene text (Jiang et al. 2017;
Ma et al. 2018), aerial imagery (Fu et al. 2018; Yang et al.
2018a, 2019a), etc. And these detectors typically use rotated
bounding boxes to describe positions of objects, which are
more accurate than those horizontal boxes. Represented by
scene text, many excellent detectors have been proposed. For
example, RRPN (Ma et al. 2018) uses rotating anchors to
improve the qualities of region proposals. R2CNN (Jiang
et al. 2017) is a multi-tasking text detector that simulta-
neously detects rotated and horizontal bounding boxes. In
TextBoxes++ (Liao, Shi, and Bai 2018), to accommodate the
slenderness of the text, a long convolution kernel is used and
the number of proposals is increased.

Moreover, object detection in aerial images is more diffi-
cult, and its main challenges are reflected in complex back-
grounds, dense arrangements, and a high proportion of small
objects. Many scholars have also applied general object de-
tection algorithms to aerial images, and many robust rotated
detectors have emerged in aerial images. For example, ICN
(Azimi et al. 2018) combines various modules such as image
pyramid, feature pyramid network, and deformable incep-
tion sub-networks, and it achieves satisfactory performances
on DOTA benchmark. RoI Transformer (Ding et al. 2019)
extracts rotation-invariant features for boosting subsequent
classification and regression. SCRDet (Yang et al. 2019c)
proposes an IoU-smooth `1 loss to solve the sudden loss
change caused by the angular periodicity so that it can bet-
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(a) Width is longer than height. (b) Height is longer than width.

Figure 3: The five-parameter definition in OpenCV ex-
changes the width and the height in the boundary condi-
tion for rotation. The angle parameter θ ranges from -90 de-
gree to 0 degree, but it should be distinguished from another
definition (Xia et al. 2018), with 180 degree angular range,
whose θ is determined by long side of rectangle and x-axis.

ter handle small, cluttered, and rotated objects. R3Det (Yang
et al. 2019b) proposes an end-to-end refined single-stage ro-
tated object detector for fast and accurate object localization
by solving the feature misalignment problem.

All the above mentioned rotated object detectors do not
take the inherent discontinuity of loss into account, which
we show can damage learning stability and final detec-
tion performances in our experiments. However, no existing
studies have addressed this fundamental problem that moti-
vates our work.

Methodology
Overview. In this section, we firstly present two mainstream
protocols for bounding box parameterization i.e. the five-
parameter and eight-parameter models. Then we formally
determine the loss discontinuity in the five-parameter and
eight-parameter methods. We call such issues collectively
as rotation sensitivity error (RSE) and propose a modulated
rotation loss to achieve more smooth learning.

Parameterization of Rotated Bounding Box
Without loss of generality, our five-parameter definition is
in line with that in OpenCV, as shown in Fig. 3: a) define
the reference line along the horizontal direction on which
the vertex with the smallest vertical coordinate is located.
b) rotate the reference line counterclockwise, the first rect-
angular side being touched by the reference line is defined
as width w regardless of its length compared with the other
side – height h. c) the central point coordinate is (x, y) and
the rotation angle is θ.

While the definition of eight-parameter is more simple:
starting from the lower left corner, four clockwise vertices
(a, b, c, d) of the rotated bounding box are used to describe
its location, as shown in Fig. 2. In fact, such a parameter-
ization protocol is convenient for quadrilateral description,
which is friendly in more complex application scenarios.

Rotation Sensitivity Error
As mentioned earlier, rotation sensitivity error (RSE) exists
in five-parameter and eight-parameter methods.

(a) 5-parameter regression w/
two steps in boundary condition

(b) Eight-parameter regression
procedure

Figure 4: Boundary discontinuity analysis of five-parameter
regression and eight-parameter regression. The red solid ar-
row indicates the actual regression process, and the red dot-
ted arrow indicates the ideal regression process.

RSE in Five-parameter Methods. Here, RSE is mainly
caused by two reasons: i) The adoption of the angle param-
eter and the exchange between width and height contribute
to the sudden loss change (increase) in the boundary case.
ii) Regression inconsistency of measure units exists in the
five-parameter model.

Loss Discontinuity. The angle parameter causes the
loss discontinuity. To obtain the predicted box that coin-
cides with the ground truth box, the horizontal reference
box is rotated counterclockwise, as shown in Fig. 4. In
this figure, the coordinates of the predicted box are trans-
formed from those of the reference box (0, 0, 100, 25,−90◦)
to (0, 0, 100, 25,−100◦) in the normal coordinate system.
However, the angle of the predicted box is out of the de-
fined range, and the coordinates of the ground truth box
are (0, 0, 25, 100,−10◦). Despite the rotation is physically
smooth, the loss will be quite large, which corresponds to
the discontinuity of loss. To avoid such a loss fluctuation,
the reference box need to be rotated clockwise to obtain
the gray box (0, 0, 100, 25,−10◦) in Fig. 4(a) (step 1), then
width and height of the gray box will be scaled to obtain
the final predicted box (0, 0, 25, 100,−10◦) (step 2). At this
time, although the loss value is close to zero, the detector ex-
periences a complex regression. This requires relatively high
robustness, which increases the training difficulty. More im-
portantly, an explicit and specific way is lacked to achieve
a smooth regression, which will be addressed in the subse-
quent part of the paper.

Regression Inconsistency. Different measurement units
of five parameters make regression inconsistent. However,
the impact of such artifacts is still unclear and has been
rarely studied in the literature. Relationships among all the
parameters and IoU are empirically studied in Fig. 5. Specif-
ically, the relationship between IoU and width (height) is
a combination of a linear function and inverse proportion
function, as illustrated in Fig. 5(a). The relationship between
the central point and IoU is a symmetric linear function, as
illustrated in Fig. 5(b). Completely different from other pa-
rameters, the relationship between the angle parameter and
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(a) Relation between center point and IoU (b) Relation between width and IoU (c) Relation between angle and IoU

Figure 5: Inconsistency in five-parameter regression model. The relationship between height and IoU is similar to relationship
between width and IoU.

(a) Discontinuous `1-loss (b) Continuous `5pmr

Figure 6: Comparison between two loss functions.

IoU is a multiple polynomial function (see Fig. 5(c)). Such
regression inconsistency is highly likely to deteriorate the
training convergence and the detection performance. Note
that we use IoU as the standard measurement is because
the final detection performance depends on whether IoU be-
tween the prediction and ground truth is high enough.

RSE in Eight-parameter Methods To avoid the inher-
ent regression inconsistency, the eight-parameter represen-
tation has been developed (Liao, Shi, and Bai 2018; Liu and
Jin 2017; Liu et al. 2019). Specifically, the eight-parameter
regression-based detectors directly regress the four corners
of the object, so the prediction is a quadrilateral.

However, the discontinuity of loss still exists in the eight-
parameter regression model. For example, we can suppose
that a ground truth box can be described with the corner
sequence a → b → c → d (see red box in Fig. 2). How-
ever, the corner sequence becomes d → a → b → c (see
green box in Fig. 2) when the ground truth box is slightly ro-
tated by a small angle. Therefore, consider the situation of an
eight-parameter regression in the boundary case, as shown in
Fig. 4(b). The actual regression process from the blue refer-
ence box to the green ground truth box is {(a → a), (b →
b), (c → c), (d → d)}, but apparently the ideal regression
process should be {(a → b), (b → c), (c → d), (d → a)}.
This situation also causes the model training more difficulty
and the unsmooth of regression.

The Proposed Modulated Rotation Loss
In this part, we propose `mr to solve RSE. The pseudo equa-
tion of `mr can be described as:

`mr = min

{
`1(para.)
`1(modulated− para.). (1)

Five-parameter Modulated Rotation Loss The RSE
only occurs in the boundary case (see Fig. 6(a)). In this pa-
per, we devise the following boundary constraints to modu-
late the loss as termed by modulated rotation loss `mr:

`cp = |x1 − x2|+ |y1 − y2|, (2)

`5pmr = min

{
`cp + |w1 − w2|+ |h1 − h2|+ |θ1 − θ2|
`cp + |w1 − h2|+ |h1 − w2|

+|90− |θ1 − θ2||,
(3)

where `cp is the central point loss. The first item in `mr is `1-
loss. The second item is a correction used to make the loss
continuous by eliminating the angular periodicity and the
exchangeability of height and width. This correction is par-
ticularly larger than `1-loss when it does not reach the range
boundary of the angle parameter. However, this correction
becomes normal when `1-loss is abrupt. In other words, such
correction can be seen as the symmetry of `1-loss about the
location of the mutation. Finally, `mr takes the minimum of
`1-loss and the correction. The curve of `mr is continuous,
as sketched in Fig. 6(b).

In practice, relative values of bounding box regression are
usually used to avoid errors caused by objects on different
scales. Therefore, `mr in this paper is expressed as follows:

∇`cp = |tx1 − tx2|+ |ty1 − ty2|, (4)

`5pmr = min


∇`cp + |tw1 − tw2|
+|th1 − th2|+ |tθ1 − tθ2|
∇`cp + |tw1 − th2 − log(r)|
+|th1 − tw2 + log(r)|+ ||tθ1 − tθ2| − π

2 |,
(5)

where tx = (x − xa)/wa, ty = (y − ya)/ha, tw =

log(w/wa), th = log(h/ha), r = h
w , tθ = θπ

180 . Here the
measurement unit of the angle parameter is radian, r repre-
sents the aspect ratio. x and xa are respectively the predicted
box and the anchor box (likewise for y, w, h, θ).
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(a) Loss curves (five-param.) (b) Loss curves (eight-param.)

Figure 7: Comparisons of loss curves during training: where
blue for L1-loss and yellow for our loss.

Eight-parameter Modulated Rotation Loss Here we de-
vise the eight-parameter version of our modulated rotation
loss which consists of three components: i) move the four
vertices of the predicted box clockwise by one place; ii) keep
the order of the vertices of the predicted box unchanged; iii)
move the four vertices of the predicted box counterclock-
wise by one place; iv) take the minimum value in the above
three cases. Therefore, `8pmr is expressed as follows:

`8pmr = min



3∑
i=0

( |x(i+3)%4 − x∗i |
wa

+
|y(i+3)%4 − y∗i |

ha

)
3∑
i=0

(
|xi − x∗i |
wa

+
|yi − y∗i |
ha

)
3∑
i=0

( |x(i+1)%4 − x∗i |
wa

+
|y(i+1)%4 − y∗i |

ha

)
(6)

where xi and yi denote the i-th vertex coordinates of the pre-
dicted box and the reference box. x∗i , y∗i respectively denote
the i-th vertex coordinates of the ground truth box and the
reference box.

Through the eight-parameter regression and the definition
of `8pmr, the problems of the regression inconsistency and the
loss discontinuity in rotation detection are eliminated. Ex-
tensive experiments show that our method is more stable for
training (see Fig. 7) and outperforms other methods.

Experiments
Recall that the main contribution of this paper is to identify
the problem of RSE and solve it through modulated rotation
loss. Experiments are implemented by Tensorflow (Abadi
et al. 2016) on a server with Ubuntu 16.04, NVIDIA GTX
2080 Ti, and 11G Memory.

Datasets and Implementation Details
DOTA (Xia et al. 2018): The main experiments are car-
ried out around DOTA which has a total of 2,806 aerial im-
ages and 15 categories. The size of images in DOTA ranges
from 800 × 800 pixels to 4, 000 × 4, 000 pixels. The pro-
portions of the training set, the validation set, and the test
set are respectively 1/2, 1/6, and 1/3. There are 188,282 in-
stances for training and validation, and they are labeled with

Backbone Loss Regression mAP

resnet-50 smooth-`1 five-param. 62.14
resnet-50 `mr five-param. 64.49
resnet-50 smooth-`1 eight-param. 65.59
resnet-50 `mr eight-param. 66.77

Table 1: Ablation experiments of `mr and predefined eight-
parameter regression on DOTA benchmark.

a clockwise quadrilateral. In this paper, we use the 1.0 ver-
sion of annotations for rotated object detection. Due to the
large size of a single aerial image, we divide the image into
600 × 600 pixel sub-images with a 150-pixel overlap be-
tween two neighboring ones, and these sub-images are even-
tually scaled to 800× 800.

ICDAR2015 (Karatzas et al. 2015): a scene text dataset
that includes a total of 1,500 images, 1000 of which are used
for training and the remaining for testing. The size of the
images in this dataset is 720 × 1280, and the source of the
images is street view. The annotation of the text in an image
is four clockwise point coordinates of a quadrangle.

HRSC2016 (Liu et al. 2017): HRSC2016 is a dataset for
ship detection which range of aspect ratio and that of arbi-
trary orientation are large. This dataset contains two scenar-
ios: ship on sea and ship close inshore. The size of each im-
age ranges from 300× 300 to 1, 500× 900. This dataset has
1,061 images including 436 images for training, 181 images
for validation, and 444 for testing.

UCAS-AOD (Zhu et al. 2015): UCAS-AOD is a re-
mote sensing dataset which contains two categories: car and
plane. UCAS-AOD contains 1510 aerial images, each of
which has approximately 659 × 1, 280 pixels. In line with
(Ding et al. 2019) and (Azimi et al. 2018), we randomly se-
lect 1110 images for training and 400 ones for testing.

Baselines and Training Details. To make the experimen-
tal results more reliable, the baseline we chose is a multi-
class rotated object detector based on RetinaNet, which
has been verified in work (Yang et al. 2019b). During
training, we use RetinaNet-Res50, RetinaNet-Res101, and
RetinaNet-Res152 (Lin et al. 2017b) for experiments. Our
network is initialized with the pre-trained ResNet50 (He
et al. 2016) for object classification in ImageNet (Deng et al.
2009), and the pre-trained models are officially published by
TensorFlow. Besides, weight decay and momentum are cor-
respondingly 1e-4 and 0.9. The training epoch is 30 in total,
and the number of iterations per epoch depends on the num-
ber of samples in the dataset. The initial learning rate is 5e-4,
and the learning rate changes from 5e-5 at epoch 18 to 5e-6
at epoch 24. In the first quarter of the training epochs, we
adopt the warm-up strategy to find a suitable learning rate.
In inference, rotating non-maximum suppression (R-NMS)
is used for post-processing the final detection results.

Ablation Study
Modulated Rotation Loss in 5-parameter and 8-
parameter settings. We use the ResNet50-based RetinaNet-
H as our baseline to verify the effectiveness of modulated
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Loss Regression mAP

smooth-`1 five-param. [−π2 ,0) 62.14
smooth-`1(Xia et al. 2018) five-param. [−π,0) 62.39
IoU-smooth-`1 (Yang et al. 2019c) five-param. [−π2 ,0) 62.69
`mr five-param. [−π2 ,0) 64.49
smooth-`1 eight-param. 65.59
`mr eight-param. 66.77

Table 2: Ablation study using the proposed techniques on
DOTA. RetinaNet-H(Yang et al. 2019b) is the base model.

(a) Vehicles (b) Tennis field (c) Text in signs

(d) Storage tank (e) Harbor and ship (f) Text in elevator

Figure 8: Detection results on DOTA and ICDAR15.

rotation loss `mr. We get a gain of 2.35% mAP, when the
loss function is changed from the smooth-`1 loss to `mr, as
shown in Table. 1. Fig. 1 compares results before and af-
ter solving the RSE problem: some objects in the images
are all in the boundary case where the loss function is not
continuous. A lot of inaccurate results (see red squares in
Fig. 1(a)) are predicted in the baseline method, but these do
not occur after using `mr (see the same location in Fig. 1(b)).
Similarly, an improvement of 1.18% mAP is obtained after
using the eight-parameter `mr. This set of ablation experi-
ments prove that `mr is effective for improving the rotated
object detector. Note the number of parameters and calcula-
tions added by these two techniques are almost negligible.

Training Stability. We have analyzed that the disconti-
nuity of loss greatly affects the training stability and the de-
tection performance in detail. Although the detection perfor-
mance using our techniques has been verified through mAP,
we have not proven the stability improvement of model
training brought by our techniques. To this end, we plot
the training loss curves using models including RetinaNet-H
(`5p), RSDet-I (`5pmr), RetinaNet-H (`8p), and RSDet-I (`8pmr),
as shown in Fig. 7. The training process converges more sta-
ble with modulated rotation losses.

Comparison with Similar Methods. Although we intro-
duce the concept of RSE for the first time, it is worth not-
ing that some previous articles have also mentioned simi-
lar problems. In (Xia et al. 2018), a 180-degree definition

Backbone Data Aug Balance mAP

resnet-50 66.77
resnet-50 X 70.79
resnet-50 X X 71.22
resnet-101 X X 72.16
resnet-152 X X 73.51

Table 3: Ablation experiments of backbone, data augmenta-
tion and balance on DOTA. RSDet is the base model.

Loss Regression ICDAR2015 HRSC2016

smooth-`1 five-param. 76.8 82.4
`mr five-param. 79.6 83.6
smooth-`1 eight-param. 81.2 85.4
`mr eight-param. 83.2 86.5

Table 4: Performances of `mr and eight-para. regression on
ICDAR2015 and HRSC2016. Use RetinaNet-H (Yang et al.
2019b) as base model, and ResNet152 backbone.

is used to eliminate the loss burst caused by the exchange-
ability of height and width. While related works (Ma et al.
2018; Bao et al. 2019) use periodic trigonometric functions
to eliminate the effects of the angular periodicity. SCRDet
(Yang et al. 2019c) proposes IoU-smooth-`1 loss to solve the
boundary discontinuity. However, these methods are limited
and do not completely solve the RSE problem. Our approach
yields the most promising results while compare with these
methods as shown in Table. 2.

Backbone, Data Augmentation, and Data Balance.
Data augmentation is effective to improve performance. Op-
erations of augmentations we use include random horizon-
tal flipping, random vertical flipping, random image gray-
ing, and random rotation. Consequently, the baseline per-
formance increased by 4.22% to 70.79% on DOTA. Data
imbalance is severe in the DOTA. For instance, there are
76,833 ship instances in the dataset, but there are only 962
ground track fields. We extend samples fewer than 10,000 to
10,000 in each category by random copying, which brings
a 0.43% boost, and the most prominent contribution is from
a small number of samples e.g. helicopter and swimming
pool. We also explore the impact of different backbones
and tend to conclude that larger backbones bring more
performance gains. Performances of the detectors based
on ResNet50, ResNet101, and ResNet152 are respectively
71.22%, 72.16% and 73.51%. Refer to Table. 3 for details.

Using Two-stage Detectors as Base Model. To prove
that `mr can cooperate well with other existing frameworks,
we apply `mr to the two-stage methods including RSDet-
II and Faster RCNN. By comparison, we find that `mr
can achieve consistent improvement on RSDet-II and Faster
RCNN. Note that Faster RCNN are based on five-parameter
and eight-parameter methods, and RSDet-II is only con-
ducted on the basis of five parameters. Taking Faster RCNN
for example, it outperforms baseline by 1.6% and 2.84% in
mAP after cooperating with `mr in five-para. and eight-para.
respectively. The results of RSDet-II can also be seen in Ta-
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Method BB Reg. PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Two-stage
IENet R-101 6p 80.2 64.5 39.8 32.0 49.7 65.0 52.6 81.5 44.7 78.5 46.5 56.7 64.4 64.2 36.8 57.1
R-DFPN R-101 5p 80.9 65.8 33.8 58.9 55.8 50.9 54.8 90.3 66.3 68.7 48.7 51.8 55.1 51.3 35.9 57.9
R2CNN R-101 5p 80.9 65.7 35.3 67.4 59.9 50.9 55.8 90.7 66.9 72.4 55.1 52.2 55.1 53.4 48.2 60.7
RRPN R-101 5p 88.5 71.2 31.7 59.3 51.9 56.2 57.3 90.8 72.8 67.4 56.7 52.8 53.1 51.9 53.6 61.0
ICN R-101 5p 81.4 74.3 47.7 70.3 64.9 67.8 70.0 90.8 79.1 78.2 53.6 62.9 67.0 64.2 50.2 68.2
RoI Trans. R-101 5p 88.6 78.5 43.4 75.9 68.8 73.7 83.6 90.7 77.3 81.5 58.4 53.5 62.8 58.9 47.7 69.6
CAD-Net R-101 5p 87.8 82.4 49.4 73.5 71.1 63.5 76.7 90.9 79.2 73.3 48.4 60.9 62.0 67.0 62.2 69.9
SCRDet R-101 5p 89.9 80.7 52.1 68.4 68.4 60.3 72.4 90.9 87.9 86.9 65.0 66.7 66.3 68.2 65.2 72.6
Gliding Ver. R-101 9p 89.6 85.0 52.3 77.3 73.0 73.1 86.8 90.7 79.0 86.8 59.6 70.9 72.9 70.9 57.3 75.0
FFA R-101 5p 90.1 82.7 54.2 75.2 71.0 79.9 83.5 90.7 83.9 84.6 61.2 68.0 70.7 76.0 63.7 75.7
APE R-101 5p 89.9 83.6 53.4 76.0 74.0 77.2 79.5 90.8 87.2 84.5 67.7 60.3 74.6 71.8 65.6 75.8
CenterMap R-101 5p 89.8 84.4 54.6 70.3 77.7 78.3 87.2 90.7 84.9 85.3 56.5 69.2 74.1 71.6 66.1 76.0
RSDet-II R-152 8p 89.9 84.5 53.8 74.4 71.5 78.3 78.1 91.1 87.4 86.9 65.6 65.2 75.4 79.7 63.3 76.3
One-stage
P-RSDet R-101 3p 89.0 73.7 47.3 72.0 70.6 73.7 72.8 90.8 80.1 81.3 59.5 57.9 60.8 65.2 52.6 69.8
O2-DNet H-104 10p 89.3 82.1 47.3 61.2 71.3 74.0 78.6 90.8 82.2 81.4 60.9 60.2 58.2 66.9 61.0 71.0
DRN H-104 5p 89.7 82.3 47.2 64.1 76.2 74.4 85.8 90.6 86.2 84.9 57.7 61.9 69.3 69.6 58.5 73.2
R3Det R-152 5p 89.5 81.2 50.5 66.1 70.9 78.7 78.2 90.8 85.3 84.2 61.8 63.8 68.2 69.8 67.2 73.7
RSDet-I R-152 8p 90.0 83.9 54.7 69.9 70.6 79.6 75.4 91.2 88.0 85.6 65.2 69.2 67.0 70.2 64.6 75.0

Table 5: Detection accuracy on different objects and overall performances with the state-of-the-art methods on DOTA. The short
names for categories are defined as (abbreviation-full name): PL-Plane, BD-Baseball diamond, BR-Bridge, GTF-Ground field
track, SV-Small vehicle, LV-Large vehicle, SH-Ship, TC-Tennis court, BC-Basketball court, ST-Storage tank, SBF-Soccer-ball
field, RA-Roundabout, HA-Harbor, SP-Swimming pool, and HC-Helicopter. BB means Backbone.

ble. 5, which reach state-of-the-art on DOTA benchmark.
Performances on Other Datasets. We further do exper-

iments on ICDAR2015, and HRSC2016 as shown in Ta-
ble. 4. For ICDAR2015, there are rich existing methods
such as R2CNN, Deep direct regression (He et al. 2017)
and FOTS (Liu et al. 2018), and the current state-of-art has
reached 91.67%. They all have a lot of text-based tricks, but
we find that they are also not aware of the rotation sensitivity
error. Therefore, we conduct some verification experiments
based on `mr. Positive results are obtained for all valida-
tions on both datasets. Our detector performs competitively
which shows its generalization on scene text data. Besides,
our method has also been verified on HRSC2016, and the
experimental results are also comparable to state-of-art.

Overall Evaluation
The results on DOTA are shown in Table 5. The compared
methods include i) one-stage methods: P-RSDet (Zhou et al.
2020) , O2-DNet (Wei et al. 2020) , DRN (Pan et al. 2020),
R3Det (Yang et al. 2019b) ii) two stage methods: R2CNN
(Jiang et al. 2017), Gliding Vertex (Xu et al. 2020), FFA (Fu
et al. 2020), APE (Zhu, Du, and Wu 2020), CenterMap OBB
(Wang et al. 2020). The results of DOTA are all obtained by
submitting predictions to official evaluation server. We ap-
ply `mr to the one-stage and two-stage methods respectively,
and call them RSDet-I and RSDet-II respectively. In the
one-stage methods, RSDet-I obtained 75.03% mAP, which
is 1.29% higher than the existing best method (R3Det).
And in the two-stage methods, RSDet-II obtained 76.34%
mAP, which is 0.31% higher than CenterMap OBB, 1.28%
higher than Gliding Vertex. Table. 6 gives the comparison
on UCAS-AOD dataset, where our method achieves 96.50%
for OBB task which outperforms all the published methods.

Method Plane Car mAP

YOLOv2 (Redmon et al. 2016) 96.60 79.20 87.90
R-DFPN (Yang et al. 2018b) 95.90 82.50 89.20
DRBox (Liu, Pan, and Lei 2017) 94.90 85.00 89.95
S2ARN (Bao et al. 2019) 97.60 92.20 94.90
RetinaNet-H (Yang et al. 2019b) 97.34 93.60 95.47
ICN (Azimi et al. 2018) - - 95.67
FADet (Li et al. 2019a) 98.69 92.72 95.71
R3Det (Yang et al. 2019b) 98.20 94.14 96.17
Ours (RSDet) 98.04 94.97 96.50

Table 6: Performance evaluation on UCAS-AOD dataset.

Moreover, the amount of parameters and calculations added
by our techniques are almost negligible, and they can be ap-
plied to all region-based rotation detection algorithms. Visu-
alization results are shown in Fig. 8.

Conclusion
In this paper, the issue of rotation sensitivity error (RSE)
is formally identified and formulated for region-based ro-
tated object detectors. RSE mainly refers to the discontinu-
ity of loss which caused by the contradiction between the
definition of the rotated bounding box and the loss func-
tion. We propose a novel modulated rotation loss `mr to ad-
dress the discontinuity of loss in five-parameter and eight-
parameter methods. To prove the effectiveness of modulated
loss, we conduct experiments based on one-stage and two-
stage methods respectively. Extensive experiments demon-
strate that RSDet achieves state-of-art performance on the
DOTA benchmark and is also proven good generalization
and robustness on different datasets and multiple detectors.
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