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Abstract

Existing fine-tuning methods use a single learning rate over
all layers. In this paper, first, we discuss that trends of layer-
wise weight variations by fine-tuning using a single learn-
ing rate do not match the well-known notion that lower-
level layers extract general features and higher-level layers
extract specific features. Based on our discussion, we pro-
pose an algorithm that improves fine-tuning performance
and reduces network complexity through layer-wise prun-
ing and auto-tuning of layer-wise learning rates. The pro-
posed algorithm has verified the effectiveness by achieving
state-of-the-art performance on the image retrieval bench-
mark datasets (CUB-200, Cars-196, Stanford online prod-
uct, and Inshop). Code is available at https://github.com/
youngminPIL/AutoLR.

Introduction
The ability to collect large amounts of data has allowed deep
learning to advance dramatically over the last decade. In
particular, deep neural network architectures have evolved
by targeting large datasets such as ImageNet (2009). How-
ever, in actual computer vision applications, large amounts
of data such as those contained ImageNet, cannot be easily
obtained. Thus, for applications such as image retrieval or
fine-grained classification, for which only small datasets are
available, the use of pre-trained networks has become es-
sential (Fu, Zheng, and Mei 2017; Zheng et al. 2017; Suh
et al. 2019; Guo et al. 2019; Wang et al. 2019). To utilize the
pre-trained network for a target task, we use a fine-tuning
scheme that initially takes pre-trained weights and adjusts
them in whole or in part.

The performance of the fine-tuning depends highly on the
following factors: similarity between the source and target
tasks (Azizpour et al. 2015; Cui et al. 2018), choice of deep
network model (Kornblith, Shlens, and Le 2018), and tun-
ing strategy (Tajbakhsh et al. 2016; Guo et al. 2019; Ro
et al. 2019). From among these factors, our paper focuses
on enhancement of tuning strategy. Many efforts have been
made to enhance the capability of tuning the network for a
given target task. Partial tuning (Tajbakhsh et al. 2016) has
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Figure 1: The conceptual figure of the proposed algorithm:
Conducting layer-wise pruning and auto-tuning of layer-
wise learning rates on the target task according to role of
each layer.

been proposed to tune only the higher-level layers. Weight-
reverting methods were proposed in some studies (Guo et al.
2019; Ro et al. 2019), where the tuned weights are reverted
to the initial (pre-trained) weights during fine-tuning. In ad-
dition, some researchers adjusted the learning rate (LR) peri-
odically to ensure efficient learning by adjusting it to follow
a triangular waveform (Smith 2017), and even proposing an
exponentially decaying shape of LR (Loshchilov and Hutter
2016). However, most existing fine-tuning methods adopt a
single LR regardless of layers.

In this paper, instead of using a single LR, we propose an
algorithm for layer-wise auto-tuning of LRs where the LR
in each layer is automatically tuned according to its role. In
addition, we propose a layer-wise pruning algorithm that re-
moves layers according to the usefulness of each pre-trained
layer to the new task as illustrated in Figure 1. Our work
is inspired by our observation that the trends of layer-wise
weight variations by conventional fine-tuning using a single
LR, contradict previous studies (Yosinski et al. 2014; Zeiler
and Fergus 2014), which claim that low-level layers extract
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general features while high-level layers extract specific fea-
tures. Based on our observation, we establish two hypothe-
ses and validate them empirically via preliminary experi-
ments. Following the validation of the hypotheses, we de-
velop algorithms for layer-wise pruning and auto-tuning of
layer-wise LRs.

Through ablation experiments on four image retrieval
benchmark datasets, it is verified that the proposed method
consistently improve the retrieval performance. By provid-
ing visualization results, we help to understand the mecha-
nism of the proposed method. In addition, the superiority of
our method as a fine-tuning strategy is demonstrated through
comparative experiments with the existing LR setting algo-
rithms. Lastly, with regard to four benchmark datasets of im-
age retrieval, our method outperforms the existing state-of-
the-art methods.

Related Work
Fine-tuning is a kind of transfer learning and is used for tun-
ing of pre-trained parametric model. In fine-tuning, the sim-
ilarity between the source task and the target task is also im-
portant as in transfer learning. Regarding the studies on the
similarity, Azizpour et al. (2015) has suggested factors to
transfer knowledge well considering the similarity between
target and source tasks. And Cui et al. (2018) proposed a
method to promote knowledge transfer using similarity be-
tween multiple tasks. In the computer vision fields, Ima-
geNet (Deng et al. 2009) dataset has been widely used for a
source task. Hence lots of target tasks have been handled by
using deep network models pre-trained by using ImageNet.
In Kornblith et al. (2018), it has been claimed that there is a
positive correlation between ImageNet and most target tasks
regardless of deep networks. This implies that ImageNet in-
cludes huge amounts of image data covering most image-
related tasks. Hence in our paper, we will adopt ResNet-50
pre-trained using ImageNet to validate our algorithm.

In our paper, we are motivated from the role of each layer
in fine-tuning a deep network. Regarding the studies on the
roles of hidden layers, Yosinski et al. (2014) conducted em-
pirical study to quantify the degree of generality/specificity
of each layer in deep networks. And Zeiler et al. (2014)
visualized features in hidden layers to analyze general-
ity/specificity in the layers. Through the studies (Yosinski
et al. 2014; Zeiler and Fergus 2014), they claim that the low-
level layers extract general features and the high-level layers
extract specific features in a deep network. This claim pro-
vides insight into our algorithm.

There have been similar works to ours that exploits the
role of each layer. In (Tajbakhsh et al. 2016), Tajbakhsh et
al.have shown that tuning only a few high-level layers is
more effective than tuning all layers. Guo et al. (2019) pro-
posed an auxiliary policy network that decides whether to
use the pre-trained weights or fine-tune them in layer-wise
manner for each instance. Ro et al. (2019) proposed a roll-
back scheme that returns a part of weights to their pre-
trained state to improve performance. However, these works
adopt the fixed learning rate settings unlike our method. In
addition, the approach of ‘learning to learn’ (Li et al. 2017;
Ren et al. 2018) aims to find the optimal update of network

weights. This approach directly finds the optimal initializa-
tion and update of the network weights unlike our approach
to efficiently update the pre-trained weights via auto-tuning
layer-wise learning rate.

Similarly to ours, there are studies that adjust the learning
rate periodically during learning process. Smith (2017) sug-
gested a way to adjust the learning rate in a triangular form
that linearly reduces learning rate and then grows it again.
Similarly Loshchilov et al. (2016) has also proposed an ex-
ponentially decaying and restarting the learning rate for a
certain period of time. However, the existing methods for
on-line tuning of the learning rate use single learning rate
over all the layers. In our work, we aims to develop an algo-
rithm to auto-tune the layer-wise learning rates depending
on the role of each layer.

Proposed Method
The purpose of this paper is to devise an algorithm that au-
tomatically sets the appropriate learning rate (LR) for each
layer after removing layers that do not contribute to the
learning results in the fine-tuning process. We first discuss
our findings observed in the conventional fine-tuning pro-
cess and then analyze the effects of the layer-wise pruning or
layer-wise tuning of LRs through preliminary experiments.
Then, we derive an approximate relationship between the
weight variation of each layer and the LR. Finally, we pro-
pose an algorithm for the layer-wise pruning and auto-tuning
of LR in each layer.

Layer-wise Weight Variations in Fine-tuning
This paper is inspired by previous studies (Yosinski et al.
2014; Zeiler and Fergus 2014; Azizpour et al. 2015). These
studies have demonstrated empirically and qualitatively that
lower-level layers extract general features and higher-level
layers extract specific features. Based on these results, we
build two hypotheses:
Hypothesis 1: The pre-trained high-level layers may not be
helpful to a new target task because they are specific to the
source task.
Hypothesis 2: The weight variations of pre-trained low-
level layers would be small because they are generally valid
for most tasks, whereas those in high-level layers would be
large because they should adopt themselves to a new task
specifically.

To clarify these hypotheses and support our idea, we de-
fine the weight variation of k-th layers as

vkt =
1

nk
‖∆wkt ‖, (1)

where ∆wkt = wkt − wkt−1 denotes the amount of weight
changes in the k-th layer during t-th epoch, and nk is the
number of weights in the k-th layer.

First, we investigate the trends of layer-wise weight vari-
ations in the conventional fine-tuning process. The investi-
gation has been conducted on a retrieval dataset CUB-200-
2011 (Wah et al. 2011) with ResNet-50 (He et al. 2016). Fig-
ure 2 shows the trends of weight variation between two con-
secutive epochs. ‘Layer’ denotes a residual block in Resnet-
50, where ‘Layer 1’ indicates the lowest layer to the input
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Figure 2: The trend of the weight variation between two adjacent epochs. In the result of the conventional fine-tuning of single
LR (a), it is observed that the variations of the higher-level layers are small and the lower-level layers are large. (b) The trend
after pruning two highest-level layers and tuning layer-wise LRs for sorting of weight variation. After pruning and layer-wise
LR tuning, the performance improved significantly (In Table 1).

layer and thus ‘Layer 16’ becomes the highest layer. From
the results shown in Figure 2-(a), which shows the trends of
layer-wise weight variations by the conventional fine-tuning
with single LR, we have observed two interesting points de-
scribed in the following two paragraphs. These observations
support the key ideas of our paper.

The first point is that the weight variations in high-level
layers are too small from fine-tuning, as shown in Figure 2-
(a). Based on Hypothesis 1, the high-level layer with small
weight variation may not contribute to the new task learn-
ing. To support this claim, we have conducted a layer-wise
pruning experiments in which the high-level layers were re-
moved one by one from the highest layer. The performance
variations by the pruning are shown in Table 1. Interestingly,
the pruning Layer 15, 16 improves the performance, which
implies that Layers 15 and 16 might not be helpful to the tar-
get task. The pruning of layers until Layer 14 does degrades
the performance, which means the layers below Layer 14 are
helpful to the new task. This preliminary result supports Hy-
pothesis 1 and can be motivation for our simple but efficient
layer-wise pruning scheme.

The second point is that the trends in weight variations by
traditional fine-tuning do not match Hypothesis 2, as shown
in Figure 2-(a). This implies the traditional fine-tuning de-
stroys the general features of the pre-trained network by
large variations in low-level layers and cannot promote the
high-level layer to adapt itself to the new task. We believe
this result is due to the LR assigned by a single value regard-
less of layers. To verify this, we have conducted a prelim-
inary experiment by adjusting layer-wise LRs empirically.
The layer-wise adjustment of LRs gives a significant im-
provement, as shown in rows 5, 6, and 7 of Table 1. Fig-
ure 2-(b) shows the order of layer-wise weight variations for
row 7 (Pruning 15, 16?). Interestingly, we can see the order
for row 7 meets Hypothesis 2. This result validates Hypoth-
esis 2 that can be utilized to design an auto-tuning scheme
for layer-wise LRs.

Based on Hypotheses 1 and 2, we aim to develop an al-

R@1 R@2 R@4 R@8

Original 63.49 75.03 84.00 90.58
Pruning 16 66.95 77.63 86.39 92.00
Pruning 15, 16 67.00 78.49 86.85 92.07
Pruning 14, 15, 16 51.00 64.16 75.44 85.94

Pruning 15, 16† 67.15 78.61 86.83 92.08
Pruning 15, 16‡ 67.29 79.15 87.36 92.66

Pruning 15, 16? 68.33 79.88 87.69 92.71

Table 1: The Recall@K score results of preliminary exper-
iment for layer-wise pruning and layer-wise adjusting of
LRs. In †, the LRs in Layers 1,2,3 were reduced to 1/10.
In ‡, the LRs in Layer 13,14 were increased by 10 times.
In ?, the LR in all layers were empirically adjusted to meet
Hypothesis 2.

gorithm for the layer-wise pruning and auto tuning of LR
(AutoLR). In particular, the AutoLR is designed to achieve
the order of layer-wise weight variations in every epoch that
meets Hypothesis 2, that is,

v1
t ≤ v2

t ≤ · · · ≤ vKt . (2)

Weight Variation and LR
Our key idea is to control the weight variation of each layer
by tuning the LR of each layer in every epoch. In this sec-
tion, we derive a relationship between the LR and the weight
variation, which will be used in the auto-tuning scheme for
LRs according to the layers.

The weights in the k-th layer are updated during l-th it-
eration for a randomly chosen mini-batch by the stochastic
gradient descent rule with the momentum as follows:

∆wkt,l = ρ∆wkt,l−1 − ηk∇L(wkt,l−1), (3)
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where ∆wkt,l = wkt,l−wkt,l−1, L(wkt,l−1) denotes the loss for
wkt,l−1, ρ is a momentum coefficient, l is the iteration index,
t is the epoch index, and ηk is LR of k-th layer. Note that
ηk is adjusted every epoch in our AutoLR scheme, hence ηk
is constant for all iterations during an epoch. Therefore, by
applying (3) recursively, we can obtain

∆wkt,l = −ηk[∇L(wkt,l−1) + ρ∇L(wkt,l−2)

+ρ2∇L(wkt,l−3) + ρ3∇L(wkt,l−4) + · · · ]. (4)

Define

∇Lacc(wkt ) =
L∑
l=1

[∇L(wkt,l−1) + ρ∇L(wkt,l−2)

+ρ2∇L(wkt,l−3) + ρ3∇L(wkt,l−4) + · · · ], (5)

where L is the number of mini-batches and ∇L(wkt,l) = 0
for l ≤ 0. Then

∆wkt =
L∑
l=1

∆wkt,l = −ηk∇Lacc(wkt ), (6)

which leads to

‖∆wkt ‖ = ηk‖∇Lacc(wkt )‖. (7)

From (1) and (7),

vkt =
ηk

nk
‖∇Lacc(wkt )‖. (8)

In the next section, this equation is used for the AutoLR
scheme. Note that ‖∇Lacc(wkt )‖ does not explicitly depend
on ηk as shown in (5). Actually, the variation ‖∇Lacc(wkt )‖
has been observed to be negligible (see Appendix B of the
supplementary material1). In AutoLR scheme, hence, we ig-
nore the variation of ‖∇Lacc(wkt )‖ during iterations in each
epoch. We apply the equation (8) to our AutoLR scheme re-
peatedly until we get the goal in (2).

Layer-wise Pruning and Auto-tuning of LR

Based on the results analyzed above, we propose an algo-
rithm to prune layers that are not helpful to the target task.
Then we also propose an algorithm (AutoLR) to automat-
ically adjust the LR of each layer so that the order of the
weight variation size of each layer is consistent with (2).
AutoLR is divided into two parts: setting the target weight
variation and tuning by adjusting the LR accordingly.

Layer-wise pruning rule Before applying layer-wise Au-
toLR, low-contributed high-level layers are pruned by the
procedure in Algorithm 1. In the pruning procedure, we fine-
tune a network on a target task using the traditional fine-
tuning scheme with a layer-wise fixed LR.

1https://github.com/youngminPIL/AutoLR

Algorithm 1 Layer-wise Pruning
Notation:

η : a single learning rate for all layers
network : network with weight parameters
score : performance of current network
best score : best performance of previous networks

Pruning:
1: network← pre-trained network
2: Set η to the all layers of network
3: Set best score = 0
4: Fine-tune network
5: score← performance of network
6: while score ≥ best score do
7: best score← score
8: network← pre-trained network
9: Prune the highest-level layer of network

10: Fine-tune network
11: score← performance of network

Setting target weight variations We need to renew the
target weight variations that satisfy the goal in (2) in each
epoch of the learning process. We design two formulas to
set the renewed target weight variation depending on sorting
quality that denotes how well the current weight variations
satisfy the goal in (2). To this end, we measure the sorting
quality defined as follows:

sorting quality = 1− 2

K2

K∑
k=1

|k − σ(vkt )|, (9)

where σ(vkt ) is a function that maps vkt to its ranking in as-
cending order, and 2

K2 is the scale factor that enforces the
sorting quality to be scaled within 0 and 1.

The initial target weight variation is set as follows:

dt =
1

K − 1

(
β max

1≤k≤K
v

(k)
t − α min

1≤k≤K
v

(k)
t

)
(10)

v̄
(k)
t ← min

1≤i≤K
v

(k)
t + (k − 1)dt, k = 1, · · · ,K. (11)

where the α and β are the hyper-parameter to set a range of
target weight variation.

If the sorting quality is below a pre-defined threshold τs,
the target weight variation requires partial modifications. To
prevent the renewed target sorting from shifting to one side,
the modification starts from the center (ǩ) and moves to both
ends as follows:

For k =ǩ, ǩ + 1, · · · ,K

v̄
(k)
t ←

{
v

(k)
t k = ǩ or v̄(k−1)

t ≤ v(k)
t

v̄
(k−1)
t + dt otherwise,

(12)

For k =ǩ − 1, ǩ − 2, · · · , 1

v̄
(k)
t ←

{
v

(k)
t v̄

(k+1)
t ≥ v(k)

t

v̄
(k+1)
t − dt otherwise.

(13)

Renewing LR To get a new LR η̄kt which produces the
renewed target weight variance v̄(k)

t . Utilizing (8), we can
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Algorithm 2 AutoLR: Auto-tuning of learning rates
Notation:

ηk : learning rate of k-th block
η̄k : target learning rate of k-th block
vkt : weight variation of k-th block in t-th epoch
v̄kt : target weight variation of k-th block in t-th epoch
network : network with tuned weights
trial-network : trial network for tuning of ηk

Auto-tuning:
1: Initialize ηk with single learning rate
2: Initialize network with pre-trained network
3: Set sorting quality = 0.
4: for epoch← 1 to T do
5: trial-network← network
6: while sorting quality ≤ τs do
7: Fine-tune trial-network with ηk for target dataset
8: Calculate weight variation in (1)
9: Calculate sorting quality in (9)

10: if sorting quality > τs then
11: network← trial-network
12: else
13: if epoch == 1 then
14: Renew v̄kt by (11)
15: else
16: Renew v̄kt by (12) and (13)
17: Renew η̄k by (15)
18: ηk ← η̄k

19: trial-network← network
20: epoch++

set v̄kt ≈
η̄k

nk
‖∇Lacc(wkt )‖, which leads to

v̄kt − vkt ≈
η̄kt − ηkt
nk

‖∇Lacc(wkt )‖ =
η̄kt − ηkt
ηk

vkt . (14)

Finally we can get the renewed LR as

η̄kt ≈
ηkt v̄

k
t

vkt
. (15)

In actual AutoLR scheme, convergence to the goals of each
epoch cannot be done at once, so we adopt an iterative trial
policy as follows:

η̄kt ←
η
k(i)
t v̄kt

v
k(i)
t

, η
k(0)
t = ηkt , (16)

where i is the trial index. This renew procedure is repeated
until the goal (2) is achieved in each epoch. The overall flow
of AutoLR is given in Algorithm 2.

Note that, the guarantee of convergence for Eq.(16) and
the guidance of setting for α and β are included in the sup-
plementary material. The hyper-parameters α and β in our
algorithm effectively saves the effort of searching through
too much combinations of continuous real spaces to find the
appropriate learning rate for each layer. In all experiments,
α and β were set to 2 and 0.4 empirically following the guid-
ance in the supplementary material. The threshold parameter
τs was loosely set to 0.94 so that the training speed was not
too slow by an approximate sorting instead of the complete
sorting by setting τs = 1.

Experiments
This section shows our experimental results. We begin by
describing the target datasets and metric. Then, the experi-
mental details are presented. We then describe the ablation
study and visualization results of our algorithm. Finally, we
show the comparison results with existing methods in the
remaining sections.

Datasets
CUB-200 (Wah et al. 2011) dataset consists of 200 different
species of birds. The first 100 classes are used for training
and the other 100 classes for testing.
Cars-196 (Krause et al. 2013) dataset has 196 categories of
car images and its total number is 16,185. The first 98 classes
are used for training an the other 98 classes for testing.
Stanford Online Products (SOP) (Oh Song et al. 2016)
has 120,053 images of 22,634 categories of products. 11,318
and 11,316 classes are used for training and testing, respec-
tively.
Inshop (Liu et al. 2016) has 54,642 images of 11,735 cate-
gories of clothing items. 3,997 classes are used for training
and the other 3,985 classes for testing. In the case of Inshop,
the test dataset is divided into query and gallery.

Evaluation metric
The Recall@K metric (Oh Song et al. 2016) is employed for
evaluating compared methods in image retrieval task.

Implementation Details
We utilized ResNet-50 (He et al. 2016) pre-trained by us-
ing ImageNet (Deng et al. 2009). The input size was set to
224×224 and the batch size was set to 40. For input data
augmentation, the horizontal flipping with 0.5 probability
was employed in training. The initial LR was set to 1e-3. We
used the cross-entropy loss function. The stochastic gradient
descent (SGD) optimizer was used along with Nesterov mo-
mentum (Nesterov 1983). Initial momentum rate and weight
decay coefficient were set to 0.9 and 5e-4, respectively.

Discussion of Hyper-parameters α, β
In the above, we have illustrated that the tuning of layer-wise
LRs yields much improved performance. To manually tune
the best layer-wise LRs, there are too much combinations of
layer-wise LRs in a multi-dimensional continuous real space
even when the lower bound and upper bound on the range of
LRs are given. But our AutoLR can easily find the layer-wise
LRs with only using the lower and upper bounds that are
denoted by α×mink v

(k)
0 and β ×maxk v

(k)
0 , respectively.

In this section, we provide the investigation results for the
hyper-parameters α and β on the CUB-200 and Cars-196
datasets. As shown in Figure 3-(a), the best performance on
CUB-200 dataset is achieved when the α and β are set to
values around 2 and 0.4, respectively. In the case of Cars-196
dataset, the setting α and β to 2 and 0.4 provides relatively
high performance as shown in Figure 3-(b) but the setting α
and β to 3 and 0.6 provides the best performance. Note that
the hatched area of the Figure 3 is the unavailable area where
the lower bound becomes larger than the upper bound.
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Figure 3: Recall@1 results according to the hyper-parameters α and β on CUB-200 and Cars-196

CUB-200 Cars-196 SOP InShop
Variants 1 2 4 8 1 2 4 8 1 10 102 103 1 10 20 30

(1) SingleLR 63.88 75.14 83.86 90.26 85.89 91.58 95.12 97.45 80.02 91.21 96.20 98.64 87.64 97.12 98.04 98.40
(2) Pruning only 67.00 78.49 86.85 92.07 87.85 93.11 96.06 98.02 83.31 92.90 96.68 98.62 88.62 97.16 97.95 98.40
(3) AutoLR 70.10 80.62 88.08 92.98 89.02 94.23 96.72 98.14 84.24 93.47 97.15 98.92 91.72 98.04 98.66 98.93

Table 2: Recall@K score of proposed method on image retrieval dataset for the ablation study

Ablation Study
We conducted ablation studies to validate the components of
the proposed algorithm. We consider three ablation variants:
(1) use conventional fine-tuning with the same LR over all
layers (SingleLR), (2) apply layer-wise pruning only, and (3)
apply layer-wise AutoLR with (2). The ablation studies were
conducted on CUB-200, Cars-196, SOP, and Inshop with the
pre-trained ResNet-50. Layer-wise pruning was done using
our proposed Algorithm 1. Then, for all the target tasks, the
layer-wise pruning 15,16 showed the best performance. The
second row of Table 2 shows a consistent performance im-
provement over all target datasets in Recall@1. In the case of
Inshop dataset, the performance does not improve much, but
the pruning of two layers contributes to a reduction in the
network complexity while maintaining comparable perfor-
mance. The results show that our simple layer-wise pruning
is an effective way to both improve performance and reduce
network complexity.

The results for variant (3) are shown in the third row of Ta-
ble 2. There are meaningful performance improvements for
the three target tasks. Figure 4 shows the layer-wise trends
of weight variations and LRs by our algorithm for layer-wise
AutoLR. The learning was done up to 50 epochs, but af-
ter the convergence process was omitted after 15 epochs.
t-i represents the i-th automatic tuning trial in each learn-
ing epoch. Figure 4-(a) shows that our AutoLR algorithm
achieves the goal that the magnitudes of the weight varia-
tions are sorted in ascending order from low-level to high-
level layers. In Figure 4-(a), Layer 14 is observed to be un-
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Figure 4: (a) Layer-wise weight variations and (b) layer-wise
learning rate adaptations by our AutoLR algorithm

sorted after four epochs. This is because the parameter τs to
determine the successful sorting quality is not set to 1 (per-
fect sorting). Figure 4-(b) shows how the layer-wise LRs are
adjusted from the initial LR of 0.001 for all layers and con-
verge to layer-wise constants. The trial tuning iteration was
performed once or twice before three epoch, and thereafter
the first tuning was successful without further trial tuning.
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Figure 5: The class activation map (CAM) visualization of
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Figure 6: The class activation map (CAM) visualization of
layers (1, 4, 8, 14) according to the sorting quality. The
initial-tune is done by the conventional fine-tuning with sin-
gle LR

Hence the additional overhead for trial tuning iterations re-
quired by the proposed method is negligible. According to
the LR trends in the highest layer 14, its change in each tun-
ing was the largest. This result supports our Hypothesis 2
that the high-level layer is specific to the target task and thus
its weight variations should be large to adapt itself to the
new target task. To meet the goal, the LR in Layer 14 con-
verges to a large value promptly. Our AutoLR algorithm also
is valid for other layers, as shown in Figure 4-(b).

In conclusion, the ablation study illustrates that the pro-
posed layer-wise pruning and AutoLR algorithm is an effec-
tive and promising ways to improve performance and reduce
network complexity by setting constant α, β and τs regard-
less of datasets.

Visualization on Effect to Layer-wise Features
To understand how the sorting quality of layer-wise weight
variations affects the responses in the layers, we investigated
the class activation map (CAM) in each layer using a visu-
alization technique, Grad-CAM (Selvaraju et al. 2017).

Figure 5 shows the CAM at the last layer of each pruned

Method R@1 R@2 R@4 R@8

Original 54.12 66.44 76.54 85.38
Pruning 13 60.77 71.94 81.68 88.93
Pruning 12, 13 63.67 74.71 83.78 90.60
Pruning 11, 12, 13 60.72 72.84 82.85 89.74

Table 3: Recall@K score of proposed Layer-wise pruning
applied to Inception-V3 on CUB-200 dataset

model. In the case of Original without pruning, activation
gives attention to a relatively large area. However, as high-
level layers are pruned one by one, activation has more at-
tention to the object or specific area, although the receptive
field of each pruned one is the same. This supports our Hy-
pothesis 1 that the there may be useless high-layers of a pre-
trained network in a new task.

Figure 6 shows the CAM at each layer at the first epoch,
where the sorting quality increases by AutoLR via one or
two trial iterations. The initial-tune in Figure 6 is done using
the conventional fine-tuning with single LR and the remain-
ing trials are done using our AutoLR algorithm. As shown in
Figure 6, the CAM at each layer tends to have more attention
to the object as the sorting quality increases by our AutoLR.
In Layer 1, as the sorting quality increases, unnecessary ar-
eas are deactivated and essential activation is formed in the
target object area. This is because the AutoLR does not cor-
rupt general features on the unnecessary area while the exist-
ing fine-tuning learns excessively the unnecessary area as a
specific feature of the new target. In Layer 4, the CAM does
not vary on unnecessary area; the CAM on the target area
tends to be more attentive as the sorting quality increases. In
Layer 8, the CAM on the target area tends to be more atten-
tive as the sorting quality increases. However, the CAM also
be attentive on unnecessary areas for the bird image due to
the high LR tuned by our algorithm. In Layer 14, due to the
pruning Layers 15 and 16 not being well-tuned by the exist-
ing fine-tuning, as shown in Figure 5, Layer 14 already has a
good attention to the target. However, the activation is more
attentive to the target as the sorting quality increases.

Layer-wise Pruning for Other Backbone
To show the generality to other backbone networks, we
conducted an experiment applying our layer-wise prun-
ing scheme to Inception-V3. We divided Inception-V3 net-
work into 13 layers as {Conv2d(3), Conv2d(2), Mixed 5b,
Mixed 5c, Mixed 5d, Mixed 6a, Mixed 6b, Mixed 6c,
Mixed 6d, Mixed 6e, Mixed 7a, Mixed 7b, Mixed 7c}. As
shown in Table 3, pruning 12, 13 layers shows the best per-
formance on the CUB-200 dataset.

Comparison with Other LR Settings
Our AutoLR algorithm belongs to the LR scheduling cat-
egory. Here, we show the superiority of our algorithm by
a comparative study on the LR scheduling. The compared
methods are ‘Step-decay’ (Ge et al. 2019), ‘Cyclic’ (Smith
2017), and ‘SGDR’ (Loshchilov and Hutter 2016). Step-
decay is the most widely used method in fine-tuning (Korn-
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CUB-200 Cars-196 SOP Inshop
Method Network 1 2 4 8 1 2 4 8 1 10 102 103 1 10 20 30

A-BIER Inception-v1 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1 74.2 86.9 94.0 97.8 83.1 95.1 96.9 97.5
DREML Inception-v3 58.9 69.6 78.4 85.6 - - - - - - - - 78.4 93.7 95.8 96.7
ABE-8 Inception-v1 60.6 71.5 79.8 87.4 85.2 90.5 93.9 96.1 76.3 88.4 94.8 98.2 87.3 96.7 97.9 98.2
NormSoft ResNet-50 61.3 73.9 83.5 90.0 84.2 90.4 94.4 96.9 79.5 91.5 96.7 - 89.4 97.8 98.7 99.0
Margin ResNet-50 63.6 74.4 83.1 90.0 79.6 86.5 91.9 95.1 72.7 86.2 93.8 98.0 - - - -
MS Inception-v1 65.7 77.0 86.4 91.2 78.2 90.5 96.0 98.7 78.2 90.5 96.0 98.7 89.7 97.9 98.5 98.8
DGCRL ResNet-50 67.9 79.1 86.2 91.8 75.9 83.9 89.7 94.0 - - - - - - - -
Proxy-Anchor ResNet-50 69.7 80.0 87.0 92.4 87.7 92.9 95.8 97.9 - - - - - - - -

Pruning only ResNet-50 67.0 78.5 86.9 92.1 87.9 93.1 96.1 98.0 83.3 92.9 96.7 98.6 88.6 97.2 98.0 98.4
AutoLR ResNet-50 70.1 80.6 88.1 93.0 89.0 94.0 96.9 98.4 84.2 93.5 97.2 98.9 91.7 98.0 98.7 98.9

Table 4: Comparison with state-of-the-art methods on image retrieval datasets (Recall@K score)

Method hyper-parameters R@1 R@2 R@4

Step- td : 40, γ : 0.1 67.17 78.19 86.19
decay td : 40, γ : 0.2 67.35 78.14 86.04

Cyclic cycle : 5 67.54 78.70 86.73
cycle : 7 68.55 79.17 86.70

SGDR nreset : 8 68.18 79.34 86.34
nreset : 14 68.16 78.98 86.50

AutoLR α : 2, β : 0.4 70.10 80.62 88.08

Table 5: Comparison of our AutoLR with the various learn-
ing rate scheduling method for the CUB-200 dataset with
the equally pruned ResNet-50 (Recall@K score)

blith, Shlens, and Le 2018; Sun et al. 2018; Ro et al. 2019).
It conducts LR decay by multiplying to all layers by a value
γ at a drop timing td. The initial LR of Step-decay is set
to lmax. Cyclic adjusts the LR between the max value lmax
and min value lmin with periodic triangular waveform. The
number of cycle is a hyper-parameter. Similarly, SGDR ad-
justs the LR to decrease exponentially and LR is reset to its
initial value lmax. These resets are repeated multiple times
with a hyper-parameter nreset.

For fair comparison, all methods were applied to the
equally pruned network (pruning 15, 16), and all experi-
ments were conducted equally for 50 epochs. The lmax and
lmin for all experiments were set to 0.01 and 0.001, respec-
tively. Depending on the hyper-parameters of each method,
we tested the performance in a range guided in each method
and selected the best performance. All experimental results
are given in Table 5 of the supplementary material, where the
tuned hyper-parameters are also listed for all the methods.
As shown in Table 5, our AutoLR algorithm outperforms
the other LR scheduling methods consistently.

Comparison with Existing Methods
Table 4 shows that our AutoLR outperforms not only the
methods of using the same backbone ResNet-50 (Zhai and
Wu 2018; Wu et al. 2017; Zheng et al. 2019; Kim et al.
2020), but also the methods of using other backbone net-
works (Opitz et al. 2017; Xuan, Souvenir, and Pless 2018;
Kim et al. 2018; Wang et al. 2019). Another impressive one
is that our method with only a pruning scheme outperforms
the current SOTA in Cars-196 and SOP datsets even though

it is a simple pruning method that removes just a couple of
high-level layers assessed to be useless to a new task.

Conclusion
In this paper, we proposed a novel algorithm for layer-wise
pruning and auto-tuning of layer-wise LRs with simple set-
ting of hyper-parameters. The pruning algorithm uses a sim-
ple technique to prune a couple of high-level layers that are
not helpful to a new task. The auto-tuning algorithm au-
tomatically adjusts the LRs depending on the role of each
layer so that they contribute to performance improvement.
The advantages of the proposed algorithm are not only sim-
ple for implementation, but also effective in improving per-
formance and reducing network complexity. The effective-
ness and efficiency of the proposed algorithm has been vali-
dated by the experiments on four image retrieval benchmark
datasets. Hence the proposed pruning and automatic tuning
algorithm will be able to contribute to the advances for au-
tomated and efficient machine learning.
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