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Abstract

This paper considers a video caption generating network re-
ferred to as Semantic Grouping Network1 (SGN) that at-
tempts (1) to group video frames with discriminating word
phrases of partially decoded caption and then (2) to de-
code those semantically aligned groups in predicting the next
word. As consecutive frames are not likely to provide unique
information, prior methods have focused on discarding or
merging repetitive information based only on the input video.
The SGN learns an algorithm to capture the most discriminat-
ing word phrases of the partially decoded caption and a map-
ping that associates each phrase to the relevant video frames -
establishing this mapping allows semantically related frames
to be clustered, which reduces redundancy. In contrast to the
prior methods, the continuous feedback from decoded words
enables the SGN to dynamically update the video represen-
tation that adapts to the partially decoded caption. Further-
more, a contrastive attention loss is proposed to facilitate ac-
curate alignment between a word phrase and video frames
without manual annotations. The SGN achieves state-of-the-
art performances by outperforming runner-up methods by a
margin of 2.1%p and 2.4%p in a CIDEr-D score on MSVD
and MSR-VTT datasets, respectively. Extensive experiments
demonstrate the effectiveness and interpretability of the SGN.

Introduction
Video captioning is the task of understanding the scenes in
a video and describing it in words. It is one of the most
challenging computer vision tasks as it requires a model ca-
pable of associating video to text. Most video captioning
methods have been suggested based on the encoder-decoder
framework constructed using convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). The CNN-
based encoder takes a set of consecutive frames of the input
video and produces visual representations to generate the
accurate caption that describes the video. Then, the RNN-
based decoder takes the visually encoded features and the
previously predicted word as input and generates the cap-
tion one word at a time.

Unlike image captioning, which requires a model to un-
derstand static content in a single image, video captioning
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Figure 1: Phrases (e.g., “a girl” and “talking with”) can
gather their relevant frames in the video, forming groups
that share common semantics within them. A decoder then
exploits the necessary semantic group in predicting the next
word (“boy”).

requires a model to understand the comprehensive context
of a video. A video frame is similar to the previous frame,
and consecutive frames usually do not provide unique in-
formation (Chen et al. 2018). Therefore, considering every
frame as an independent unit of information is not an ef-
ficient way to understand the video. It is quite natural for
humans to understand a video by partitioning it into infor-
mation units based on semantics. We understand a video by
grouping information based on meanings such as people, ob-
jects, or actions, rather than frame by frame.

There are a considerable number of works that try to imi-
tate the human behavior of understanding video - collect the
semantically related information into units and then decode
the collected information units into a caption. The type of
information units varies; there are methods that partition a
video into a fixed or adaptive number of segments that con-
sist of successive frames (Pan et al. 2016; Baraldi, Grana,
and Cucchiara 2017), collect the frames that are informative
enough (Chen et al. 2018), or gather all the features of video
frames at the object-level (Zhang and Peng 2019a; Zhang
et al. 2020; Zheng, Wang, and Tao 2020).

It is important for a captioning method to model visual
and textual modalities respectively and complementarily.
However, prior methods mainly focus on the visual aspect
(i.e., video frames) and do not pay much attention to the
textual aspect (i.e., partially decoded caption) when encod-
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(a) HRNE (Pan et al. 2016) (b) BAE (Baraldi et al. 2017) (c) PickNet (Chen et al. 2018) (d) SGN (Ours)

Figure 2: Illustration showing the video encoding process: how video representations x are obtained in four different video
captioning methods. f , e, w, p denotes frames, events, words of the partially decoded caption, and phrases, respectively.

ing a video. The partially decoded caption, which consists
of words predicted by the decoder, basically summarizes the
visual content. Therefore, the word phrases of the partially
decoded caption could help associate semantically related
frames into information units to form a group, which is re-
ferred to as semantic groups. For instance, let us consider a
video shown in Figure 1 where a girl meets a boy and talks,
and the decoder has partially generated “a girl is talking with
a”. The phrase “a girl” can be used to group the first three
frames where the girl is standing alone and the last three
frames can be grouped with the phrase “talking with” as
there are two people talking. Given these two groups, the
decoder can exploit the semantic meaning which these two
groups represent in predicting the next word “boy”.

To use semantic groups as information units for under-
standing a video, they should satisfy the following three
properties. First, the meaning of a semantic group should be
concrete and observable. When grouping frames based on
semantics, a phrase is more suitable than a word that may
have insufficient information to specify, such as function
words like “is” and “the”. Second, a semantic group should
have a meaning that is distinctive to others to effectively use
it as a separate information unit without redundancy. Third, a
phrase and corresponding frames in a semantic group should
be semantically aligned to have a coherent meaning. In other
words, all the frames in a semantic group should be closely
related to their phrase.

To this end, this paper proposes a video caption gen-
erating network referred to as Semantic Grouping Net-
work (SGN), which encodes a video into semantic groups
by aligning frames around the phrases of partially decoded
caption and describes the video by exploiting the semantic
groups as information units. SGN constructs phrases using
words of partially decoded caption and forms a semantic
group based on each phrase to which the frames are aligned.
By considering both input video features and partially de-
coded caption when further encoding the video, SGN can
adaptively decode the next caption word depending on the
caption already decoded. This capability is in contrast to
prior methods which do not have any feedback control from
partially decoded caption when encoding the video. Also,
the visual-textual alignment enables the captioning model
to know the visual groundings of word phrases of the cap-
tion, which leads to a comprehensive understanding of the
captioning context. To further facilitate the correct semantic
alignment within a semantic group, a Contrastive Atten-
tion (CA) loss is proposed to penalize the semantic groups
that include some unrelated frames.

The key contributions of this work can be summarized as
follows. First, this paper proposes a Semantic Grouping Net-
work (SGN), which encodes the video into semantic groups
that are in terms of relevant frames and the corresponding
word phrases of the partially decoded caption, and adap-
tively decodes the next word based on the semantic groups.
Second, this paper proposes Contrastive Attention (CA) loss
that provides labor-free supervision for the correct visual-
textual alignment within each semantic group. Third, the
SGN outperforms the runner-up methods by a large margin
in CIDEr-D on the two most popular benchmark datasets,
reaching new heights in state-of-the-art performances.

Related Works
Encoding Video into Information Units. As consecutive
video frames contain highly repetitive information, several
video captioning methods encode video into information
units to imitate the human behavior of understanding video.
HRNE (Pan et al. 2016) employs a hierarchical LSTM to
encode the input video into two-levels of abstraction. Later,
BAE (Baraldi, Grana, and Cucchiara 2017), which assumes
video as a set of consecutive events, improves the HRNE
by discovering the hierarchical structure of the video. Pick-
Net (Chen et al. 2018) assumes that all frames selected by
equal interval sampling are not guaranteed to contain mean-
ingful information and selects the only frames that are infor-
mative for describing the video. These methods encode the
input video by discarding or merging intermediate frames
without considering the caption being generated; once the
input video is encoded, the same video features are used
throughout the decoding process. As SGN encodes the video
based on the partially decoded caption by leveraging the
word phrases to construct the semantic groups, the video
representation is adaptive to its own generated caption and
the captioning model can better exploit the whole captioning
context (see Figure 2).

Multi-Modal Reasoning. As captioning involves both vi-
sual and textual modalities, understanding one with the help
of the other is an interesting research area. You et al. (You
et al. 2016) detect visual concepts in the image and leverage
the word embedding of each concept as the key to its vi-
sual representation when applying an attention mechanism.
GLIED (Liu et al. 2019) argues that a more effective atten-
tion mechanism can be employed by considering the collo-
cations of detected concepts along with their visual repre-
sentations. M3 (Wang et al. 2018) is equipped with a het-
erogeneous memory to model the long-term visual-textual
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Figure 3: The SGN consists of (a) Visual Encoder, (b) Phrase Encoder, (c) Semantic Grouping, and (d) Decoder. In training, a
negative video is introduced in addition to the input video for calculating the CA loss. The words predicted by the Decoder are
added to the input of the Phrase Encoder and become word candidates that make up phrases.

dependency, and MARN (Pei et al. 2019) is equipped with a
memory consisting of words and corresponding visual con-
texts across videos to utilize the videos other than the input
video. Inspired by the potential of leveraging the correspon-
dences between words and the visual input (You et al. 2016;
Liu et al. 2019; Pei et al. 2019), SGN leverages partially de-
coded caption to discover the hierarchical structure of video
by associating frames with phrases of the caption.

Supervision for Attention. In video captioning, the at-
tention mechanism is commonly used in the forms of tempo-
ral (Pei et al. 2019; Song et al. 2017; Zhang et al. 2017), spa-
tial (Chen and Jiang 2019; Li et al. 2017; Yu et al. 2016), and
regional (Zhang and Peng 2019b; Zhao et al. 2018; Wu et al.
2018). In order to place a more precise attention mechanism,
several methods have been proposed to provide explicit su-
pervision by directly exploiting various human perception.
AC (Liu et al. 2017) employs a human-annotated binary at-
tention mask to improve the correctness of spatial attention
maps. GVD (Zhou et al. 2019) explicitly links each noun
phrase in a caption with a corresponding bounding box in a
video frame. As another type of human perception, human
gaze information is used for recognizing important regions
to look at in each video frame (Yu et al. 2017). These meth-
ods utilize the human perception obtained by manual an-
notations, which are expensive and not scalable to different
datasets as they require considerable human effort. However,
the proposed CA loss makes our method take advantage of
human perception through labor-free supervision and can be
readily applied to other captioning datasets.

Semantic Grouping Network
As shown in Fig. 3, the Semantic Grouping Network (SGN)
consists of four components: (a) Visual Encoder takes a
video and produces frame representations for each video

frame, (b) Phrase Encoder takes the partially decoded cap-
tion and produces phrases consisting of a set of words in the
caption, (c) Semantic Grouping filters out similar phrases
and constructs semantic groups by aligning frames around
the surviving phrases, and (d) Decoder exploits the seman-
tic groups to predict the next word of the partially decoded
caption. For training, the Contrastive Attention (CA) loss
is proposed to make the semantic groups have more coherent
meanings within each group. The details of each component
will be described in the following subsections.

Visual Encoder
Given an input video V ,N frames {fi}Ni=1 and clips {ci}Ni=1
are uniformly sampled where each clip ci consists of con-
secutive frames around each sampled frame fi. CNNs have
demonstrated their strengths in encoding images and videos
on various computer vision tasks such as classification (Kim
et al. 2019a; Ju et al. 2020), VQA (Kim et al. 2020, 2019b),
and object detection (Chen et al. 2020; Vu et al. 2019). The
appearance representations {va

i }Ni=1 and the motion repre-
sentations {vm

i }Ni=1 are extracted from a pre-trained 2D-
CNN φa and 3D-CNN φm, respectively. The two types of
visual representations are then concatenated frame by frame
to produce frame representations {vi}Ni=1 as

vi = [va
i ;v

m
i ], (1)

where va
i = φa(fi), vm

i = φm(ci), and [·; ·] denotes con-
catenation.

Phrase Encoder
A phrase is better than a word when identifying relevant
frames. There are words that do not have concrete and ob-
servable meanings when used alone, for example, function
words like “is” and “the”. In addition, a word may have in-
sufficient meaning to specify related frames; for instance, it
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would be more explicit to associate frames containing “man
with glasses” rather than “man” or “glasses”. Therefore, a
phrase rather than a word is used when performing a visual-
textual alignment.

To build phrases from the partially decoded caption, it is
important to model the dependency among the words and
see how they are related. When generating the t-th word
wt of the caption, we have a word representation matrix
Wt = [E[w1] · · ·E[wt−1]]

T ∈ R(t−1)×dw where E denotes
a word embedding matrix. Phrase Encoder φp takes the word
representation matrix Wt and produces a phrase representa-
tion matrix Pt = [p1,t · · ·pt−1,t]

T ∈ R(t−1)×dw as

Pt, At = φp(Wt), (2)

where At = [a1,t · · · at−1,t]T ∈ R(t−1)×(t−1) is a word at-
tention matrix and aj,t ∈ Rt−1 is the attention weights for
the words {wi}t−1i=1 used when constructing the phrase pj,t.
For the Phrase Encoder φp, the self-attention mechanism
(Vaswani et al. 2017) is adopted as it is well known for mod-
eling such intra-dependencies between words in a sentence.
Although the phrases are constructed using the same set of
words, the phrases that form semantic groups are learned to
be discriminative by the Phrase Suppressor, which will be
detailed in the following.

Semantic Grouping
A word phrase is the basis of a semantic group, which con-
sists of the phrase and all the frames semantically linked to
the phrase. The number of candidate phrases is the same
as the number of words, and it turns out that many of the
phrases generated by the Phrase Encoder are very similar. It
would be better to filter out these phrases, and this is per-
formed with a Phrase Suppressor. Once a set of distinctive
phrases is obtained, the Semantic Aligner aligns the video
frames to the surviving phrases.

Phrase Suppressor. To leave only the distinctive phrases
among all candidate phrases of Pt, Phrase Suppressor mea-
sures the degree of similarity between phrases and decides
which ones to leave and which ones to discard. To do so,
the similarities of all phrase pairs are measured by the outer
product of the word attention matrix as Rt = At(At)

T

where ri,j,t measures how similar the two phrases pi,t and
pj,t are. A pair of two phrases pi,t and pj,t is considered to
be similar if ri,j,t is larger than some fixed threshold τ . If
so, the phrase that is more similar to other phrases is con-
sidered as the redundant phrase and discarded. For example,
if ri,j,t > τ and

∑
k ri,k,t >

∑
k rj,k,t, the phrase pi,t is

the redundant phrase and the phrase pj,t will survive. The
procedure of phrase suppression are shown in Algorithm 1.

After the phrase suppression, assume there are Mt sur-
viving phrases. Denote the surviving phrase representation
matrix as P̂t = [p̂1,t · · · p̂Mt,t]

T ∈ RMt×dw . To this end,
phrases are composed of different combinations of words,
and the SGN is encouraged to form unique semantic groups.

Semantic Aligner. For each pair of a phrase p̂i,t and a
frame fj , a score αi,j,t is assigned based on the relevance
between their representation vectors. As a common practice
for measuring the relevance between two vectors, we obtain

Algorithm 1 Phrase Suppression.

Input: Phrases P = {p1, · · · , pK}, a word attention matrix
A, and a threshold τ

Output: A filtered set of phrases P̂ = {p̂1, · · · , p̂K′}.
1: function PHRASESUPPRESSOR(P , A, τ )
2: P̂ ← P
3: R← AAT

4: for ri,j ∈ {ri,j |ri,j ∈ R, ri,j > τ} do
5: if

∑
k ri,k >

∑
k rj,k then

6: P̂ ← P̂ \ {pi}
7: else
8: P̂ ← P̂ \ {pj}
9: end if

10: end for
11: return P̂
12: end function

the relevance scores as

αi,j,t ∝ uT
s σ(Usp̂i,t +Hsvj + bs), (3)

where us, Us, Hs, and bs are learnable parameters, and σ is
an activation function such as hyperbolic tangent.

The relevance scores are normalized using softmax and
then used to select which frames to be aligned with the
phrase p̂i,t when computing the aligned frame representa-
tion vp

i,t (see Equation 4). Finally, the representation for the
semantic group si,t around the phrase p̂i,t is obtained as

vp
i,t =

N∑
j=1

αi,j,tvj , (4)

si,t = [p̂i,t;v
p
i,t]. (5)

By using the semantic groups {si,t}Mt
i=1 as information units

on behalf of the frames {fj}Nj=1 and words {wi}t−1i=1 , redun-
dancy from adjacent frames is avoided and the decoder can
exploit information units with more concrete meanings.

Decoder
Once semantic groups are constructed, a decoder extracts the
necessary information for predicting the next word wt. The
decoder assigns a score to each semantic group that repre-
sents the usefulness in predicting the next word based on the
correspondence with the previous decoder state ht−1 as

βi,t ∝ uT
d σ(Udht−1 +Hdsi,t + bd), (6)

xt =

Mt∑
i=1

βi,tsi,t, (7)

where ud, Ud, Hd, and bd are learnable parameters.
Then, xt is passed to an LSTM, and the probability dis-

tribution of the next word is generated by a fully connected
layer followed by a softmax layer as

ht = LSTM([xt;E[wt−1]],ht−1), (8)
p(wt|V,w1, · · · , wt−1) = softmax(Uhht + bh),(9)
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where Uh and bh are learnable parameters. Our decoder is
the same as that of the typical video captioning method (Yao
et al. 2015), except the term “temporal attention” is replaced
with “semantic attention” since the targets of the attention
are not the frames, but semantic groups.

Training
One of the most crucial points in training the SGN is to
induce the generation of distinctive and coherent seman-
tic groups. For distinctive semantic groups, the Phrase Sup-
pressor filtered out redundant phrases. For coherent seman-
tic groups, in addition to the typical cross-entropy loss Lce

for caption generation, a Contrastive Attention loss Lca is
introduced. Given a video V and its ground-truth caption
Y = [y1, · · · , yT ] from a training dataset D, the loss func-
tion L is formulated as

L = Lce + λLca. (10)

Cross-Entropy Loss. Cross-entropy loss is defined as the
negative log-likelihood to generate the correct caption:

Lce =
∑

(V,Y )∈D

∑
t

(− log p(yt|V, y1, · · · , yt−1)) . (11)

Contrastive Attention Loss. The semantic group should
only contain the frames that are highly related to their phrase
to ensure a semantic group to have a coherent meaning
across its members. To this end, a negative video of the
input video is sampled, and its frames, referred to as neg-
ative frames, are provided as erroneous candidates for the
Semantic Aligner. In order to ensure that it is completely ir-
relevant to the input video, the negative video is randomly
sampled from a set of videos whose caption does not over-
lap with that of the input video; two captions are said to be
overlapped if a word excluding stopwords (e.g., “a”, “the”)
is included in both captions. The positive relevance score
αpos
i,j,t between a phrase p̂i and an input frame fj , and the

negative relevance score αneg
i,j,t between a phrase p̂i and a

negative frame fnegj are obtained by following Equation 3.
Then, the relevance scores are normalized by applying soft-
max given both positive and negative relevance scores, and
pca(si,t) =

∑N
j=1 α

pos
i,j,t represents the probability that the

semantic group si,t will not contain any negative frames.
The pca(si,t) increases with an increase in positive relevance
scores relative to the negative relevance scores, which is why
the loss is referred to as “Contrastive Attention loss”. The
CA loss is formulated as

Lca =
∑

(V,Y )∈D

∑
t

Mt∑
i

(−log pca(si,t)) . (12)

Experiments
Experimental Setup
Various experiments are conducted to show the effectiveness
of SGN using the two most popular benchmark datasets.

MSVD. Microsoft Video Description (MSVD) dataset
(Chen and Dolan 2011), also known as YoutubeClips, con-
tains 1970 YouTube videos whose average length is about 10

seconds. Each video is described with 40 English sentences
written by Amazon Mechanical Turks. For a fair compari-
son, the dataset is divided into a training set of 1200 videos,
a validation set of 100 videos, and a test set of 670 videos by
following the official split (Yao et al. 2015).

MSR-VTT. MSR Video-to-Text (MSR-VTT) dataset (Xu
et al. 2016) is a large-scale benchmark dataset. It contains
10000 videos whose average length is about 20 seconds, and
each video is annotated with 20 English captions and a cate-
gory tag. Following Xu et al. (Xu et al. 2016), the dataset is
divided into a training set of 6513 videos, a validation set of
497 videos, and a test set of 2990 videos.

Implementation Details. We uniformly sample N = 30
frames and clips from each video. As video captioning per-
formances depend on backbone CNNs, various pre-trained
CNNs including GoogLeNet (Szegedy et al. 2015), VG-
GNet (Simonyan and Zisserman 2015), ResNet (He et al.
2016), and 3D-ResNext (Hara, Kataoka, and Satoh 2018)
are employed as a Visual Encoder to fairly compare SGN
with state-of-the-art methods. The word embedding matrix
is initialized using GloVe (Pennington, Socher, and Man-
ning 2014) and jointly trained with the whole architecture.
Before the first word (w1) is generated, <SOS> is used as
the partially decoded caption (i.e., w0 =<SOS>) and then
ignored thereafter. τ and λ are set to 0.2 and 0.16 as a re-
sult of 5-fold cross-validation for the values of [0.1, 0.2, 0.3]
and [0.01, 0.04, 0.16, 0.64], respectively. Beam search with a
size of 5 is used for generating the final captions. BLEU@4
(Papineni et al. 2002), CIDEr-D (Vedantam, Lawrence Zit-
nick, and Parikh 2015), METEOR (Banerjee and Lavie
2005), and ROUGE L (Lin 2004) are used for evaluation,
and the scores are computed using the official codes from
Microsoft COCO evaluation server (Chen et al. 2015).

Quantitative Results
We compare the performance of the SGN with that of state-
of-the-art methods based on three different approaches: (1)
Encoding Video into Information Units: HRNE (Pan et al.
2016), BAE (Baraldi, Grana, and Cucchiara 2017), and Pick-
Net (Chen et al. 2018), which are described earlier. (2)
Multi-modal Reasoning: M3 (Wang et al. 2018) and MARN
(Pei et al. 2019), which are described eariler. (3) Applying
Temporal/Spatial Attention: TA (Yao et al. 2015) was the
first to introduce temporal attention for exploiting the tem-
poral structure of the video. h-RNN (Yu et al. 2016) and
MAM (Li et al. 2017) exploit both temporal and spatial at-
tention to focus on the most correlated frames as well as
salient regions. hLSTMat (Song et al. 2017) employs a hi-
erarchical LSTM to adjust temporal attention weights and
decides which modality to use for predicting the next word.
MGSA (Chen and Jiang 2019) utilizes optical flow as super-
vision to learn spatial attention maps. We did not compare
the SGN with methods that utilize detectors. Also, we fol-
low the standard practice to not compare to methods based
on RL.

The results are shown in Table 1. For both datasets,
SGN outperforms most state-of-the-art methods with var-
ious backbone CNNs, especially on the CIDEr-D metric.
Note that CIDEr-D is specifically designed for the caption-
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MSVD MSR-VTT
Model Detector B@4 C M R B@4 C M R
TA (G) (Yao et al. 2015) 8 41.9 51.7 29.6 - - - - -
HRNE (G) (Pan et al. 2016) 8 43.8 - 33.1 - - - - -
MGSA† (G+O) (Chen and Jiang 2019) 8 49.5 74.2 32.2 - 39.9 45.0 26.3 -
MAM (V) (Li et al. 2017) 8 41.3 53.9 32.2 68.8 - - - -
h-RNN (V) (Yu et al. 2016) 8 44.3 62.1 31.1 - - - - -
M3 (V) (Wang et al. 2018) 8 49.6 - 30.1 - 35.0 - 24.6 -
BAE (R50+C) (Baraldi et al. 2017) 8 42.5 63.5 32.4 - - - - -
hLSTMat (R152) (Song et al. 2017) 8 53.0 73.8 33.6 - 38.3 - 26.3 -
PickNet (R152) (Chen et al. 2018) 8 52.3 76.5 33.3 69.6 39.4 42.3 27.3 59.7
MARN† (R101+RN) (Pei et al. 2019) 8 48.6 92.2 35.1 71.9 40.4 47.1 28.1 60.7
OA-BTG (R200) (Zhang and Peng 2019a) 4 56.9 90.6 36.2 - 41.4 46.9 28.2 -
STG-KD (R101+RN) (Pan et al. 2020) 4 52.2 93.0 36.9 73.9 40.5 47.1 28.3 60.9
SAAT† (IRV2+C3D) (Zheng et al. 2020) 4 46.5 81.0 33.5 69.4 40.5 49.1 28.2 60.9
ORG-TRL (IRV2+C3D) (Zhang et al. 2020) 4 54.3 95.2 36.4 73.9 43.6 50.9 28.8 62.1
SGN (G) 8 46.3 73.2 32.1 67.3 37.3 41.2 26.8 58.2
SGN (V) 8 47.7 74.9 33.1 69.0 37.8 41.9 27.0 58.3
SGN (R152) 8 48.2 84.6 34.2 69.8 39.6 45.2 27.6 59.6
SGN (R101+RN) 8 52.8 94.3 35.5 72.9 40.8 49.5 28.3 60.8

Table 1: Quantitative results on MSVD and MSR-VTT datasets. G, V, R, C, RN, and O denote GoogLeNet, VGGNet-19,
ResNet, C3D, 3D-ResNext-101, and Optical Flow, respectively. B@4, C, M, and R denote BLEU@4, CIDEr-D, METEOR,
and ROUGE L, respectively. Methods with a dagger (†) utilize video categories as auxiliary data on the MSR-VTT dataset.

SA PS CA B@4 C M R
8 8 8 37.9 42.2 26.1 58.8
4 8 8 40.0 47.9 27.8 60.2
4 4 8 40.2 48.5 27.9 60.2
4 4 4 40.8 49.5 28.3 60.8

Table 2: Performance on the MSR-VTT dataset with differ-
ent add-on components. SA, PS, and CA denote a Seman-
tic Aligner (including Phrase Encoder), a Phrase Suppressor,
and a Contrastive Attention loss, respectively.

ing task and is known to be more consistent with human
judgment than the others. SGN outperforms the runner-up
methods by large margins of 2.1%p and 2.4%p in a CIDEr-
D score on MSVD and MSR-VTT datasets, respectively.
With the GoogLeNet feature, SGN could not beat the MGSA
(Chen and Jiang 2019); although MGSA additionally uti-
lizes Optical Flow and video category tag for MSR-VTT, it
implies exploiting spatial structure would be helpful, which
remains our future works.

Ablation Study. In order to evaluate the effectiveness of
the proposed components in SGN, Table 2 shows the abla-
tion test results. SA enables SGN to represent video as se-
mantic information units and understand it based on them.
PS eliminates similar phrases and prevents the formation
of redundant semantic groups. CA facilitates accurate align-
ment between word phrases and video frames in construct-
ing semantic groups. If SGN does not have any proposed
components (1st row), it becomes TA (Yao et al. 2015); The
TA and SGN differ in that the former assigns the attention
weights in each frame, and the latter assigns those per se-

Model B@4 C M R
SGN (group by word) 39.9 46.6 27.0 59.3

SGN 40.8 49.5 28.3 60.8

Table 3: Performance of SGN that forms semantic groups
using phrases (default) and words on the MSR-VTT dataset.

mantic group. It is observed that as we enhance the func-
tionality of the baseline TA with a semantic aligner, phrase
suppressor, and contrastive attention loss, the performance
generally rises with respect to all of the measures. The sig-
nificant increase in performance when the semantic aligner
is introduced (1st to 2nd row) means that encoding the video
by splitting it into units of information based on the meaning
of the partially decoded caption helps the model understand
the comprehensive caption context.

To confirm the claim that phrases are better than words
when forming semantic groups, the performance of SGN
without the Phrase Encoder and Phrase Suppressor is shown
in Table 3. It is observed that SGN significantly outperforms
its counterpart in terms of all metrics, which implies that it
is hard to form semantic groups based on a single word.

Inference Speed. On a single Titan V GPU with 12GB of
memory, we measured the inference speed of two methods,
SGN and TA (Yao et al. 2015) (see Table 4). The CNN fea-
tures are pre-extracted, and beam search is not used in this
experiment. TA is similar to SGN in that it directly applies
temporal attention to video frames without a grouping pro-
cess. The time complexity of SGN to predict the t-th word is
O((t−1)2+(t−1)2+Nt) ≈ O(Nt) (∵ t < N ), where N
is the number of sampled frames, while that of TA is O(N).
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Model Time complexity MSVD MSR-VTT
TA O(N) 865 268

SGN O(Nt) 657 203

Table 4: Inference speed of SGN and TA (Yao et al. 2015) in
terms of the number of decoded videos per second.

(a)

(b)

Figure 4: Illustrations of showing how semantic groups are
formed and exploited. Red color indicates the magnitude of
an attention weight assigned to a word (left) or frame (top).

Measured inference speeds of TA and SGN were respec-
tively 865 and 657 videos per second on MSVD, and 268
and 203 videos per second on MSR-VTT. SGN’s repeated
grouping process reduces the inference speed by about 25%,
but it still attains latency of less than 10ms and results in a
significant boost in captioning performance.

Qualitative Results
Semantic Groups. To see how the semantic groups are
formed and exploited by SGN, Figure 4 provides two ex-
amples. In Figure 4a, the two phrases “people are walking“
and “walking in the” are constructed using words in the par-
tially decoded caption “a group of people are walking in
the”. One semantic group is formed by gathering frames that
show people (soldiers) walking, and the other is formed by
gathering the frames that capture where walking is possi-
ble. The latter semantic group is exploited more in predict-
ing the next word “street”. Similarly, in Figure 4b, two se-
mantic groups are formed based on phrases “giving speech”
and “speech on”, and the latter is exploited to predict the
next word “stage”. These visualizations show that the SGN
has the potential to generate discriminating phrases and ac-
curately associate the frames to the phrases. The semantic
groups defined by the phrases are explainable and can be
correctly exploited to generate the next word in the caption.

Caption Results. Fig. 5 shows examples of caption gen-
erated by SGN and TA (Yao et al. 2015) - the same pre-
trained CNN features are used. SGN is able to better iden-
tify the subject responsible for the action performed in the

(a)

(b)

(c)

(d)

Figure 5: Illustrations of captions generated by SGN and TA.

lengthy video scene. For example, SGN chose to predict “a
band is performing” rather than “a man is singing” (Figure
5a), and it provides a more detailed description of the video
(Figure 5b). Overall, SGN seems to understand the context
better than TA as shown in Figure 5c and 5d.

Conclusion
In this paper, we propose a Semantic Grouping Network
(SGN) for video captioning which has a comprehensive un-
derstanding of captioning context by encoding a video into
semantic groups consisting of phrases of partially decoded
caption and related frames. In contrast to the prior methods,
the continuous feedback from decoded words allows SGN
to dynamically update the video representation that adapts
to the partially decoded caption. The Contrastive Attention
loss provides efficient supervision for correct visual-textual
alignment within a semantic group without requiring any
manual annotations. The constructed semantic groups are
explainable as each of them has a distinct meaning and has
coherent semantics shared across its members, and are ex-
ploited to predict the next word. The SGN achieves state-of-
the-art performances by outperforming runner-up methods
by large margins of 2.1%p and 2.4%p in terms of the CIDEr-
D metric on MSVD and MSR-VTT datasets, respectively.
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