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Abstract

Acoustic images constitute an emergent data modality for
multimodal scene understanding. Such images have the pecu-
liarity to distinguish the spectral signature of sounds coming
from different directions in space, thus providing richer infor-
mation than the one derived from mono and binaural micro-
phones. However, acoustic images are typically generated by
cumbersome microphone arrays, which are not as widespread
as ordinary microphones mounted on optical cameras. To ex-
ploit this empowered modality while using standard micro-
phones and cameras we propose to leverage the generation
of synthetic acoustic images from common audio-video data
for the task of audio-visual localization. The generation of
synthetic acoustic images is obtained by a novel deep archi-
tecture, based on Variational Autoencoder and U-Net mod-
els, which is trained to reconstruct the ground truth spatial-
ized audio data collected by a microphone array, from the
associated video and its corresponding monaural audio sig-
nal. Namely, the model learns how to mimic what an array of
microphones can produce in the same conditions. We assess
the quality of the generated synthetic acoustic images on the
task of unsupervised sound source localization in a qualitative
and quantitative manner, while also considering standard gen-
eration metrics. Our model is evaluated by considering both
multimodal datasets containing acoustic images, used for the
training, and unseen datasets containing just monaural audio
signals and RGB frames, showing to reach more accurate lo-
calization results as compared to the state of the art.

Introduction
Humans interpret the world by means of several senses, be-
ing vision and hearing the most crucial ones. More specif-
ically, for interacting with the surrounding environment vi-
sion is supported by binaural hearing, which helps people
focusing on the sources of sound to better understand what is
happening around them. In fact, sound signals are received
with a certain delay between the left and right ear (the so-
called inter-aural time differences), as well as a slight differ-
ence in intensity (the so-called inter-aural level differences),
which are critical to perceive spatial clues about the direc-
tion of provenience of the sound (Rayleigh 1875). Besides,
humans associate what they hear with what they see, and
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Figure 1: We achieve unsupervised sound source localiza-
tion in videos through the generation of a spatialized audio
frequency map, called acoustic image: starting from an RGB
frame and the corresponding monaural audio (left), we syn-
thesize the frequency distribution for each direction in space
and associate it to a pixel in the acoustic image (center). Lo-
calization is then obtained by extracting the energy of sound
(right).

are thus able to fuse the spatial clues elaborated from their
auditory system with those coming from their sight.

Binaural microphone configurations have been lately in-
vestigated in audiovisual learning (Vasudevan, Dai, and
Van Gool 2020; Yang, Russell, and Salamon 2020; Gao and
Grauman 2019a; Gan et al. 2019). However, binaural con-
figurations are limited to the estimation of the direction of
arrival only along the azimuth direction and are not able to
compete with the performance achieved by the human au-
ditory system in localization tasks (May, van de Par, and
Kohlrausch 2012).

In this work, we exploit instead the data gathered by a
planar array of microphones, which can produce more accu-
rate spatial audio information and can better help to localize
sound sources than stereo audio. In fact, the acoustic sig-
nals acquired by an array can be combined via a filter-and-
sum beamforming algorithm (Van Trees 2002) to produce
an acoustic image allowing to localize sound sources on a
2-dimensional space, as we can see in Figure 1, rather than
along just one single direction (Yang, Russell, and Salamon
2020). Each pixel of such images contains the audio spec-
tral properties of the sound coming from the correspond-
ing direction in space. Acoustic images have already been
proven useful to learn good representations when used both
in supervised (Pérez et al. 2020) and self-supervised learning
(Sanguineti et al. 2020). Moreover, their spatial content can
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be distilled to audio models in order to get more robust fea-
tures, which generalize better to new datasets than monaural
features. They have also been used to face audio tracking
(Zunino et al. 2015; Crocco et al. 2018), where acoustic in-
formation plays a fundamental role when visual counterpart
is cluttered or unreliable.

Unfortunately, microphone arrays are not so common and
they are very expensive devices. Therefore, we introduce a
novel audio spatialization task, consisting in learning how
to generate acoustic images from a standard video, i.e., from
single-microphone audio enriched with the visual content of
the scene. In this way, even without an array of microphones,
we can synthesize acoustic images, which allow to better
tackle different audio-visual tasks.

To solve this problem, we propose a novel architec-
ture, which is a hybrid of a Variational Autoencoder (VAE)
(Kingma and Welling 2014) and a U-Net (Ronneberger, Fis-
cher, and Brox 2015) models, in order to exploit the upsides
of both: VAEs are very effective generation tools and have a
principled mathematical formulation, but they show limita-
tion when the size of the output is too large; on the contrary,
U-Nets are reconstruction tools which can effectively deal
with the small details of large images.

We evaluate the synthetic samples generated by the pro-
posed model by common reconstruction metrics, showing
that they are similar to real acoustic images in terms of struc-
ture and semantic content. More importantly, we validate
them on the task of audio-visual localization, by extracting
the energy of the spatialized sound. We show that this en-
ergy is very close to that of real acoustic images, which is
useful to accurately locate the region originating the sound.
We show that our model transfers well on new datasets and
performs better than previous state-of-the-art models on un-
seen data.

In summary, the contributions of our paper can be sum-
marized as follows:

1. We propose to carry out audio-visual localization in a
novel fashion, namely through the generation of acoustic
images and by estimating the energy of the synthesized
spatialized sound.

2. To this end, we propose a new multimodal learning ar-
chitecture, trained in a self-supervised way, to generate
synthetic acoustic images, by jointly processing monau-
ral audio signals and associated RGB images1.

3. We present a set of experiments to evaluate the quality of
the reconstruction of spatialized audio in terms of classi-
fication and localization performance. Moreover, ground
truth acoustic images allow for a fair evaluation of the
sound source localization task, as they are bias-free from
human annotations. We also verify that our method gen-
eralizes better to datasets never seen in training and it is
more accurate than the previous state of the art.

The rest of the paper is organized as follows. We review
related works, then we present in Method section the archi-
tecture utilized for the generation of the acoustic images and

1Code available at https://github.com/IIT-PAVIS/Acoustic-
Image-Generation

its training strategy. Experiments section reports the experi-
ments and, finally, we draw conclusions.

Related Works
In this section, we review works regarding topics related
to our proposed method: acoustic imaging, audio-visual lo-
calization, sound separation and spatialization, cross-modal
VAE.

Acoustic Images. Acoustic images are generated from
the raw audio signals of the microphones of a planar ar-
ray combining them with the filter-and-sum beamforming
algorithm (Van Trees 2002) and summarize the per-direction
audio information in the frequency domain. They are vol-
umes, with depth channels corresponding to frequency bins.
Handling input data with many frequency bins is a compu-
tationally expensive task and typically the majority of infor-
mation in audio is contained in the low frequencies. Con-
sequently, the acoustic images’ channels were compressed
to Mel-Frequency Cepstral Coefficients (MFCC) represen-
tation (Pérez et al. 2020), which consider audio human per-
ception characteristics (Terasawa, Slaney, and Berger 2006),
reducing consistently the computational complexity. So far,
deep learning has been applied to the field of acoustic imag-
ing in two works only: (Pérez et al. 2020) proposed an ar-
chitecture able to classify acoustic images in a supervised
way and showed how to distill acoustic images’ informa-
tion to audio models, still in a supervised way; instead, (San-
guineti et al. 2020) proposes a self-supervised learning ap-
proach of audiovisual representations. The model we pro-
pose is instead intended to generate acoustic images starting
from RGB images and audio signals.

Audio-Visual Localization. The earliest works about
sound source localization are (Hershey and Movellan
1999; Monaci, Vandergheynst, and Sommer 2009), which
grounded on the natural synchrony between audio and vi-
sual signals. Many recent approaches for sound localization
exploit two-stream deep network architectures to find the
correlation between the sound and visual feature representa-
tions (Hu et al. 2020; Hu, Nie, and Li 2019; Hu et al. 2020a;
Parekh et al. 2020; Morgado, Li, and Vasconcelos 2020;
Harwath et al. 2018; Senocak et al. 2018; Arandjelović and
Zisserman 2018). Other works also aggregate temporal in-
formation with LSTMs (Ramaswamy and Das 2020; Tian
et al. 2018) or optical flow (Afouras et al. 2020). Some
works (Qian et al. 2020; Owens and Efros 2018; Owens
et al. 2018a) apply the class activation map (CAM) (Zhou
et al. 2016), to achieve sound localization.

All these audio-visual localization works usually leverage
the temporal correspondence between a visual object and the
corresponding sound. This supervision might be not so reli-
able as not focusing solely on the region from where the
sound was originated, but often from the entire object.

We propose to perform sound source localization by first
generating acoustic images using a model trained with the
richer supervision provided by the real acoustic images, and
by subsequently extracting their energy.

Sound Separation and Spatialization. The task of sound
separation aims at separating sounding objects making noise
simultaneously in the scene. (Zhao et al. 2018) proposed the
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Mix-and-Separate framework for source separation. They
mixed sounds from different videos to generate a complex
audio input signal and then trained a model with the objec-
tive to separate a sound source from the input (conditioned
on the visual input) by estimating a mask for the input spec-
trogram. (Gao and Grauman 2019b; Zhao et al. 2019) draw
inspiration from the previous method; (Gan et al. 2020a)
instead of purely conditioning on the visual features pro-
poses to exploit body dynamics in the videos. The goal of
sound spatialization is instead to separate binaural audio
from mono audio (Yang, Russell, and Salamon 2020; Gao
and Grauman 2019a). We draw inspiration from methods
used for the previous two tasks to propose a novel and chal-
lenging different audio spatialization task: predict a more
spatialized audio modality, different from the input single-
microphone audio. We therefore reconstruct the spectral sig-
nature of the sounds associated with each considered di-
rection, namely each acoustic pixel in the acoustic image.
We are not aware of any work trying to recover such spa-
tialized sound information from monaural microphone and
RGB frames.

Cross-Modal VAE. One of the first works addressing
the problem of generating one modality from another one
is (Ngiam et al. 2011) which reconstructs both audio and
video from video or audio only by means of an autoen-
coder. (Suzuki, Nakayama, and Matsuo 2017; Wu and Good-
man 2018) instead model the joint representation of all the
modalities and they can generate one modality from a joint
latent variable. Other works (Chaudhury et al. 2017; Spurr
et al. 2018) also find a common shared latent space from sin-
gle modalities latent variables. Finally, (Jo et al. 2020) pro-
poses to use different VAEs for each modality and translates
the latent variable of one modality into the latent variable of
another one using an “associator”.

Our work differs from the above in two respects: i) our
VAE has a U-Net structure to better deal with details: re-
construction is thus performed not only based on the VAE
latent variable but also based on intermediate feature maps
which retain spatial cues; ii) our latent space is not con-
structed from all modalities, but only from those available
at test time (RGB and monaural audio).

Method
Architecture
We generate acoustic images resembling those produced
by combining the signals provided by a planar microphone
array, starting from monaural audio samples and the cor-
responding video frame, in order to provide spatial cues
which are missing in omnidirectional microphones. The pro-
posed architecture is a VAE with skip connections as in
U-Net model, and the concatenation of visual features, as
shown in Figure 2. We name this model U-VAE. Acous-
tic images, as stated in Related Works, contain the fre-
quency information for each acoustic pixel represented with
MFCC. Therefore, to simplify the generation task, we feed
the MFCC of a single microphone tiled along spatial di-
mensions, rather than raw waveforms or spectrograms. Sim-
ilarly, works about audio spatialization and separation (Gao

Figure 2: We propose an architecture based on VAE and U-
Net (U-VAE) to generate acoustic images. The inputs are
monaural audio samples and the corresponding video frame:
we compress audio samples to MFCC. ResNet50 visual fea-
tures are concatenated to audio encoder features.

and Grauman 2019a,b) use as input mixed spectrograms and
reconstruct spectrograms of interest, in order to have ho-
mogeneous input-output. Visual features are extracted us-
ing ResNet50 (He et al. 2016), pretrained on ImageNet
(Krizhevsky, Sutskever, and Hinton 2012), modified with the
removal of global average pooling and the addition of a 2D
convolution layer in order to get a visual feature map that
preserves spatial cues. We train the last ResNet50 layer only
in order to focus on the specific regions producing sound in
the considered training datasets. The visual feature map is
then concatenated with the last feature map produced by the
audio encoder. The two feature maps come from two differ-
ent streams and can have different ranges of values, thus we
normalized them before concatenation.

The network is trained to reconstruct acoustic images for
the time interval 1/12 s as the ground truth acoustic im-
ages and RGB images frame rates are 12 frames/s. There-
fore, we provide in input MFCC corresponding to 1/12 s of
sound and relative RGB frame. This allows to have almost
a real-time estimate of the directional sound, whereas previ-
ous works considered from 1 s (Tian et al. 2018) up to 20 s
(Senocak et al. 2018) of audio to visually localize the sound.
Furthermore, considering one frame only for a long audio
track can lead to miss important cues about synchronization.

U-VAE
We introduce U-VAE, a VAE-based architecture able to gen-
erate an acoustic image from a single microphone audio sig-
nal and the corresponding image. VAEs can in fact improve
reconstruction with respect to using a simple autoencoder
because the latent loss acts as a regularizer (Asperti 2020).

Assuming that the latent variable distribution p(z) is cen-
tered isotropic multi-variate Gaussian and that the inferred
posterior distribution is a multi-variate Gaussian with diag-
onal covariance, means that p(z) = N (0, I) and q(z|x) =
N (µ(x), diag(σ2(x)) where x is input. The encoder out-
puts two vectors, mean and standard deviation µ(x),σ(x) ∈
Rd where d is the dimensionality of the latent space. We
can sample z from q(z|x) with the reparameterization trick
(Kingma and Welling 2014): first sampling a random vector
u from a unit Gaussian N (0, I), and then multiplying it by
the standard deviation σ(x) and adding the mean µ(x):

z = µ(x) + σ(x)� u, (1)
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where � is the element-wise product. Maximizing the Evi-
dence Lower Bound (ELBO) maximizes the log probability
of likelihood of generating data similar to real ones p(x).

ELBO = Eq(z|x)[log p(x|z)]− βKL(q(z|x)||p(z)), (2)

where β = 1. The opposite of the first addendum of ELBO
in Eq. 2 is often interpreted as a reconstruction loss: we
employ not only MSE loss, which is commonly used, but
also Huber Loss which provides better generalization. The
Kullback-Leibler term KL is the latent loss. As proposed
by (Higgins et al. 2017), β can be an adjustable hyperpa-
rameter that balances the two terms as one regards latent
independence constraints and the other one reconstruction
accuracy. They propose to consider β > 1 for good dis-
entangled representations. Instead, we are more interested
in obtaining good reconstruction than good latent variables
space, therefore we weight latent loss using β < 1. We tuned
the weight of latent loss until the reconstruction loss and la-
tent loss had the same order of magnitude and the network
achieved a good reconstruction, keeping such weight fixed
for all iterations. As an alternative, some works suggested a
KL annealing during the first steps and then to weigh equally
both losses (Bowman et al. 2016). However, reconstruction
was unsatisfactory as the VAE focused only on minimizing
latent loss.

The majority of papers dealing with VAE show results
on very small images, (Chaudhury et al. 2017; Suzuki,
Nakayama, and Matsuo 2017; Wu and Goodman 2018; Jo
et al. 2020; Devaraj et al. 2020). There are few works con-
sidering bigger images, such as (Razavi, van den Oord, and
Vinyals 2019), which employs VQ VAE with different reso-
lution feature maps from the decoder in order to synthesize
high resolution images. Similarly to the last work, we are
using intermediate feature maps employing a U-Net archi-
tecture and we verify that skip connections can improve the
quality of reconstruction.

Dealing with Silence
We trained our architecture using correspondent audio and
video only. However, in real scenarios it is possible that ob-
ject sound is not always present and we hear instead just
background noise. Therefore, we introduce additional input
couples, synthesized by using a low pass filter on the orig-
inal audio. This would like to simulate the cases when the
object is producing no sound and only background noise is
audible. In this case, instead of reconstructing a real acous-
tic image, we train the network to reconstruct the same map
given as input, obtained by tiling the filtered audio MFCC
vector: since the object we see is producing no sound, we
would like a nearly uniform map as the output sound dis-
tribution. In fact, in real scenarios if we point an array of
microphones to a scene in order to reconstruct the relative
spatialized audio, either some objects are producing sound
or there is just random background noise.

Energy of Sound Approximation Method
We propose a novel way to perform localization with a more
precise supervision, consisting in the estimation of the spa-
tial sound distribution provided by the acoustic images. We

use the energy of the synthesized acoustic images to localize
the sound sources, which can be computed from the MFCC
representations. Then, we verify that the energy estimates
for real and synthetic acoustic images look similar.

To understand how the sound energy is computed, we
must remind that MFCC coefficients’ extraction from an
audio signal requires applying a Discrete Cosine Trans-
form (DCT) to log Mel filters’ energies. Actually, sum-
ming up Mel filters’ energies is a good approximation of the
sound energy. Thus, we compute the inverse DCT (IDCT) of
MFCC coefficients to recover log Mel filter energies. How-
ever, our estimate is not precise because IDCT is performed
without the first MFCC coefficient, not included in AVIA
and ACIVW acoustic images, because it carries little sound
discriminant information (Rao and Vuppala 2014). So, we
performed the exponential of estimated log Mel filter coef-
ficients to recover original energies and then we summed
them for each acoustic pixel. Now, due to the absence of
the first coefficient, we get a map inversely proportional to
the real energy. Simply computing its reciprocal allows ob-
taining an estimation of the energy, allowing to localize the
sound sources present in the scene.

Experiments
This section first describes the employed datasets. After that,
we assess the quality of reconstruction of our U-VAE, con-
sidering acoustic images ground truth. Our metrics include
standard reconstruction error (MSE) and two additional met-
rics which measure faithfulness and diversity of generated
samples by means of classification. Finally, we evaluate
both quantitatively and qualitatively audio-visual localiza-
tion, which is performed on datasets containing acoustic im-
ages and on datasets containing videos collected from the
Internet.

Datasets
We consider the following datasets:

• ACIVW (Sanguineti et al. 2020) is a multimodal dataset
including acoustic images containing 5 hours of videos
acquired in the wild, containing 10 classes: drone,
shopping cart, traffic, train, boat, fountain, drill, razor,
hairdryer, vacuum cleaner.

• AVIA (Pérez et al. 2020) is a multimodal dataset includ-
ing acoustic images with 14 different actions producing a
characteristic sound performed by 9 people in 3 different
scenarios, with increasing and varying noise conditions.

• A random subset of Flickr-SoundNet (Aytar, Vondrick,
and Torralba 2016) employed by (Senocak et al. 2018)
includes sounds sources positions annotated by three sub-
jects, which facilitates quantitative evaluation. We are
considering just the testing data, which includes 250 pairs
of frames and their corresponding sound.

• VGGSound (Chen et al. 2020) is a dataset with over 200k
10s video clips containing an object making sound for 300
audio classes from YouTube videos.

We use the first two datasets for both training (since they
contain acoustic images needed as ground truth) and testing.
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The remaining two are instead used in testing to evaluate the
generalization capability of our U-VAE on unseen domains.

Evaluation of Reconstruction
Differently from the evaluation of synthetic RGB images,
we cannot visually assess the quality of acoustic images. We
instead need to evaluate if they preserve their frequency con-
tent. This is done by using the following metrics:

• Mean square error (MSE) - to measure the reconstruction
error for each acoustic pixel;

• GAN-test (Shmelkov, Schmid, and Alahari 2018) - to
measure the accuracy of a classifier trained on real acous-
tic images but evaluated on generated images (we evaluate
also on real ones) to quantify semantic similarity to real
samples;

• GAN-train (Shmelkov, Schmid, and Alahari 2018) - to
measure the accuracy of a classifier trained on generated
data and evaluated on real test images (we evaluate also
on generated ones). GAN-train metric captures the diver-
sity of generated samples.

We consider the DualCamNet network introduced by (Pérez
et al. 2020) for classifying acoustic images, employed for
training both on real and then on generated acoustic images
to measure GAN-test and GAN-train. We and add one fully
connected layer of size 1000 before the last one which has
number of classes size to the modified version in (Sanguineti
et al. 2020). We classify 1 s, which means 12 acoustic im-
ages provided the rate is 12 frames/s.

In Table 1 we evaluate reconstruction of acoustic images
for both the test sets of ACIVW and AVIA datasets as they
include ground truth acoustic images.

GAN Test. We train DualCamNet on real acoustic images
from the training sets and we compare its accuracy when
tested on real acoustic images and generated ones. We see
that training on ACIVW dataset we have only 1% drop when
testing on generated acoustic images. AVIA dataset has a
bigger drop, 16%, as its acoustic images were collected in
noisy scenarios and contain periodic sounds. We also test
on synthetic acoustic images created by replicating single-
microphone MFCC along the 2 spatial dimensions. We see
that the drop in accuracy is huge: 30% for ACIVW and 63%
for AVIA, showing that our architecture is essential to gener-
ate different MFCC for each acoustic pixel, namely to mod-
ulate sound in space.

GAN Train. We train DualCamNet on generated acoustic
images and compare its accuracy when testing on generated
and on real acoustic images. The best result is obtained on
ACIVW dataset, where we have only 9% drop when testing
on real samples. When testing on AVIA instead the drop is
14%. Nevertheless, we notice that on generated data we have
good results for both datasets.

Last, we train DualCamNet on uniform acoustic images
artificially created by replicating MFCC from a single mi-
crophone and testing on real acoustic images. This experi-
ment is designed to show how our U-VAE is actually modu-
lating MFCC for each spatial direction. Furthermore, when
both training and testing on replicated single microphone
MFCC we get worse performance than when training and

Test ACIVW AVIA
MSE - 1.1426±0.0053 0.9483±0.0026

GAN-test
real 0.8497±0.0014 0.8383±0.0022
gen. 0.8342±0.0093 0.6700±0.0009

MFCC 0.5410±0.0175 0.2091±0.0027
GAN-train gen. 0.8512±0.0089 0.7871±0.0039
(on gen.) real 0.7661±0.0065 0.6456±0.0100

GAN-train MFCC 0.7323±0.0072 0.6614±0.0038
(on MFCC) real 0.4270±0.0186 0.1307±0.0119

Table 1: Reconstruction metrics for AVIA and ACIVW mod-
els. MSE values are multiplied by 10−2. We specify consid-
ered test modalities: real acoustic images, generated acoustic
images, tiled MFCC from a single microphone.

testing from acoustic images (GAN-test on real), proving
that spatialized audio allows increasing classification accu-
racy.

Audio-Visual Localization
We evaluate now localization results both quantitatively and
qualitatively firstly on ACIVW, AVIA using intersection
over union (IoU) and area under the curve (AUC), then on
Flickr-SoundNet using consensus IoU and AUC, whereas
we have no ground truth for VGGSound dataset for which
can only show some qualitative results.

Results for ACIVW and AVIA

1. Quantitative Results Given synthetic energy g and
true energy α, we evaluate quantitatively our results us-
ing IoU and AUC considering the binary maps A(τ1) =
{i | αi > τ1} , and G(τ2) = {i | gi > τ2}, where i is the
pixel, τ is the threshold (in our case mean of energy for
that sample) chosen respectively for true energy and recon-
structed energy. We used 0.5 for IoU threshold. AUC mea-
sures the area under the plot for different IoU thresholds
varying from 0 to 1 with a step of 0.1.

The results are shown on the top of Table 2. We see that
training and testing on ACIVW dataset we have a better re-
sult than when training and testing on AVIA because we
have more data and less noise. However, as AVIA is a more
difficult dataset, when testing on AVIA the model trained on
ACIVW we get worse results than when testing on ACIVW
the model trained on AVIA.

2. Qualitative Results As regards ACIVW dataset, the en-
ergy of our reconstruction is very similar to the energy of
acoustic images if we compare Figure 3b to real test sam-
ples in Figure 3a. As it can be noticed from the first row of
Figure 3b, the reconstructed image is sometimes even less
noisy than the ground truth one.

The AVIA dataset is a more challenging benchmark not
only because of noise present in some scenarios, but also
due to the periodicity of considered sounds: in some frames
we do not have any sound but only background noise, such
as in the second row of Figure 3c so that is difficult to match
sound and video. On the contrary, ACIVW dataset contains
continuous sound and energy is always mapping with visual
objects. As we can see in the first row of Figure 3d, in the
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Train Test AUC IoU

ACIVW ACIVW 59.7±0.2 76.8±0.2
AVIA 36.3±0.1 19.3±1.1

AVIA AVIA 51.2±0.3 54.4±0.7
ACIVW 40.2±0.3 26.3±0.6

Train Test AUC cIoU
Senocak 1 44.9 43.6
Senocak 2 51.2 52.4
Senocak 3 55.8 66.0
ACIVW Flickr- 50.3±0.5 53.1±1.9
AVIA SoundNet 37.2±1.8 20.1±3.0

Hu, Nie, and Li 1 (subset) 45.2 41.6
Hu et al. 49.2 50.0

Qian et al. 49.6 52.2
Hu, Nie, and Li 2 56.8 67.1

Table 2: We evaluate on audio-visual localization ACIVW
and AVIA models and compare with other benchmarks.
Senocak 1: Unsupervised 10k, Senocak 2: Unsupervised
144k ReLU, Senocak 3: Unsupervised 144k, Hu, Nie, and
Li 1: Unsupervised 20k AudioSet, Hu, Nie, and Li 2: Unsu-
pervised 400k Flickr-SoundNet.

anechoic chamber the sound localization is very precise be-
cause the sound is present and there is little noise (compare
to real energy in Figure 3c). In the last row of Figure 3d we
see that also in AVIA we can sometimes improve sound lo-
calization when there is noise in the original acoustic image.

Results for Subset of Flickr-SoundNet

1. Quantitative Results We tested ACIVW and AVIA
models on Flickr-SoundNet test set of (Senocak et al. 2018)
even if the considered classes are different. This dataset in-
cludes ground truth bounding boxes to have an objective
evaluation of localization. To compare with (Senocak et al.
2018), we evaluated the energy estimate using their metric,
which is consensus IoU (cIoU), based on a consensus map g
between different annotators.

Given such map g and the energy map α,

cIoU(τ) =

∑
i∈A(τ) gi∑

i gi +
∑
i∈A(τ)−G 1

, (3)

where i is the pixel, τ is the threshold (in our case mean of
computed energy for that sample), A(τ) = {i | αi > τ} ,
and G = {i | gi > 0}. We used 0.5 for cIoU threshold. In
this case the AUC measures the area under the plot for dif-
ferent cIoU thresholds varying from 0 to 1 with a step of
0.1. We compare our self-supervised model with other un-
supervised models in Table 2 (bottom). We cannot beat the
model of (Hu, Nie, and Li 2019) trained on 400k videos
of Flickr-SoundNet, which is far more data than what we
used in training and above all the same dataset used for the
testing. However, our ACIVW model can obtain results that
perform better than the recent (Qian et al. 2020), trained on
10k soundtracks-frames pairs of Flickr-SoundNet and than
2 of the models proposed by (Senocak et al. 2018), trained
with 10k and 144k Flickr-SoundNet couples. The number of
videos in AVIA is 378 (around 136k frames), whereas there

are 268 videos in ACIVW (around 220k frames). (Seno-
cak et al. 2018) employed just one frame for each video
even if they consider the entire soundtrack. Thus, we train
with a similar number of frames, but fewer videos and fewer
seconds of audio as we only consider 1/12 s of audio for
each frame. To be compatible with them, for the test we
consider each frame with the whole corresponding audio-
track to compute MFCC. Our ACIVW model performs bet-
ter also than (Hu et al. 2020; Hu, Nie, and Li 2019), trained
on 20k pairs of AudioSet-Balanced-Train, which includes
many more videos and classes than ACIVW dataset. So our
model is more efficient as, when using a similar amount of
data, we obtain higher performances, even if training using a
dataset different from the testing including only 10 classes.
This shows the effectiveness of the proposed method, which
can generalize well to new datasets. Besides, we notice
that when training and testing on ACIVW, our model has a
higher performance than the best models of (Senocak et al.
2018) and (Hu, Nie, and Li 2019). AVIA contains data col-
lected in noisy conditions, so its model has a lower accuracy
than that we obtain from ACIVW model.

2. Qualitative Results We see some results of estimated
energy by ACIVW model and AVIA model in Figure 3e
and Figure 3f. Considering the third row, we can see that
ACIVW model can understand that sound of the train is
coming from wheels rolling on the rail rather than the train
itself. Considering the second row, we see an example in
which AVIA model performs better as it is trained consider-
ing actions accomplished by people.

Results for VGGSound Dataset

Qualitative Results To evaluate ACIVW and AVIA mod-
els on real videos we test them on VGGSound dataset. We
report some qualitative samples as no ground truths are pro-
vided. We consider a subset of VGGSound choosing classes
similar to those considered at training time, depending on
training dataset. We see examples from ACIVW model in
Figure 3g and from AVIA model in Figure 3h. The estimated
energy maps are very realistic even if belonging to a com-
pletely different dataset never seen during training. Best re-
sults are obtained using model trained on ACIVW.

Ablation Study
We show here some baselines and ablate on:

• Skip connections and training losses
• Audio or video only sound localization
• Sound localization training using also background noise

Skip Connections and Training Losses. We show results
for 0, 1, 2 skip connections in Table 3. We see that MSE and
IoU are much worse without skip connections. We also eval-
uated the quality of latent features classifying them with a
KNN using k = 15, discovering that latent variables become
less discriminative when introducing skip connections. In
fact, the highest accuracy we obtain is without using skip
connections, whereas using skip connections we have a drop
of more than 10% in the performance. Naive autoencoder
and architectures using only MSE loss or only Huber loss
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Figure 3: Qualitative results for audio-visual localization. (a) True energy of ACIVW. (b) Synthetic energy of ACIVW. (c) True
energy of AVIA. (d) Synthetic energy of AVIA. (e) Synthetic energy of Flickr-SoundNet using ACIVW model. (f) Synthetic
energy of Flickr-SoundNet using AVIA model. (g) Synthetic energy of VGGSound using ACIVW model: train, razor and
hairdryer. (h) Synthetic energy of VGGSound using AVIA model: finger snapping, ripping paper and plastic bottle crushing.

VAE VAE bn AE VAE mse VAE huber VAE 2s VAE 0s
MSE 1.1426±0.0053 1.1375±0.0061 1.1285±0.0076 1.1392±0.0032 1.1190±0.0143 1.1249±0.0071 1.2099±0.0125
KNN 0.6713±0.0253 0.7150±0.0097 0.6296±0.0084 0.6813±0.0101 0.6286±0.0189 0.6849±0.0021 0.7818±0.0086
GANtest 0.8342±0.0093 0.8317±0.0096 0.8231±0.0040 0.8329±0.0063 0.8280±0.0140 0.8259±0.0104 0.8187±0.0105
GANtr1 0.8512±0.0089 0.8441±0.0014 0.8256±0.0039 0.8451±0.0157 0.8442±0.0102 0.8427±0.0169 0.8126±0.0042
GANtr2 0.7661±0.0065 0.7968±0.0118 0.7636±0.0092 0.8022±0.0073 0.7854±0.0128 0.7826±0.0190 0.7772±0.0081
IoU 0.7676±0.0019 0.7597±0.0030 0.7620±0.0095 0.7463±0.0040 0.7758±0.0127 0.7550±0.0036 0.6937±0.0054
AUC 0.5973±0.0019 0.5955±0.0026 0.5916±0.0039 0.5910±0.0047 0.5971±0.0048 0.5944±0.0021 0.5705±0.0027
IoUFli. 0.5307±0.0191 0.5200±0.0247 0.4613±0.0556 0.4587±0.0038 0.4360±0.0173 0.4680±0.0113 0.3853±0.0241
AUCFli. 0.5027±0.0046 0.5052±0.0084 0.4889±0.0128 0.4827±0.0015 0.4749±0.0067 0.4879±0.0021 0.4619±0.0095

Table 3: Ablation study on ACIVW model. MSE values are multiplied by 10−2. KNN are classification accuracies of latent
variables or embedding (autoencoder). GANtest is accuracy testing generated acoustic images. For GANtrain we train on
reconstructed acoustic images. GANtrain1 is the accuracy on generated samples, GANtrain2 is accuracy on real ones. VAE:
VAE with 1 skip connection, trained using MSE and Huber losses. VAE bn: adding background noise samples. AE: autoencoder.
VAE mse: using only MSE in reconstruction loss. VAE huber: using only Huber loss in reconstruction loss. VAE 2s: 2 skip
connections. VAE 0s: 0 skip connections.

and 2 skip connections have all metrics similar to the pro-
posed U-VAE. Nevertheless, they generalize less effectively
to different datasets.

Audio or Video Only Sound Localization. In Table 3 we
see that providing audio and RGB frames to U-VAE, IoU is
0.7676. IoU feeding audio and a black image is 0.2337, in
which case the network is probably exploiting the mean po-
sition for every sound class. IoU with video and background
noise is 0.7168, only a bit lower than the original one, show-
ing that visual modality is essential to add spatial clues miss-
ing in omnidirectional audio to reconstruct acoustic images,
but also audio can give cues to what was sounding object.

Sound Localization Training Using Also Background
Noise. Training without using background noise samples
the network is highlighting the most important object in the
scene even if we feed just background noise. Therefore, pro-
viding background noise synthetic training data is useful
when training with just correspondent audio-video pairs to
get a flat energy visualization in such cases. In the case of

periodic sounds, such as in AVIA dataset (Pérez et al. 2020),
we have background noise samples between sound samples,
therefore we do not train with this second strategy on this
dataset. Specifically, the lower performances on AVIA come
out from the fact that real acoustic images in case of back-
ground noise are not flat. Due to the noise coming from out-
side, they focus on the borders of images randomly, making
the training task more complex.

Conclusions
In this work, we proposed an architecture to reconstruct
acoustic images from standard videos, without the use of an
array of microphones. These synthetic samples allow per-
forming audio-visual localization in a novel way, exploiting
estimated energy of sound, providing a more accurate lo-
calization than recent methods based on the correlation be-
tween audio and video data. We evaluated quantitatively and
qualitatively reconstruction quality and sound source local-
ization both on datasets including acoustic images and on
natural videos, showing the soundness of our method.
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