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Abstract

In this paper, we address the large scale variation problem
in crowd counting by taking full advantage of the multi-
scale feature representations in a multi-level network. We
implement such an idea by keeping the counting error of
a patch as small as possible with a proper feature level
selection strategy, since a specific feature level tends to
perform better for a certain range of scales. However,
without scale annotations, it is sub-optimal and error-prone
to manually assign the predictions for heads of different
scales to specific feature levels. Therefore, we propose
a Scale-Adaptive Selection Network (SASNet), which
automatically learns the internal correspondence between the
scales and the feature levels. Instead of directly using the
predictions from the most appropriate feature level as the
final estimation, our SASNet also considers the predictions
from other feature levels via weighted average, which
helps to mitigate the gap between discrete feature levels
and continuous scale variation. Since the heads in a local
patch share roughly a same scale, we conduct the adaptive
selection strategy in a patch-wise style. However, pixels
within a patch contribute different counting errors due to
the various difficulty degrees of learning. Thus, we further
propose a Pyramid Region Awareness Loss (PRA Loss) to
recursively select the most hard sub-regions within a patch
until reaching the pixel level. With awareness of whether
the parent patch is over-estimated or under-estimated, the
fine-grained optimization with the PRA Loss for these
region-aware hard pixels helps to alleviate the inconsistency
problem between training target and evaluation metric. The
state-of-the-art results on four datasets demonstrate the
superiority of our approach. The code will be available at:
https://github.com/TencentYoutuResearch/CrowdCounting-
SASNet.

Introduction
Crowd counting aims to estimate the number of people
within given images or videos. Most recent state-of-the-art
works (Zhang et al. 2016; Li, Zhang, and Chen 2018) adopt
deep learning based methods and transform original annota-
tions, i.e., center points of people’s heads, into density maps
as training targets. However, a major challenge for the task
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Figure 1: Original input images (left column) and visualiza-
tions of our adaptive selection results (right column). In the
visualizations, we use points with different colors to repre-
sent the persons’ heads. The colors represent the most ap-
propriate feature levels selected by our SASNet for these
points. There are totally five feature levels {P1, ..., P5} in
SASNet, and the resolution of which increases from P5 to
P1. The rich detail information in high-resolution feature
levels is helpful to the prediction of small scale heads, while
the low-resolution feature levels with rich contextual infor-
mation perform better for large scale heads. However, it is
non-trivial to manually assign the correspondence relations
since the irregular partition boundaries and the inhomoge-
neous crowd distribution. Instead, the proposed adaptive se-
lection strategy automatically learns the internal relations
and the visualizations demonstrate its effectiveness.

is the extremely large scale variation of crowds, which be-
comes even more tricky due to the lack of scale annotations.

In recent years, numerous methods have been proposed to
tackle with the large scale variation problem of crowd count-
ing. One feasible workaround is to use the multi-column net-
works (Zhang et al. 2016; Onoro-Rubio and López-Sastre
2016; Sam, Surya, and Babu 2017), which aggregate several
branches with various receptive fields to acquire features
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with rich scale information. However, these methods are un-
able to cover the continuous scale variation, which lead to
feature redundancy among different branches. The other ma-
jor approaches adopt multi-level networks (Zhang, Shi, and
Chen 2018; Valloli and Mehta 2019), in which the final pre-
diction is generated by the exploitation of all the feature lev-
els. But these methods aggregate the features from multi-
ple levels in a scale-agnostic way, which ignore the intrin-
sic correspondence between feature levels and head scales.
Generally speaking, although these two kinds of methods
benefit from the multi-scale feature representations, both of
them fail to effectively exploit these rich scale information.
To remedy the deficiencies of existing methods, one possi-
ble solution is to select the most appropriate feature level for
heads of different scales. However, it is non-trivial to con-
duct such selection due to the continuous scale variation and
the lack of scale annotations. Towards the issue of insuffi-
cient annotations, some previous methods (Li, Zhang, and
Chen 2018; Zhang et al. 2016) tried to approximately esti-
mate the heads’ scales, which are not actually reliable es-
pecially for sparse areas. Besides, these methods still need
additional rules to select the appropriate feature levels for
specific scales, which highly depend on hand-craft design.

In this work, we propose a novel multi-level based Scale
Adaptive Selection Network (SASNet) to take full advan-
tage of the multi-scale feature representations. The SASNet
adopts an adaptive selection strategy to automatically learn
the internal level-scale correspondence, without using ex-
tra scale annotations or scale estimation strategies. Specif-
ically, for a given image patch, our SASNet predicts a score
for each feature level to indicate its confidence of being the
most appropriate level. Then we normalize these scores as
weighting coefficients, and use them to re-weight the pre-
dicted density maps from all feature levels. Finally, the final
prediction for the image patch is obtained by summing the
re-weighted predictions, which helps to reduce the inconsis-
tency between discrete feature levels and continuous scale
variation. As demonstrated in Figure 1, the proposed adap-
tive selection strategy reasonably learns the internal corre-
spondence between feature levels and head scales.

The proposed strategy of adaptive selection enables the
patch-wise feature level selection for heads in a patch,
but ignores the different difficulty degrees of learning for
pixels within the patch. On the contrary, the learning of
each feature level is guided by pixel-wise regression losses,
which is obviously region-ignorant. To further optimize
the pixels within a patch in a fine-grained way, we pro-
pose a novel Pyramid Region Awareness (PRA) Loss. The
PRA Loss recursively searches the most over-estimated (or
under-estimated) sub-regions in an over-estimated (or under-
estimated) patch until reaching the pixel level. After the
searching process, these region-aware pixels are selected as
the most hard samples to be further optimized. Besides, the
widely adopted training loss emphasizes the accurate pixel-
wise regression, while the evaluation metric only focuses on
the crowd number in a region. As a result, after taking the
inclusion relations between pixels and regions into consid-
eration, our PRA Loss also helps to reduce the inconsistency
between training target and evaluation metric. In conclusion,

the contributions of this work are summarized as follows:
1. We propose a patch-wise feature level selection strategy
to identify the most appropriate feature level. Such a novel
strategy effectively exploits the multi-scale feature represen-
tations inside a multi-level network, offering a new way for
addressing the challenging large scale variation problem.
2. We propose a novel PRA Loss to recursively select the
most hard pixels that are further optimized in a region-aware
style, acting as a fine-grained complement for the patch-wise
feature level selection strategy.
3. We conduct extensive experiments on four datasets to
demonstrate the superiority of our method against the state-
of-the-art competitors.

Related Works
In this section, according to the way of acquiring multi-scale
representations, we group Convolutional Neural Networks
(CNN) based crowd counting methods into two categories,
which are highly related to our proposed method.

Multi-Column based Approaches. This kind of methods
adopts multi-column architecture or stacked multi-branch
module to obtain rich multi-scale feature representations.
MCNN (Zhang et al. 2016) builds a three-branch network
with different convolution kernel sizes to acquire features
with different receptive fields. Instead of using different ker-
nel sizes, CrowdNet (Boominathan, Kruthiventi, and Babu
2016) designs different convolution depths for each branch,
and then combines the low-level features in shallow branch
and the high-level features in deep branch together. Unlike
above methods, DADNet (Guo et al. 2019) uses different
dilated rates in each parallel column to obtain multi-scale
features. Similar to MCNN, Switch CNN (Sam, Surya, and
Babu 2017) also utilizes a three-branch architecture but adds
an additional classifier to select the branch for prediction.
RANet (Zhang et al. 2019a) proposes a local self-attention
module and a global self-attention module to simultaneously
obtain the local and global features. In summary, these meth-
ods try to address the scale variation problem by combin-
ing the scale-dependent features from multiple branches, but
also introduce significant feature redundancy.

Multi-Level based Approaches. These approaches learn
the multi-scale representations from multiple internal lay-
ers of the backbone network, which exploit the hierarchical
structure of CNN and are obviously more efficient compared
with the multi-column based methods. SaCNN (Zhang, Shi,
and Chen 2018) is a single-column network, but fuses fea-
ture maps from different feature levels to obtain the multi-
scale information. AFN (Zhang et al. 2019b) utilizes Con-
ditional Random Fields (CRF) to aggregate multi-scale fea-
tures from different levels within an encoder-decoder net-
work. Similarly, DSSINet (Liu et al. 2019) also adopts a
CRF-based module, but different from AFN, the features of
each level are extracted from corresponding image in the in-
put pyramid using the same network. Another method (Var-
ior et al. 2019) tries to explore the multi-scale feature fusion
by soft attention mechanism, which aggregates the predicted
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Figure 2: The overall architecture of the proposed SASNet mainly consists of three components: U-shape backbone, confidence
branch and density branch. Firstly, the U-shape backbone is adopted to extract multi-level feature representations for a given
image. Then these features are fed into both confidence heads and density heads to obtain multi-level confidence maps and
density maps respectively. Finally, with the guidance from the multi-level confidence maps, we combine the multi-level density
maps via weighted average to obtain the final prediction. “Convn” represents a convolution with kernel size of n× n.

density maps from multi-level features into the final predic-
tion. TedNet (Jiang et al. 2019) incorporates multiple de-
coders with dense skip connections to hierarchically aggre-
gate the multi-level features. Multi-level networks are de-
signed to exploit the natural hierarchical structure of CNN
to extract multi-scale feature representations. This kind of
methods has been demonstrated efficient and effective but
still fails to explicitly build the correspondence relations be-
tween feature levels and head scales.

Our Approach
As illustrated in Figure 2, there are two parallel branches:
density branch and confidence branch. The density branch
predicts density maps using five feature levels, while the
confidence branch is responsible for predicting confidence
scores to indicate the most appropriate feature level for a
certain image patch. After the final predicted density map
is obtained using an adaptive selection strategy, we further
select region-aware hard pixels in the density map by PRA
Loss and optimize them in a fine-grained way.

Scale-Adaptive Selection
As shown in Figure 2, the multi-scale feature representations
are denoted to {P1, P2, P3, P4, P5}, which are generated hi-
erarchically using the features of different levels in the back-
bone network. However, due to the limited receptive field for
specific Pi, it is only suitable for predicting heads within a
narrow range of scales. To take full advantage of the multi-
scale feature representations, we firstly make predictions in-

dependently using Pi in a scale-agnostic way with the den-
sity branch. Then we obtain final prediction by selecting the
prediction from the most appropriate feature level, which is
assisted by the confidence branch. With the observation that
heads in a specific patch share roughly a same scale, such a
selection strategy is conducted in a patch-wise style. And the
selected feature level for each patch is considered be able to
achieve lower counting error for corresponding prediction.

Density Branch. As illustrated in Figure 2, the density
branch consists of five density heads which are responsible
for the predictions using {P1, P2, P3, P4, P5} respectively.
In order to obtain high-quality density maps in each den-
sity head, we aggregate context information across multiple
fine-grained scales using a multi-branch module. The mod-
ule consists of three convolution branches and one skip con-
nection branch. For the convolution branches, we firstly use
a 1 × 1 convolution for channel reduction, and then adopt
convolutions with different kernel sizes to acquire context
information from various receptive fields. The output fea-
tures from the multi-branch module are concatenated along
channel dimension, after which we use a 1 × 1 convolution
to obtain the prediction for the i-th feature level. Finally, we
upsample the predicted density map of each feature level to
Di, which has the same size as original input.

These density heads are supervised with the same ground-
truth density map Dgt. And we use the Euclidean distance
between the predicted density map Di and Dgt as the loss
function. Then, the losses from different levels are summed
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Figure 3: The ground-truth label generation for confidence
branch. For a specific patch, the selection function assigns
positive label of 1 to the feature level with the closest esti-
mated crowd number to the ground truth, and negative label
of 0 to the feature level with the max prediction error. The
other feature levels are assigned with label of -1 which are
ignored during training. The green and red colors represent
positive and negative samples respectively.

as density branch loss Lden, which is defined as follows:

Lden =

5∑
i

∣∣∣∣Di −Dgt
∣∣∣∣2
2
. (1)

Confidence Branch. After the predicted density maps
{D1, D2, D3, D4, D5} are acquired, we try to select the pre-
diction with minimum counting error for a specific patch
to take full advantage of the multi-scale feature represen-
tations. However, since we do not have access to the ground
truth during inference, it is infeasible to determine the
most appropriate feature level with minimum counting error.
Therefore, we propose a confidence branch to assist the fea-
ture level selection, which contains five confidence heads,
one for each feature level. The confidence head predicts a
score to indicate its confidence of being the most appropri-
ate feature level for a certain patch.

We denote the confidence maps as {C1, C2, C3, C4, C5},
which are generated with the confidence heads using fea-
tures {P1, P2, P3, P4, P5}. Specifically, since we conduct a
patch-wise selection, we first down-sample Pi to 1/k size
of original input image. Then the downsampled features are
processed with two 3×3 convolutions, which are then mod-
ulated by a Sigmoid function to obtain Ci. The score value
in the confidence map Ci represents the confidence that the
i-th feature level is the most appropriate level to make the
prediction for a specific k × k patch. The ground-truth la-
bel for the confidence map Ci is generated by the compar-
ison of the predicted density map Di and the ground truth
Dgt. We illustrate the process in Figure 3, in which we take
three feature levels out of five as an example for simplicity.
Firstly, we divide each predicted density mapDi into several
patches of size k × k without overlapping. Then, we obtain
a counting map Mi to represent the crowd numbers of all
patches, and the crowd number is the summation of the den-
sity values inside each patch. Similarly, we have the count-
ing map Mgt for the ground truth Dgt. Finally, the ground-

truth label of the confidence map Ci is generated by:

Cgt
i,m,n =


1, if argmin

l∈[1,5]

|Ml,m,n −Mgt
m,n| = i,

0, if argmax
l∈[1,5]

|Ml,m,n −Mgt
m,n| = i,

−1, otherwise,

(2)

where Cgt
i,m,n represents the ground-truth label on the i-th

feature level for the patch located in (m,n), Ml,m,n rep-
resents the predict crowd number on the l-th feature level,
andMgt

m,n represents the ground-truth crowd number for the
patch. As a result, the positive label for Cgt

i,m,n indicates that
the i-th feature level is the most appropriate level for the
prediction of the patch located in (m,n). While the negative
label indicates that the i-th feature level is the most inappro-
priate feature level. The patches with label of -1 are ignored
in the training phase.

The confidence heads are supervised with Binary Cross
Entropy (BCE) loss:

Lce(Ci,m,n, C
gt
i,m,n) = Cgt

i,m,n · log(Ci,m,n)

+(1− Cgt
i,m,n) · (1− log(Ci,m,n)),

(3)

Lconf =

∑5
i=1

∑
(m,n)∈Ki

Lce(Ci,m,n, C
gt
i,m,n)∑5

i=1 |Ki|
, (4)

where Ki represents the set of patches with confidence la-
bel of 0 or 1 in the i-th level, |Ki| represents the number of
patches in Ki, Lce denotes the BCE loss and Lconf denotes
the total loss for the confidence branch.
Selection Strategy. During training, the most appropriate
feature level is considered to be the feature level with mini-
mum counting error. While during inference, with the assis-
tance from the confidence branch, the most appropriate fea-
ture level is indicated by the confidence scores. For a patch
located in (m,n), we select the feature level j with the max
confidence score as the most appropriate feature level, i.e.,
j = argmaxi∈[1,5] Ci,m,n. However, the scale distribution
of heads is continuous, while the multi-scale features in the
multi-level network are discrete. As a result, during infer-
ence, it is sub-optimal to directly use the corresponding re-
gion on the density map of the j-th feature level as the pre-
diction for the patch in (m,n). Instead, we also consider the
predictions from the other feature levels via weighted aver-
age, which helps to mitigate the gap between discrete fea-
ture levels and continuous scale variation. Specifically, as
illustrated in Figure 2, we firstly aggregate the confidence
maps {C1, C2, C3, C4, C5} by concatenation and normalize
them across the five feature levels with a Softmax function.
Then the normalized confidence map of Ci is resized us-
ing the nearest interpolation to C ′

i, which has the same size
as Di. Finally, we use C ′

i as the weighting coefficients to
apply the weighted average on the predicted density maps
{D1, D2, D3, D4, D5}. Thus for a pixel (j, k) in the final
predicted density map, we have:

Dest
j,k =

5∑
i

(C ′
i,j,k ·Di,j,k), (5)
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Figure 4: (a) Sub-region searching algorithm in the PRA
Loss. (b) Overview of the recursive searching process. As
illustrated in (a), we firstly divide an input region into four
sub-regions and determine whether each sub-region is over-
estimated or under-estimated. Then as illustrated in (b), for
the whole image, we apply the searching algorithm recur-
sively until the most hard pixels are obtained.

where Dest
j,k represents the density value for pixel (j, k) in

the final estimated density map.

The Pyramid Region Awareness Loss
The PRA Loss is designed to conduct a fine-grained op-
timization for the most hard pixels within a patch, which
is motivated by the following observation. The proposed
adaptive selection strategy selects the most appropriate fea-
ture level for final prediction in a patch-wise style, which is
obviously a coarse selection. However, the pixels within a
patch have various difficulty degrees of learning and con-
tribute different counting errors. In particular, the over-
estimated pixels, whose estimated crowd number is larger
than the ground truth, in an over-estimated patch contribute
the max counting error, and vice versa. Therefore, if we
pay more attention to the optimization for these most hard
pixels, the overall counting error might be further reduced.
To be more specific, taking the over-estimated regions as
an example, if we equally divide an over-estimated re-
gion into four smaller sub-regions, there must be at least
one over-estimated sub-region. Since these over-estimated
sub-regions make major contributions to the overall over-
estimation problem, they should be further optimized. On
the contrary, the under-estimated sub-regions are helpful to
alleviate the over-estimation problem of the parent region to
some extent, thus are ignored in the PRA Loss and just opti-
mized as normal regions.

We begin the introduction for the PRA Loss with the
search process of the most hard pixels. As illustrated in Fig-
ure 4 (a), we conduct a recursive search process from the re-

gion level (the whole image) until the pixel level. For a given
over-estimated region, we firstly divide it into four sub-
regions and calculate the crowd number inside these sub-
regions. Then, by comparing with corresponding ground
truth, we can select the over-estimated sub-regions from
them. These selected sub-regions are fed into the searching
algorithm again, and this process is repeated until reaching
the pixel level. The final selected pixels are considered as the
most hard pixels in the whole image, which are further opti-
mized with the PRA Loss. The visualization of the searching
process is shown in Figure 4 (b).

The selected most hard pixels are further optimized by a
weighted Euclidean distance loss. Thus the final PRA Loss
is defined as follows:

Lpra =
∣∣∣∣∣∣Dest

p∈G −D
gt
p∈G

∣∣∣∣∣∣2
2
+ γ

∣∣∣∣∣∣Dest
p∈H −D

gt
p∈H

∣∣∣∣∣∣2
2

(6)

where p denotes the pixel in the final predicted density map
Dest, G andH represent the set of all pixels in Dest and the
set of the most hard pixels respectively, and γ is a weight
term for the hard pixels.

It is worth mentioning that the PRA Loss also helps to
reduce the inconsistency between training target and evalu-
ation metric. During training, the widely adopted training
loss emphasizes the accurate pixel-wise regression, while
the evaluation metric only focuses on the crowd number
in a region. Therefore, the converged model with minimum
training loss cannot ensure the optimal counting accuracy
when testing. Since the most hard pixels are selected with
awareness of whether the parent region is over-estimated or
under-estimated. After taking such inclusion relations be-
tween pixels and regions into consideration, our PRA Loss
helps to reduce the above inconsistency.

Model Learning
The final training loss Lfinal is the summation of the above
three losses, i.e., Lden, Lconf and Lpra. To be more formal,
Lfinal is defined as follows:

Lfinal = Lden + λLconf + Lpra (7)

where λ is the weight term to balance the effect of Lconf .

Backbone Network
As illustrated in Figure 2, we use the first 13 convolutional
layers in VGG-16 bn (Simonyan and Zisserman 2014) as
the encoder network. Specifically, there are totally five fea-
ture levels with downsampling strides of {1, 2, 4, 8, 16} re-
spectively, and the corresponding feature maps are denoted
as {V1, V2, V3, V4, V5}. The feature map Pi in each decod-
ing stage is generated by the combination of Vi and Pi+1

as follows. Firstly, the feature map Pi+1 from a higher level
is up-sampled using nearest-neighbor interpolation to be the
same size as Vi. Then the upsampled map is combined with
Vi by channel-wise concatenation. Finally, we append 3× 3
convolutions with ReLU activation on the merged map to
generate the final feature map Pi. In particular, P5 is gener-
ated by simply applying convolution on V5.
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Experiments
To demonstrate the superiority of our method, we conduct
extensive experiments on four challenging datasets, includ-
ing ShanghaiTech dataset (Zhang et al. 2016), UCF CC 50
dataset (Idrees et al. 2013), UCF-QNRF dataset (Idrees et al.
2018) and WorldExpo’10 dataset (Zhang et al. 2015). Fol-
lowing (Zhang et al. 2016), we generate the ground-truth
density map using Gaussian kernel with a fixed sigma of 4.
As for UCF CC 50, we use the geometry-adaptive kernel.
Similar to (Zhang et al. 2016), we also adopt Mean Absolute
Error (MAE) and Mean Squared Error (MSE) as the evalu-
ation metrics. The codes are implemented using the open-
source C3-framework (Gao et al. 2019).

Implementation Details
The encoder in our backbone is composed of the first 13
convolutional layers in VGG-16 bn (Simonyan and Zisser-
man 2014) which has been pretrained on ImageNet. During
training, we randomly select eight images for each epoch
and crop four image patches with a fixed-size of 128×128
from each image. Thus the effective batch size is 32. We also
use random horizontal flipping with a probability of 0.5 as
data augmentation. The image patch size k in the confidence
branch is set as 32. The weight term γ is set as 1 and the λ
is set to 10. We optimize the model using Adam algorithm
(Kingma and Ba 2014) with a fixed learning rate of 1e-5.

Ablation Study
We perform ablation studies on ShanghaiTech PartA dataset
to analyze the effect of the proposed modules.

Method MAE MSE

Backbone + Avearage 57.48 96.79
Backbone + Adaptive (GT) 46.19 82.19
Backbone + Adaptive* 55.71 89.82
Backbone + Adaptive 54.75 89.55

Table 1: Comparison of different selection strategies. * rep-
resents directly using the prediction from the most appropri-
ate feature level.

Effectiveness of The Scale-Adaptive Selection. We firstly
show the potential improvements by taking full advantage
of the multi-level features. We set up a baseline model by
simply averaging the predictions from different feature lev-
els, which are supervised with the same ground-truth target.
As shown in Table 1, such an average aggregation method
achieves an MAE of 57.48. However, for a specific patch, if
we aggregate the predictions by selecting the feature level
with minimum counting error, the MAE is improved to
46.19, denoted by Backbone+Adaptive (GT) in Table 1. This
significant improvement demonstrates the great potential of
selecting the most appropriate feature level. Unfortunately,
it is infeasible to conduct such selection due to the lack of
ground truth during inference.

Thanks to the proposed adaptive feature level selection
strategy, we can select the appropriate feature level with

Method MAE MSE

Baseline 61.04 104.6
Baseline + PRA Loss 57.50 89.38
Backbone + Adaptive 54.75 89.55
Backbone + Adaptive + PRA Loss 53.59 88.38

Table 2: Ablation study of the PRA Loss.

the guidance from the scores in the confidence branch. As
shown in Table 1, directly using the prediction from feature
level with the highest score as the final estimation yields an
MAE of 55.71. Compared with the sub-optimal strategy of
averaging the predictions, the relative improvement of MAE
is 3.1%, which demonstrates the effectiveness of our scale-
adaptive selection strategy. Besides, after taking the predic-
tions from the other feature levels into consideration via
weighted average, the MAE of our method is further im-
proved to 54.75. The improvement is quite reasonable since
there exists a gap between discrete feature levels and contin-
uous scale variation.
Effectiveness of The PRA Loss. The widely used Euclidean
distance based loss only focuses on pixel-wise learning,
while our PRA Loss selects the most hard pixels with aware-
ness of whether the parent patch is over-estimated or under-
estimated. To demonstrate the effectiveness of the further
optimization for these region-aware hard pixels, we set up a
baseline model which only uses the top feature level P1 as
the final prediction to avoid the influence from other mod-
ules. As shown in Table 2, the baseline model achieves an
MAE of 61.04. After integrating the PRA Loss to the base-
line model, the MAE is 57.50 with a relative improvement
of 5.8%, which demonstrates the effectiveness of our PRA
Loss. When combining with the adaptive selection strategy,
the MAE of our model reaches the best performance with
MAE of 53.59 and MSE of 88.38. The relative improve-
ment is 2.1%, which proves the necessity of the fine-grained
region-aware optimization.
The Effect of Image Patch Size. Since our adaptive feature
level selection strategy is conducted in a patch-wise style. A
crucial choice is the selection for the image patch size k. As
shown in Table 5, if the size k is too large, there might be
a large scale variation for heads in the patch which makes
the model ambiguous to select the most appropriate feature
level. On the contrary, if the patch size k is too small, it is
hard to cover a single head completely which makes it hard
to determine the approximate scale of the head. Although
the selection of the patch size might affect the performance
of our method, the results with a range of sizes perform
better than simply averaging the multi-level predicted den-
sity maps, which also proves the effectiveness of our scale-
adaptive selection strategy. Since the patch size of 32 per-
forms the best, we use 32 as default size in all experiments.

Comparisons with State-of-the-Arts
In this section, we compare our SASNet with state-of-the-art
methods on four challenging datasets with various densities.
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Methods Venue SHTech PartA SHTech PartB UCF CC 50 UCF-QNRF
MAE MSE MAE MSE MAE MSE MAE MSE

CSRNet (Li, Zhang, and Chen 2018) CVPR 68.2 115.0 10.6 16.0 266.1 397.5 120.3 208.5
CAN (Liu, Salzmann, and Fua 2019) CVPR 62.3 100.0 7.8 12.2 212.2 243.7 107.0 183.0

BL (Ma et al. 2019) ICCV 62.8 101.8 7.7 12.7 229.3 308.2 88.7 154.8
SANet + SPANet (Cheng et al. 2019) ICCV 59.4 92.5 6.5 9.9 232.6 311.7 - -

DSSINet (Liu et al. 2019) ICCV 60.63 96.04 6.85 10.34 216.9 302.4 99.1 159.2
DUBNet (Oh, Olsen, and Ramamurthy 2020) AAAI 64.6 106.8 7.7 12.5 243.8 329.3 105.6 180.5

SDANet (Miao et al. 2020) AAAI 63.6 101.8 7.8 10.2 227.6 316.4 - -
ADSCNet (Bai et al. 2020) CVPR 55.4 97.7 6.4 11.3 198.4 267.3 71.3 132.5
ASNet (Jiang et al. 2020) CVPR 57.78 90.13 - - 174.84 251.63 91.59 159.71

AMRNet (Liu, Yang, and Ding 2020) ECCV 61.59 98.36 7.02 11.00 184.0 265.8 86.6 152.2
AMSNet (Hu et al. 2020) ECCV 56.7 93.4 6.7 10.2 208.4 297.3 101.8 163.2

Ours - 53.59 88.38 6.35 9.9 161.4 234.46 85.2 147.3

Table 3: Comparison with state-of-the-art methods on four challenging datasets.

Method Venue WorldExpo’10
S1 S2 S3 S4 S5 avg.

SCNet (Wang et al. 2018) BMVC 1.8 9.6 14.2 13.3 3.2 8.4
DSSINet (Liu et al. 2019) ICCV 1.57 9.51 9.46 10.35 2.49 6.67
ASNet (Jiang et al. 2020) CVPR 2.22 10.11 8.89 7.14 4.84 6.64

Ours - 1.134 10.07 7.68 7.61 2.07 5.71

Table 4: Comparison with state-of-the-art methods on the WorldExpo’10 dataset.

Patch size k MAE MSE

8 × 8 55.55 95.08
16 × 16 55.38 91.39
32 × 32 54.75 89.55
64 × 64 55.54 88.38

Table 5: Effect of different image patch size k

The results are illustrated in Table 3 and Table 4. The best
performance is indicated by bold numbers and the second
best is indicated by underlined numbers.
ShanghaiTech Dataset. ShanghaiTech dataset consists of
two parts: ShanghaiTech partA and ShanghaiTech partB.
The partA is collected from the Internet and contains highly
congested scenes. While the partB is collected from a busy
street and represents relatively sparse scenes. Our SASNet
achieves the best performance on both partA and partB. In
particular, for the highly congested partA, the SASNet re-
duces the MAE by 21.4% and MSE by 23.1% compared
with CSRNet (Li, Zhang, and Chen 2018). Even compared
with the second best performance, the SASNet can still bring
a reduction of 3.3% in MAE and 4.5% in MSE respectively.
UCF CC 50. UCF CC 50 is a small dataset with only 50
images collected from the Internet. But this dataset has great
variation of crowd numbers under complicated scenes. We
follow previous work (Idrees et al. 2013) to conduct a five-
fold cross validation. As shown in Table 3, our SASNet sur-
passes all the other methods. Compared with methods with
the second best performance, the SASNet reduces the MAE
by 7.7% and MSE by 3.8% .

UCF-QNRF. UCF-QNRF is a challenging dataset which
has a much wider range of counts than currently available
crowd datasets. Due to the existence of high resolution im-
ages, we limit the maximum size of images within 1920 pix-
els. Even with the missing detail information introduced by
the downsampling, our method can still achieve the second
best performance with MAE of 85.2 and MSE of 147.3.
WorldExpo’10. WorldExpo’10 dataset is collected from
surveillance cameras in Shanghai WorldExpo 2010. To elim-
inate the interference from areas out of the provided RoI, we
blur these areas with mean filtering. Our SASNet achieves
the best performance on the average MAE, with a reduction
of 14% compared with ASNet (Jiang et al. 2020).

Conclusion
In this work, we propose the SASNet, which can effectively
address the large scale variation problem in crowd counting.
With the proposed patch-wise scale-adaptive feature level
selection strategy, the SASNet selects the prediction from
the most appropriate feature level as the final prediction of
a local patch. Such an adaptive selection strategy takes full
advantage of the multi-scale feature representations in the
multi-level network. Besides, we propose a novel PRA Loss
to recursively select the most hard pixels within a patch, and
these region-aware hard pixels are further optimized in a
fine-grained way. The PRA Loss acts as a fine-grained com-
plement for the patch-wise feature level selection strategy,
and also helps to reduce the inconsistency between training
target and evaluation metric. Extensive experiments on four
challenging datasets have demonstrated the effectiveness of
our contributions.

2582



Acknowledgments
We would like to thank Hao Lu for helpful discussions and
suggestions.

References
Bai, S.; He, Z.; Qiao, Y.; Hu, H.; Wu, W.; and Yan, J. 2020.
Adaptive Dilated Network With Self-Correction Supervi-
sion for Counting. In CVPR, 4594–4603.

Boominathan, L.; Kruthiventi, S. S.; and Babu, R. V. 2016.
Crowdnet: A deep convolutional network for dense crowd
counting. In ACM Multimedia, 640–644.

Cheng, Z.-Q.; Li, J.-X.; Dai, Q.; Wu, X.; and Hauptmann,
A. G. 2019. Learning spatial awareness to improve crowd
counting. In ICCV, 6152–6161.

Gao, J.; Lin, W.; Zhao, B.; Wang, D.; Gao, C.; and Wen, J.
2019. C3 Framework: An Open-source PyTorch Code for
Crowd Counting. arXiv preprint arXiv:1907.02724 .

Guo, D.; Li, K.; Zha, Z.-J.; and Wang, M. 2019. Dadnet:
Dilated-attention-deformable convnet for crowd counting.
In ACM Multimedia, 1823–1832.

Hu, Y.; Jiang, X.; Liu, X.; Zhang, B.; Han, J.; Cao, X.;
and Doermann, D. 2020. NAS-Count: Counting-by-Density
with Neural Architecture Search. In ECCV.

Idrees, H.; Saleemi, I.; Seibert, C.; and Shah, M. 2013.
Multi-source multi-scale counting in extremely dense crowd
images. In CVPR, 2547–2554.

Idrees, H.; Tayyab, M.; Athrey, K.; Zhang, D.; Al-Maadeed,
S.; Rajpoot, N.; and Shah, M. 2018. Composition loss for
counting, density map estimation and localization in dense
crowds. In ECCV.

Jiang, X.; Xiao, Z.; Zhang, B.; Zhen, X.; Cao, X.; Doer-
mann, D.; and Shao, L. 2019. Crowd counting and density
estimation by trellis encoder-decoder networks. In CVPR,
6133–6142.

Jiang, X.; Zhang, L.; Xu, M.; Zhang, T.; Lv, P.; Zhou, B.;
Yang, X.; and Pang, Y. 2020. Attention Scaling for Crowd
Counting. In CVPR, 4706–4715.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980 .

Li, Y.; Zhang, X.; and Chen, D. 2018. Csrnet: Dilated con-
volutional neural networks for understanding the highly con-
gested scenes. In CVPR, 1091–1100.

Liu, L.; Qiu, Z.; Li, G.; Liu, S.; Ouyang, W.; and Lin, L.
2019. Crowd counting with deep structured scale integration
network. In ICCV, 1774–1783.

Liu, W.; Salzmann, M.; and Fua, P. 2019. Context-aware
crowd counting. In CVPR, 5099–5108.

Liu, X.; Yang, J.; and Ding, W. 2020. Adaptive Mixture
Regression Network with Local Counting Map for Crowd
Counting. In ECCV.

Ma, Z.; Wei, X.; Hong, X.; and Gong, Y. 2019. Bayesian
loss for crowd count estimation with point supervision. In
ICCV, 6142–6151.

Miao, Y.; Lin, Z.; Ding, G.; and Han, J. 2020. Shallow Fea-
ture Based Dense Attention Network for Crowd Counting.
In AAAI, 11765–11772.
Oh, M.-h.; Olsen, P. A.; and Ramamurthy, K. N. 2020.
Crowd Counting with Decomposed Uncertainty. In AAAI,
11799–11806.
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