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Abstract

Computational image reconstruction algorithms generally
produce a single image without any measure of uncertainty
or confidence. Regularized Maximum Likelihood (RML) and
feed-forward deep learning approaches for inverse problems
typically focus on recovering a point estimate. This is a seri-
ous limitation when working with underdetermined imaging
systems, where it is conceivable that multiple image modes
would be consistent with the measured data. Characterizing
the space of probable images that explain the observational
data is therefore crucial. In this paper, we propose a varia-
tional deep probabilistic imaging approach to quantify recon-
struction uncertainty. Deep Probabilistic Imaging (DPI) em-
ploys an untrained deep generative model to estimate a poste-
rior distribution of an unobserved image. This approach does
not require any training data; instead, it optimizes the weights
of a neural network to generate image samples that fit a par-
ticular measurement dataset. Once the network weights have
been learned, the posterior distribution can be efficiently sam-
pled. We demonstrate this approach in the context of interfer-
ometric radio imaging, which is used for black hole imaging
with the Event Horizon Telescope, and compressed sensing
Magnetic Resonance Imaging (MRI).

Introduction
Uncertainty quantification and multi-modal solution charac-
terization are essential for analyzing the results of under-
determined imaging systems. In computational imaging, re-
construction methods solve an inverse problem to recover a
hidden image from measured data. When this inverse prob-
lem is ill-posed there are infinite image solutions that fit the
observed data. Occasionally these varied images lead to dif-
ferent scientific interpretations; thus it is important to be able
to characterize the distribution of possibilities. In a Bayesian
framework, this problem could ideally be addressed by accu-
rately modeling the measurement noise, formulating an es-
timation problem, and computing the posterior distribution
of the hidden image. However, this analytical approach is
only tractable in simple cases. When the inverse problem is
non-convex or the measurement noise is complicated (e.g.,
non-Gaussian) the posterior distribution can quickly become
intractable to compute analytically.
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In this paper, we propose Deep Probabilistic Imaging
(DPI), a new variational inference approach that employs a
deep generative model to learn a reconstructed image’s pos-
terior distribution. More specifically, we represent the pos-
terior probability distribution using an invertible flow-based
generative model. By training with a traditional maximum
a posteriori (MAP) loss, along with a loss that encourages
distribution entropy, the network converges to a generative
model that approximately samples from the image poste-
rior; the model returns a posterior sample image as output
for a random Gaussian sample input. Our proposed approach
enables uncertainty quantification and multi-modal solution
characterization in non-convex inverse imaging problems.
We demonstrate our method on the applications of com-
pressed sensing MRI and astronomical radio interferometric
imaging. High resolution radio interferometric imaging of-
ten requires a highly non-convex forward model, occasion-
ally leading to multi-modal solutions.

Related Work
Computational Imaging
The goal of a computational image reconstruction method is
to recover a hidden image from measured data. Imaging sys-
tems are often represented by a deterministic forward model,
y = f(x), where y are the observed measurements of a hid-
den image, x. A regularized maximum likelihood (RML)
optimization can be solved to reconstruct the image:

x̂ = arg min
x
{L(y, f(x)) + λR(x)}, (1)

where x̂ is the reconstructed image, L(·, ·) is the data fitting
loss between the measured data and the forward model pre-
diction, R(·) is a regularization function on the image, and
λ is the hyper-parameter balancing the data fitting loss and
the regularization term. The regularization function is nec-
essary for obtaining a unique solution in under-constrained
systems. Commonly used regularization functions include
L1 norm, total variation (TV) or total squared variation
(TSV) (Bouman and Sauer 1993; Kuramochi et al. 2018),
maximum entropy (MEM)(Skilling and Bryan 1984), multi-
variate Gaussian (Zoran and Weiss 2011), and sparsity in the
wavelet transformed domain (Candes and Romberg 2007).

Assuming the forward model and measurement noise
statistics are known, one can derive the probability of mea-
surements, y, conditioned on the hidden image, x, as p(y|x).
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In a Bayesian estimation framework, the regularized in-
verse problem can be interpreted as a maximum a posteriori
(MAP) estimation problem:

x̂ = arg max
x
{log p(y|x) + log p(x)}, (2)

where the log-likelihood of the measurements correspond to
the negative data fitting loss in Eq. 1, and the prior distri-
bution of the image defines a regularization function (also
referred to as an image prior).

Deep Image Prior In lieu of constraining the image via
an explicit regularization function, R(·), Deep Image Prior
approaches(Ulyanov, Vedaldi, and Lempitsky 2018) param-
eterize the image as a deep neural network and implicitly
force the image to respect low-level image statistics via the
structure of a neural network:

w? = arg min
w
L(y, f(gw(z))) where x̂ = gw?(z). (3)

In this approach, gw(·) is a deep generator, w are the neu-
ral network weights, w? are the optimized weights, and z
is a randomly chosen, but fixed, hidden state. The network
weights are randomly initialized and optimized using gradi-
ent descent. This approach has been demonstrated in many
applications, including inpainting, denoising and phase re-
trieval(Ulyanov, Vedaldi, and Lempitsky 2018; Bostan et al.
2020). Note that since the hidden state, z, is fixed, only a
single reconstructed image is derived after optimization.

Uncertainty Quantification
Uncertainty quantification is important for understanding
the confidence of recovered solutions in inverse problems.

MCMC Sampling One widely used approach for quanti-
fying the uncertainty in image reconstruction is the Markov
Chain Monte Carlo (MCMC) method. MCMC provides a
way to approximate the posterior distribution of a hidden
image via sampling (Bardsley 2012; Broderick et al. 2020).
However, the MCMC approach can be prohibitively slow
for high dimensional inverse problems (Cai, Pereyra, and
McEwen 2018).

Bayesian Hypothesis Testing Uncertainty quantification
can also be formulated as a Bayesian hypothesis test in lin-
ear imaging inverse problems (Repetti, Pereyra, and Wiaux
2019). In a linear imaging problem, the data likelihood is
a log-concave function, which makes the hypothesis test
on a specific image structure an efficient convex optimiza-
tion program. However, this method cannot be generalized
to imaging inverse problems, when either the negative data
likelihood or the regularizer is non-convex.

Variational Bayesian Methods Variational inference is
widely used to approximate intractable posterior distribu-
tions (Blei, Kucukelbir, and McAuliffe 2017; Arras et al.
2019). Instead of directly computing the exact posterior dis-
tribution, variational Bayesian methods posit a simple fam-
ily of density functions and solve an optimization problem
to find a member of this family closest to the target pos-
terior distribution. Variational Bayesian methods are much
faster than sampling methods (e.g., MCMC), and typically

achieve comparable performance (Gershman, Hoffman, and
Blei 2012). The performance of variational methods depends
on the modeling capacity of the density function family and
the complexity of the target distribution. A commonly used
technique for simplifying the density function is the mean-
field approximation(Jordan et al. 1999), where the distribu-
tions of each hidden variables are assumed independent. The
density function can also be parameterized using neural net-
works, such as flow-based generative models (Rezende and
Mohamed 2015).

Bayesian Neural Networks Deep learning has become
a powerful tool for computational imaging reconstruc-
tion(Ongie et al. 2020). Most current deep learning ap-
proaches only focus on the point estimate of the hidden
image; however, Bayesian neural networks (MacKay 1995;
Gal 2016) have been developed to quantify the uncertainty
of deep learning image reconstructions(Xue et al. 2019). In
particular, the weights of a Bayesian network are modeled
as probability distributions, so that different predictions are
obtained every time the network is executed. Although these
approaches can achieve impressive performance, they rely
on supervised learning and only describe the reconstruction
uncertainty conditioned on a training set.

Empirical Sampling An alternative empirical approach
for obtaining multiple candidate reconstructions is to solve
a regularized inverse problem (Eq. 1) multiple times with
different choices of regularizer hyper-parameters (e.g. λ in
Eq. 1) and image initializations. This approach was used
in (The EHT Collaboration et al. 2019) to characterize the
uncertainty of the reconstructed black hole image M87*. Al-
though the mean and standard deviation of these images pro-
vide a measure of uncertainty, there is no expectation that
these samples satisfy a posterior distribution defined by the
measurement data. In fact, this method only quantifies the
reconstruction uncertainty due to choices in the reconstruc-
tion methods, such as regularizer hyper-parameters, instead
of the uncertainty due to measurement noise and sparsity.

Flow-based Generative Models
Flow-based generative models are a class of generative mod-
els used in machine learning and computer vision for prob-
ability density estimation. These models approximate an ar-
bitrary probability distribution by learning a invertible trans-
formation of a generic distribution π(z) (e.g. normal distri-
bution). Mathematically, a flow-based generative model is
represented as

x = Gθ(z), z = G−1θ (x), (4)

where Gθ(·) is an invertible deep neural network parame-
terized by θ that links a sample from the target distribution,
x, with a hidden state, z. The application of invertible trans-
formations enables both efficient sampling, as well as exact
log-likelihood computation. The log-likelihood of a sample
can be analytically computed based on the “change of vari-
ables theorem”:

log qθ(x) = log π(z)− log

∣∣∣∣det
dGθ(z)

dz

∣∣∣∣ , (5)

2629



where det dGθ(z)dz is the determinant of the generative
model’s Jacobian matrix.

To keep the computation of the second term tractable, the
neural network function,Gθ(·), is restricted to forms such as
NICE(Dinh, Krueger, and Bengio 2014), Real-NVP(Dinh,
Sohl-Dickstein, and Bengio 2016) and Glow(Kingma and
Dhariwal 2018). In these network architectures, the Jacobian
matrix is a multiplication of only lower triangular matrices
or quasi-diagonal matrices, which leads to efficient compu-
tation of the determinant.

Method
In this paper, we propose a variational Bayesian method to
learn an approximate posterior distribution for the purpose
of efficiently characterizing uncertainty in underdetermined
imaging systems. We parameterize the latent image distribu-
tion using a flow-based generative model,

x ∼ qθ(x) ⇔ x = Gθ(z), z ∼ N (0, 1) (6)

and learn the model’s weights by minimizing the Kull-
backLeibler (KL) divergence between the generative model
distribution, q(x), and the image posterior distribution,
p(x|y) ∝ p(y|x)p(x):

θ? = arg min
θ
DKL(qθ(x)‖p(x|y)) (7)

= arg min
θ

∫
qθ(x)[log qθ(x)− log p(x|y)]dx

= arg min
θ

∫
qθ(x)[log qθ(x)− log p(y|x)− log p(x)]dx

= arg min
θ

Ex∼qθ(x)[− log p(y|x)− log p(x) + log qθ(x)].

Note that this loss can be interpreted as an an expectation
over the maximum a posteriori (MAP) loss from Eq. 2
with an added term to encourage entropy on the image
distribution. Minimizing the negative entropy term, Hθ =
Ex∼qθ(x)[log qθ(x)], prevents the generative model from
collapsing to a deterministic solution.

For most deep generative models the sample likelihood,
qθ(x), cannot be evaluated exactly. However, since a sam-
ple’s likelihood can be computed according to Eq. 5 for
flow-based models, this stochastic optimization problem can
be rewritten as

θ? = arg min
θ

Ez∼N (0,1){− log p(y|Gθ(z))− log p(Gθ(z))

+ log π(z)− log

∣∣∣∣det
dGθ(z)

dz

∣∣∣∣} . (8)

Approximating the expectation using a Monte Carlo
method, and replacing the data likelihood and prior terms
with the data fitting loss and regularization functions from
Eq. 1, we obtain the optimization problem

θ? = arg min
θ

N∑
k=1

{L(y, f(Gθ(zk))) + λR(Gθ(zk))

− log

∣∣∣∣det
dGθ(zk)

dzk

∣∣∣∣} , (9)
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Figure 1: (Top) Three two-dimensional posterior distribu-
tions and their learned DPI approximations for entropy
weight β = 1. Contours are overlaid to highlight differ-
ences between the true and learned distributions. (Bottom)
Similarity between the true and learned distributions under
different entropy weights β. As expected, β = 1 minimizes
the KL divergence between the two distributions.

where zk ∼ N (0, 1), N is the number of Monte Carlo sam-
ples, and the term log π(zk) is omitted since its expectation
is constant. The expectation of the data fitting loss and image
regularization loss are optimized by sampling images from
the generative model Gθ(·). Note that when L(·, ·) does not
define the true data likelihood, orR(·) does not define an im-
age prior, the learned network only models an approximate
image posterior instead of the true posterior distribution.

The data fitting loss and the regularization function are of-
ten empirically defined and may not match reality perfectly.
Recalling that the third term is related to the entropy of the
learned distribution, similar to β-VAE(Higgins et al. 2016),
we introduce another tuning parameter β to control the di-
versity of the generative model samples,

θ? = arg min
θ

N∑
k=1

{L(y, f(Gθ(zk))) + λR(Gθ(zk))

−β log

∣∣∣∣det
dGθ(zk)

dzk

∣∣∣∣} . (10)

When the uncertainty of the reconstructed images seems
smaller than expected, we can increase β to encourage
higher entropy of the generative distribution; otherwise, we
can reduce β to reduce the diversity of reconstructions.
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Larger β also encourages more exploration during training,
which can be used to accelerate convergence.

Toy Examples
We first study our method using two-dimensional toy exam-
ples. Assuming x is two-dimensional, and the joint distribu-
tion p(y, x) is given exactly by the potential function J (x),
Eq. 10 can be simplified to

θ?=arg min
θ

{
Ez∼N (0,1)[J (Gθ(z))]−β log

∣∣∣∣det
dGθ(zk)

dzk

∣∣∣∣} .
(11)

For the following toy tests the generative model Gθ(·) is de-
signed using a Real-NVP architecture with 32 affine cou-
pling layers (Dinh, Sohl-Dickstein, and Bengio 2016).

We test the approach on 3 joint distribution functions: (a)
a Gaussian mixture potential, (b) a bowtie potential, and (c) a
Sinusoidal potential. Fig. 1 shows the true and learned prob-
ability density function in these three cases for β = 1. Qual-
itatively, the learned generative model distributions match
the true distributions well.

As derived in Eq. 7, the posterior should be best learned
byGθ(·) for entropy weight β = 1. To test this claim, we ad-
just β from 0.1 to 10 to see how the entropy term influences
the learned generative model distribution. According to the
graph of KL divergence versus β in Fig. 1, the learned dis-
tributions match the true distributions best when the entropy
weight equals 1. This verifies the theoretical expectation pre-
sented in the Method section.

Since the generative model is a transformation of a con-
tinuous multivariate Gaussian distribution, the learned dis-
tribution is also continuous. This leads to a common issue
in flow-based generative models: there are often a few sam-
ples located in the high loss regions when the modes are
not connected (see Fig. 1 distribution (a) and (b)). Some ap-
proaches(Gao et al. 2020) have been proposed recently to
solve this problem, however, in this paper we neglect this
issue and leave it for future work.

Interferometric Imaging Case Study
We demonstrate our proposed approach on the prob-
lem of radio interferometric astronomical imag-
ing (Richard Thompson, Moran, and Swenson Jr 2017).
In interferometric imaging, radio telescopes are linked
to obtain sparse spatial frequency measurements of an
astronomical target. These Fourier measurements are then
used to recover the underlying astronomical image. Since
the measurements are often very sparse and noisy, there can
be multiple image modes that fit the observed data well.
The Event Horizon Telescope (EHT) used this technique to
take the first picture of a black hole, by linking telescopes
across the globe(The EHT Collaboration et al. 2019). Fig. 2
shows the spatial frequency (Fourier) samples that can be
measured by a 9-telescope EHT array when observing the
black hole Sagittarius A* (Sgr A*)1.

1The largest sampled spatial frequency determines the interfer-
ometer’s nominal resolution of ≈ 25µas for the EHT. In this pa-
per, we neglect evolution of Sgr A* and assume it is static over the
course of a night.
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Figure 2: Spatial frequency samples for a 9-telescope EHT
array observing the black hole Sgr A* over a night. The
(u, v) position indicates the 2D spatial Fourier component
of the image that is sampled by a telescope pair.

Each Fourier measurement, or so-called “visibility”, is
obtained by correlating the data from a pair of telescopes.
The measurement equation for each visibility is given by

V ta,b = gtag
t
b exp

[
−i(φta − φtb)

]
F ta,bx+ nta,b, (12)

where a and b index the telescopes, t represents time, and
F ta,bx extracts the Fourier component from image x corre-
sponding to the baseline between telescope a and b at time t.
The measurement noise comes from three sources: (1) time-
dependent telescope-based gain error, gta and gtb, (2) time-
dependent telescope-based phase error, φta and φtb, and (3)
baseline-based Gaussian thermal noise, nta,b ∼ N (0, ν2a,b).
The standard derivation of thermal noise depends on each
telescope’s System Equivalent Flux Density (SEFD):

νa,b ∝
√
SEFDa × SEFDb. (13)

When the gain and phase errors are reasonably small, the
interferometric imaging problem is approximately a con-
vex inverse problem. However, when the gain errors and
the phase errors (caused by atmospheric turbulence and in-
strument miscalibration) are large, the noisy visibilities can
be combined into robust data products that are invariant to
telescope-based errors, termed closure phase, C ph.,t

a,b,c, and
closure amplitude, C amp.,t

a,b,c,d(Chael et al. 2018):

C ph.,t
a,b,c = ∠

(
V ta,bV

t
b,cV

t
c,a

)
≈ f ph.,t

a,b,c(x),

C amp.,t
a,b,c,d =

|V ta,b||V tc,d|
|V ta,c||V tb,d|

≈ f amp.,t
a,b,c,d(x).

(14)

These nonlinear “closure quantities” can be used to con-
strain non-convex image reconstruction

L(y, f(x)) =
∑
a,b,c

|C ph.,t
a,b,c − f

ph.,t
a,b,c(x)|2/σ2

a,b,c

+
∑
a,b,c,d

| logC amp.,t
a,b,c,d − log f amp.,t

a,b,c,d(x)|2/σ2
a,b,c,d,

(15)

where σa,b,c and σa,b,c,d are the standard deviations of
the corresponding closure term computed based on SEFDs.
Note the closure quantities are not independent and the
corresponding standard deviations are derived from lin-
earization, so Eq. 15 only approximates the true data log-
likelihood.
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Figure 3: The Real-NVP network architecture used in DPI
interferometric imaging. It consists of 48 affine coupling
layers, transforming a latent Gaussian sample z to an im-
age reconstruction sample, x. In each affine coupling layer,
the input vector, zk, is split into two parts: the first half is
kept unchanged, while the second half is modified based
on a neural network transformation of the first half. The
network is composed of dense layers (including the Leaky
ReLU activation and the batch normalization) with skip con-
nections, similar to a UNet. After each affine-coupling trans-
form block, the vector is randomly shuffled, so that different
elements are modified in the next transform block.

In the following contents, we demonstrate our Deep Prob-
abilistic Imaging (DPI) approach on both convex reconstruc-
tion with complex visibilities and non-convex reconstruc-
tion with closure quantities using both synthetic and real
datasets. With this new approach, we successfully quantify
the uncertainty of interferometric images, as well as detect
multiple modes in some data sets.
Implementation For all interferometric imaging DPI re-
sults we use a Real-NVP (Dinh, Sohl-Dickstein, and Bengio
2016) network architecture with 48 affine coupling layers
(Fig. 3). The scale-shift function of each layer is modeled
as a U-Net style fully connected network with five hidden
layers and skip connections. We train the model using Adam
with a batch size of 32 for 20,000 epochs. We note that a lim-
itation of our general approach is the modeling capacity of
the flow-based generative model used. We find the proposed
architecture is satisfactory for characterizing uncertainty in
images of size 32 × 32 pixels.

Convex Imaging with Visibilities
In this section, we demonstrate DPI on convex interferomet-
ric imaging. In particular, the gain and phase errors in Eq. 12
are assumed to be zero (i.e., gta = gtb = 1 and φta = φtb = 0)
so that complex visibilities are a linear function of the latent
image. Since the thermal noise on V ta,b is independent and
Gaussian, we write the conditional likelihood as

L(y, f(x)) =
1

2
(y − Fx)TΣ−1(y − Fx), (16)

where x is a column vectorized image with M2

pixels, y = [· · · ,<{V ta,b},={V ta,b}, · · · ] is a col-
umn vector of K complex visibility measurements,
F = [· · · ,<{F ta,b},={F ta,b}, · · · ] is a under-sampled
Fourier transform matrix of size K × M2, and Σ =

Mean Std. Dev. Covariance
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Figure 4: Posterior distribution estimation for convex inter-
ferometric image reconstruction. (Top) The target synthetic
image of a black hole (original and blurred to 0.4× the inter-
ferometer’s nominal resolution of ≈ 25 µas). Noisy visibil-
ity measurements are derived from this target image. (Mid-
dle) The posterior mean, pixel-wise standard deviation, and
full covariance obtained analytically using a Gaussian image
prior and with two DPI generative model architectures. Ar-
chitecture A allows negative pixel values, while Architecture
B restricts images to be non-negative. The DPI results are
computed according to 2048 samples from each generative
model. (Bottom) The similarity between the DPI distribu-
tions and the analytical distribution under different entropy
weights β. Both architectures achieve a minimum at β = 1.

diag([· · · , ν2a,b, ν2a,b, · · · ]) is a K ×K measurement covari-
ance matrix derived according to the telescopes’ SEFD.

In order to verify that the flow-based generative model can
learn the posterior distribution of reconstructed images, we
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employ a multivariate Gaussian image prior,

R(x) =
1

2
(x− µ)TΛ−1(x− µ), (17)

where µ is a mean image, and Λ is the covariance ma-
trix defined by the empirical power spectrum of an im-
age(Bouman et al. 2018). Since both the measurement and
image prior follow Gaussian distributions, the reconstructed
image’s posterior distribution is also a Gaussian distribution
and can be analytically derived as

p(x|y) ∝ p(y|x)p(x) = Ny(Fx,Σ)Nx(µ,Λ) = Nx(m,C)

m = µ+ ΛFT (Σ + FΛFT )−1(y − Fµ)

C = Λ− ΛFT (Σ + FΛFT )FΛ. (18)

Using the specified data likelihood and prior, we train a
DPI flow-based network to produce image samples of size
32×32 pixels with a field of view of 160 micro-arcseconds
(µas). Fig. 4 demonstrates DPI on a synthetic interferomet-
ric imaging example, and compares the learned generative
model distribution with the analytical posterior distribution.
Visibility measurements are derived from the synthetic black
hole image shown in the top of Fig. 4 (with a total flux of
2 Janskys). The second row of the Fig. 4 shows the ana-
lytic posterior’s mean, standard deviation, and full covari-
ance. The third and fourth rows of the figure show the mean,
standard deviation, and full covariance empirically derived
from DPI samples under two slightly different Gθ(·) archi-
tectures: (A) the third row uses a model with 48 affine cou-
pling layers, and (B) the fourth row adds an additional Soft-
plus layer to the model to enforce the physical constraint
of non-negativity in the image distribution. Without a non-
negativity constraint, Architecture A’s learned distribution is
very similar to the analytical posterior distribution, since it
is solving a same Bayesian estimation problem as defined
in Eq. 18. However, this Bayesian estimation problem does
not constrain the image to be positive; as a result, the central
depression in the image has an inflated standard deviation.
Architecture B’s non-negative model results in a more con-
straining uncertainty map while achieving a slightly higher
resolution reconstruction. This example also demonstrates
how DPI can introduce implicit regularization through the
neural network architecture.

Image distributions with different levels of sample diver-
sity can be learned by adjusting the entropy loss weight, β.
As expected, both generative models reach lowest KL diver-
gence with the analytic distribution when β = 1.

Non-convex Imaging with Closure Quantities
In this section, we demonstrate DPI on non-convex inter-
ferometric imaging, where we reconstruct images using the
closure quantities defined in Eq. 14. With this non-convex
forward model, the posterior of reconstructed images can-
not be analytically computed, but it can be estimated us-
ing DPI. In all DPI reconstructions, the resulting images are
32×32 pixels and result from the non-negative Real-NVP
model discussed above (Architecture B).
Multi-modal Posterior Distributions A serious chal-
lenge for non-convex image reconstruction is the potential
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Figure 5: Non-convex interferometric imaging results with
closure quantities. (Top) RML reconstructed images ob-
tained from different initializations. (Bottom) Samples from
a learned DPI flow-based generative model.
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Figure 6: Analysis of 1024 reconstructed images sampled
from a DPI generative model trained with closure quanti-
ties. (Top Left) two-dimensional t-SNE plot of samples with
perplexity= 20. The samples clearly cluster into two modes.
(Top Right) The mean, standard deviation, and fractional
standard deviation for samples from each mode. (Bottom)
The distributions of data fitting losses (reduced χ2) of sam-
ples from each mode. A χ2 value of 1 is optimal for high
SNR data. The second mode, which happens to be the cor-
rect solution, results in a distribution with smaller data fitting
losses.

for multi-modal posterior distributions: visually-different
solutions fit the measurement data reasonably well. In some
cases, multiple modes can be identified by optimizing a reg-
ularized maximum likelihood (RML) loss with different im-
age initializations; for example, Fig. 5 (top) shows ten RML
reconstructed images obtained using the closure quantities
(Eq. 15) from the target shown in Fig. 4 and the multivariate
Gaussian regularizer defined in Eq. 17. From these results
two potential image modes, which appear to be roughly 180
degree rotations of one another, clearly stand out as fitting
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Figure 7: Examples of uncertainty quantification in convex and non-convex interferometric imaging with multivariate Gaussian
regularization. In each case, the mean, standard deviation, and absolute error between the reconstruction mean and blurred truth
are reported. t-SNE plots (perplexity= 20) are used to visualize the distributions of 1024 image samples in a two-dimensional
embedded space. Within the t-SNE plots, each small image corresponds to a sample embedded at its bottom-left corner. In
convex interferometric imaging the area of high error approximately matches the uncertainty estimated by DPI. In non-convex
interferometric imaging, both examples produced two solution modes. The red triangle marks the embedding of the blurred
truth image, which appears close to samples in the embedded image space.
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Figure 8: DPI imaging results using real EHT 2017 obser-
vation data of the black hole in M87 on different days. See
(The EHT Collaboration et al. 2019) for the (u, v) spatial
frequency coverage for each day.

the data well.
Fig. 5 (bottom) shows ten images sampled from a

DPI flow-based generative model learned with multivari-
ate Gaussian regularization. Note that the single generative
model has captured the two modes identified by multiple
runs of RML.

Fig. 6 analyzes 1024 generative samples from a DPI
model learned with multivariate Gaussian regularization.
The dimensionality reduction t-SNE plot(Maaten and Hin-
ton 2008) indicates a clustering of samples into two modes.
Figure 6 (top right) shows the pixel-wise mean, standard de-
viation and fractional standard deviation of samples for each
mode. The distributions of data fitting loss (reduced χ2) for
images in each mode are shown for both closure phase and

log closure amplitude constraints; a reduced χ2 value of 1 is
optimal. Although it can be difficult to tell which image is
correct by inspecting the statistics of a single image, by an-
alyzing the histogram of statistics for each mode it becomes
clearer which mode corresponds with the true image. In the
supplemental material2 we show how the resulting posterior
changes under different imposed regularization.
Real Interferometric Data In Fig. 8 we demonstrate the
performance of DPI using the publicly available EHT 2017
data, which was used to produce the first image of the black
hole in M87. In accordance with (The EHT Collaboration
et al. 2019), we use a data fitting loss with not only closure
quantities (Eq. 15) but also roughly-calibrated visibility am-
plitudes. We pair this data likelihood with a combined maxi-
mum entropy (MEM) and total squared variation (TSV) reg-
ularizer (see the supplementary material for details2). Fig. 8
shows the DPI reconstruction mean and standard deviation
of M87 on different observation days. Although ground truth
images are unavailable, the ring size and evolution recovered
using DPI matches that seen in the original EHT imaging
results. The DPI results also quantify larger uncertainty in
“knot” regions along the lower portion of the ring.

Visualizing Uncertainty
DPI sampling provides a means to visualizing uncertainty,
especially in cases where closed form approximations are
insufficient. By embedding samples from our DPI model in
a two-dimensional space, we are able to visualize the pos-

2 http://imaging.cms.caltech.edu/dpi/DPIsupplement.pdf
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terior’s approximate structure. Fig. 7 plots the embedding
of DPI samples obtained using t-SNE, and shows the im-
ages corresponding to some of these samples. By plotting
the blurred truth image in the same embedding we see that
the truth often lies close to the posterior samples in the em-
bedded space, though it is not guaranteed. The posterior is
sensitive to the choice of image prior, and is most informa-
tive when the true image is a sample from the imposed prior.

The mean and standard deviation of DPI samples, as well
as the average absolute error with respect to the blurred
truth, are shown for each learned distribution in Fig. 7. Since
closure quantities do not constrain the absolute flux or posi-
tion of the reconstructed source, we first normalize and align
samples from the closure-constrained DPI model to account
for scaled and shifted copies of similar images. Note that the
pixel-wise standard deviation aligns well with areas of high
error in the generative model’s samples.

Compressed Sensing MRI Case Study
Under-sampled measurements in compressed sensing MRI
also result in image reconstruction uncertainty. Similar
to convex interferometric imaging with visibilities, com-
pressed sensing MRI is often modeled as a linear forward
model, y = Fx + ε, where the measurements y are the
under-sampled κ-space spatial frequency components of the
image x with additive noise ε. In this section, we apply DPI
to compressed sensing MRI data with different acceleration
speed-up factors and compare the DPI identified uncertainty
map to the image reconstruction errors.

Figure 9 shows the pixel-wise statistics of the DPI esti-
mated posterior (computed from 1024 generated images) of
a synthetic example (a knee image from fastMRI dataset
(Zbontar et al. 2018) resized to 64 × 64 pixels). The κ-
space measurement noise is assumed Gaussian with a stan-
dard deviation of 0.04% the DC (zero-frequency) amplitude.
DPI is tested at three different acceleration speed-up fac-
tors: 3.5×, 5.5× and 8.4×, i.e. 1/3.5, 1/5.5 or 1/8.4 of all
κ-space components are observed. A Real-NVP network ar-
chitecture similar to Fig. 3 with 32 affine coupling layers is
used to approximate the image posterior, and a total varia-
tion (TV) regularizer is applied as the image prior. As ex-
pected, the pixel-wise standard deviation of DPI reconstruc-
tion becomes larger as the acceleration speed increases. The
reconstruction values of most pixels lie within four standard
deviations (σ) from the truth (98.2% pixels for 3.5×, 98.6%
pixels for 5.5×, and , 98.7% pixels for 8.4× are within 4σ).
Since the image posterior distribution is not pixel-wise in-
dependent Gaussian, the learned reconstruction error should
not necessarily obey properties of Gaussian statistics. The
profile of DPI standard deviation estimation roughly cap-
tures the pattern of the absolute reconstruction error in all
cases.

Conclusion
In this paper, we present deep probabilistic imaging (DPI):
a new framework for uncertainty quantification and multi-
modal solution characterization for underdetermined image
reconstruction problems. The method parameterizes the pos-
terior distribution of the reconstructed image as an untrained
flow-based generative model, and learns the neural network
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Figure 9: DPI imaging results of a synthetic compressed
sensing MRI example. A knee image from the fastMRI
dataset (Zbontar et al. 2018) is tested at three acceleration
speed-up factors: 3.5×, 5.5× and 8.4× (each shown in a
column). White pixels in the sampling masks (second row)
indicate the observed κ-space components, where the DC
(zero-frequency) component is aligned with the center of the
mask. According to the pixel-wise statistics of the estimated
posterior distributions (rows three and four), DPI well iden-
tifies the highly uncertain areas in the reconstructed images.

weights using a loss that incorporates the conditional data
likelihood, prior of image samples, and the model’s distri-
bution entropy.

We demonstrate the proposed method on toy exam-
ples, synthetic and real interferometric imaging problems,
as well as a synthetic compressed sensing MRI prob-
lem. Experiments show the proposed method can approx-
imately learn the image posterior distribution in both con-
vex and non-convex inverse problems, which enables effi-
ciently quantifying the uncertainty of reconstructed images
and detecting multi-modal solutions. Code is available at
http://imaging.cms.caltech.edu/dpi/.
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