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Abstract

In this paper we tackle the problem of pose guided person
image generation, which aims to transfer a person image
from the source pose to a novel target pose while maintain-
ing the source appearance. Given the inefficiency of standard
CNNs in handling large spatial transformation, we propose
a structure-aware flow based method for high-quality person
image generation. Specifically, instead of learning the com-
plex overall pose changes of human body, we decompose the
human body into different semantic parts (e.g., head, torso,
and legs) and apply different networks to predict the flow
fields for these parts separately. Moreover, we carefully de-
sign the network modules to effectively capture the local and
global semantic correlations of features within and among
the human parts respectively. Extensive experimental results
show that our method can generate high-quality results un-
der large pose discrepancy and outperforms state-of-the-art
methods in both qualitative and quantitative comparisons.

Introduction
Pose guided person image generation (Ma et al. 2017),
which aims to synthesize a realistic-looking person image in
a target pose while preserving the source appearance details
(as depicted in Figure 1), has aroused extensive attention due
to its wide range of practical applications for image editing,
image animation, person re-identification (ReID), and so on.

Motivated by the development of Generative Adversar-
ial Networks (GANs) in the image-to-image transformation
task (Zhu et al. 2017), many researchers (Ma et al. 2017,
2018; Zhu et al. 2019; Men et al. 2020) attempted to tackle
the person image generation problem within the framework
of generative models. However, as CNNs are not good at
tackling large spatial transformation (Ren et al. 2020), these
generation-based models may fail to handle the feature mis-
alignment caused by the spatial deformation between the
source and target image, leading to the appearance distor-
tions. To deal with the feature misalignment, recently, ap-
pearance flow based methods have been proposed (Ren et al.
2020; Liu et al. 2019; Han et al. 2019) to transform the
source features to align them with the target pose, modeling
the dense pixel-to-pixel correspondence between the source
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Figure 1: The generated person images in random target
poses by our method.

and target features. Specifically, the appearance flow based
methods aim to calculate the 2D coordinate offsets (i.e., ap-
pearance flow fields) that indicate which positions in the
source features should be sampled to reconstruct the corre-
sponding target features. With such flow mechanism, the ex-
isting flow based methods can synthesize target images with
visually plausible appearances for most cases. However, it
is still challenging to generate satisfying results when there
are large pose discrepancies between the source and target
images (see Figure 5 for example).

To tackle this challenge, we propose a structure-aware
flow based method for high-quality person image genera-
tion. The key insight of our work is, incorporating the struc-
ture information can provide important priors to guide the
network learning, and hence can effectively improve the re-
sults. First, we observe that the human body is composed of
different parts with different motion complexities w.r.t. pose
changes. Hence, instead of using a unified network to pre-
dict the overall appearance flow field of human body, we de-
compose the human body into different semantic parts (e.g.,
head, torso, and legs) and employ different networks to es-
timate the flow fields for these parts separately. In this way,
we not only reduce the difficulty of learning the complex
overall pose changes, but can more precisely capture the
pose change of each part with a specific network. Second,
for close pixels belonging to each part of human body, the
appearance features are often semantically correlated. For
example, the adjacent positions inside the arm should have
similar appearances after being transformed to a new pose.
To this end, compared to the existing methods which gen-
erate features at target positions independently with limited
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receptive fields, we introduce a hybrid dilated convolution
block which is composed of sequential convolutional layers
with different dilation rates (Yu and Koltun 2015; Chen et al.
2017; Li, Zhang, and Chen 2018) to effectively capture the
short-range semantic correlations of local neighbors inside
human parts by enlarging the receptive field of each posi-
tion. Third, the semantic correlations also exist for the fea-
tures of different human parts that are far away from each
other, owning to the symmetry of human body. For instance,
the features of the left and right sleeves are often required to
be consistent. Therefore, we design a lightweight yet effec-
tive non-local component named pyramid non-local block
which combines the multi-scale pyramid pooling (He et al.
2015; Kim et al. 2018) with the standard non-local opera-
tion (Wang et al. 2018) to capture the long-range semantic
correlations across different human part regions under dif-
ferent scales.

Technically, our network takes as input a source person
image and a target pose, and synthesizes a new person image
in the target pose while preserving the source appearance.
The network architecture is composed of three modules. The
part-based flow generation module divides the human joints
into different parts, and deploys different models to predict
local appearance flow fields and visibility maps of different
parts respectively. Then, the local warping module warps the
source part features extracted from the source part images,
so as to align them with the target pose while capturing the
short-range semantic correlations of local neighbors within
the parts via the hybrid dilated convolution block. Finally,
the global fusion module aggregates the warped features of
different parts into the global fusion features and further ap-
plies the pyramid non-local block to learn the long-range se-
mantic correlations among different part regions, and finally
outputs a synthesized person image.

The main contributions can be summarized as:

• We propose a structure-aware flow based framework for
pose guided person image generation, which can synthe-
size high-quality person images even with large pose dis-
crepancies between the source and target images.

• We decompose the task of learning the overall appearance
flow field into learning different local flow fields for dif-
ferent semantic body parts, which can ease the learning
and capture the pose change of each part more precisely.

• We carefully design the modules in our network to cap-
ture the local and global semantic correlations of features
within and among human parts respectively.

Related Work
Pose guided person image generation can be regarded as a
typical image-to-image transformation problem (Isola et al.
2017; Zhu et al. 2017) where the goal is to convert a source
person image into a target person image conditioned on
two constraints: (1) preserving the person appearance in the
source image and (2) deforming the person pose into the tar-
get one.

Ma et al. (Ma et al. 2017) proposed a two-stage gen-
erative network named PG2 to synthesize person images

in a coarse-to-fine way. Ma et al. (Ma et al. 2018) fur-
ther improved the performance of PG2 by disentangling
the foreground, background, and pose with a multi-branch
network. However, the both methods require a complicated
staged training process and have large computation bur-
den. Zhu et al. (Zhu et al. 2019) proposed a progressive
transfer network to deform a source image into the target
image through a series of intermediate representations to
avoid capturing the complex global manifold directly. How-
ever, the useful appearance information would degrade in-
evitably during the sequential feature transfers, which may
lead to the blurry results lacking vivid appearance details.
Essner et al. (Esser, Sutter, and Ommer 2018) combined the
VAE (Kingma and Welling 2013) and U-Net (Ronneberger,
Fischer, and Brox 2015) to model the interaction between
appearance and shape. However, the common skip connec-
tions of U-Net can’t deal with the feature misalignments be-
tween the source and target pose reliably. To tackle this is-
sue, Siarohin et al. (Siarohin et al. 2018) further proposed
the deformable skip connections to transform the local tex-
tures according to the local affine transformations of certain
sub-parts. However, the degrees of freedom are limited (i.e.,
6 for affine), which may produce inaccurate and unnatural
transformations when there are large pose changes.

Recently, a few flow-based methods have been proposed
to take advantage of the appearance flow (Zhou et al. 2016;
Ren et al. 2019) to transform the source image to align it
with the target pose. Han et al. (Han et al. 2019) introduced
a three-stage framework named ClothFlow to model the ap-
pearance flow between source and target clothing regions in
a cascaded manner. However, they warp the source image
at the pixel level instead of the feature level, which needs
an extra refinement network to handle the invisible contents.
Li et al. (Li, Huang, and Loy 2019) leveraged the 3D hu-
man model to predict the appearance flow, and warped both
the encoded features and the raw pixels of source image.
However, they require to fit the 3D human model to all im-
ages to obtain the annotations of appearance flows before
the training, which is too expensive to limit its application.
Ren et al. (Ren et al. 2020) designed a global-flow local-
attention framework to generate the appearance flow in an
unsupervised way and transform the source image at the fea-
ture level reasonably. However, this method directly takes
the overall source and target pose as input to predict the ap-
pearance flow of the whole human body, which may be un-
able to tackle the large discrepancies between the source and
target pose reliably. Besides, this method produces features
at each target position independently and doesn’t consider
the semantic correlations among target features at different
locations.

The Proposed Method

Figure 2 illustrates the overall framework of our network. It
mainly consists of three modules: the part-based flow gen-
eration module, the local warping module, and the global
fusion module. In the following sections, we will give a de-
tailed description of each module.
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Figure 2: Overview of the proposed method. It mainly consists of three modules: the part-based flow generation module, the
local warping module, and the global fusion module.

Part-based Flow Generation Module
We first introduce a few notations. Let Ps ∈ R18×h×w

and Pt ∈ R18×h×w represent the overall pose of the
source image Is ∈ R3×h×w and target image It ∈
R3×h×w respectively, where the 18 channels of the pose
correspond to the heatmaps that encode the spatial loca-
tions of 18 human joints. The joints are extracted with
the OpenPose (Cao et al. 2017). As shown in Figure 2,
our part-based flow generation module first decomposes
the overall pose into different sub-poses via grouping the
human joints into different parts based on the inherent
connection relationship among them, Then, different sub-
models Glocalflow =

{
Gheadflow, G

torso
flow , G

leg
flow

}
are deployed

to generate the local appearance flow fields and visibility
maps of corresponding human parts respectively. Specifi-
cally, let P locals =

{
Pheads , P torsos , P legs

}
and P localt ={

Pheadt , P torsot , P legt

}
denote the decomposed source and

target sub-poses, where each sub-pose corresponds to a sub-
set of the 18 heatmaps of human joints. The sub-models
Glocalflow take as input P locals and P localt , and output the local
appearance flow fields W local and visibility maps V local:

W local, V local = Glocalflow(P locals , P localt ), (1)

where W local =
{
Whead,W torso,W leg

}
records the 2D

coordinate offsets between the source and target features of
corresponding parts, and V local =

{
V head, V torso, V leg

}
stores confidence values between 0 and 1 representing
whether the information of certain target positions exists in
the source features.

Local Warping Module
The generated local appearance flow fields W local and vis-
ibility maps V local provide important guidance on under-

standing the spatial deformation of each part region be-
tween the source and target image, specifying which posi-
tions in the source features could be sampled to generate
the corresponding target features. Therefore, our local warp-
ing module exploits this information to model the dense
pixel-to-pixel correspondence between the source and tar-
get features. As shown in Figure 2, we first crop differ-
ent part images from the source image, and encode them
into the corresponding source part image features F locals ={
Fheads , F torsos , F legs

}
. Then, under the guidance of gener-

ated local appearance flow fields W local, our local warp-
ing module warps F locals to obtain the warped source fea-
tures F locals,w =

{
Fheads,w , F torsos,w , F legs,w

}
aligned with the tar-

get pose. Specifically, for each target position p = (x, y)
in the features F locals,w , a sampling position is allocated ac-
cording to the coordinate offsets 4p = (4x,4y) recorded
in the flow fields W local. The features at target position
are fetched from the corresponding sampling position in the
source features by the bilinear interpolation. Further details
are available in our supplementary material. The procedure
can be written as:

F locals,w = Gwarp(F
local
s ,W local). (2)

Considering not all appearance information of the target
image can be found in the source image due to different vis-
ibilities of the source and target pose, we further take advan-
tage of the generated local visibility maps V local to select
the reasonable features between F locals,w and the local target
pose features F localpose =

{
Fheadpose , F

torso
pose , F

leg
pose

}
which are

encoded from the target sub-poses. The feature selection us-
ing visibility maps is defined as:

F locals,w,v = V local · F locals,w + (1− V local) · F localpose , (3)

where F locals,w,v =
{
Fheads,w,v, F

torso
s,w,v , F

leg
s,w,v

}
denotes the se-

lected features for different parts.
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Figure 3: The local warping module. It warps the source fea-
tures encoded from the corresponding part images to align
them with the target pose while capturing the short-range
semantic correlations of local neighbors within the parts.

At last, in order to perceive local semantic correlations in-
side human parts, as shown in Figure 3, we further introduce
a hybrid dilated convolution block which is composed of
sequential convolutional layers with different dilation rates
(e.g., {1, 2} in our implementation) to capture the short-
range semantic correlations of local neighbors within parts
by enlarging the receptive field of each position. Specifi-
cally, a dilated convolution with rate r can be defined as:

y(m,n) =
∑
i

∑
j

x(m+ r × i, n+ r × j)w(i, j), (4)

where y(m,n) is the output of dilated convolution from in-
put x(m,n), andw(i, j) is the filter weight. LetGhdcb repre-
sent the hybrid dilated convolution block. The final warped
local image features of different human parts F localwarp ={
Fheadwarp, F

torso
warp , F

leg
warp

}
can be obtained by:

F localwarp = Ghdcb(F
local
s,w,v). (5)

Global Fusion Module
Let F globalpose denote the global target pose features encoded
from the overall target pose Pt, which can provide addi-
tional context as to where different parts should be located in
the target image. Concatenating the warped image features
of different parts F localwarp and the global target pose features
F globalpose together as input, the global fusion module first ag-
gregates these local part features into the preliminary global
fusion features Ffusion:

Ffusion = Gfusion
(
F localwarp, F

global
pose

)
. (6)

Due to the symmetry of human body, there can also ex-
ist important semantic correlations for the features of dif-
ferent human parts with long distances. We therefore de-
sign a lightweight yet effective non-local component named
pyramid non-local block which incorporates the multi-scale
pyramid pooling with the standard non-local operation to
capture such long-range semantic correlations across dif-
ferent human part regions under different scales. Specifi-
cally, as shown in Figure 4, given the preliminary global
fusion features Ffusion, we first use the multi-scale pyra-
mid pooling to adaptively divide them into different part re-
gions and select the most significant global representation

Figure 4: The global fusion module. It aggregates the warped
features of different parts into the global fusion features and
captures the non-local semantic correlations among different
human parts.

for each region, producing hierarchical features with dif-
ferent sizes (e.g., 4 × 4, 6 × 6) in parallel. Next, we ap-
ply the standard non-local operations on the pooled fea-
tures at different scales respectively to obtain the response
at a target position by the weighted summation of features
from all positions, where the weights are the pairwise rela-
tion values recorded in the generated relation maps (which
are visualized in our experiments). Specifically, given the
input features x, the relation maps R are calculated by
R = softmax(θ (x)

T
φ (x)), where θ (·) and φ (·) are two

feature embeddings implemented as 1× 1 convolutions. Let
Gpnb denote the pyramid non-local block. The final global
features Fglobal are obtained via:

Fglobal = Gpnb (Ffusion) . (7)

Finally, the target person image Ît is generated from the
global features Fglobal using a decoder network Dec which
contains a set of deconvolutional layers:

Ît = Dec (Fglobal) . (8)

Training
We train our model in two stages. First, without the ground
truth of appearance flow fields and visibility maps, we train
the part-based flow generation module in an unsupervised
manner using the sampling correctness loss (Ren et al. 2019,
2020). Since our part-based flow generation module con-
tains three sub-models corresponding to different parts, we
train them together using the overall loss defined as:

Lsam = Lheadsam + Ltorsosam + Llegsam, (9)

where Lheadsam ,Ltorsosam , and Llegsam denote the sampling correct-
ness loss for each part respectively. The sampling correct-
ness loss constrains the appearance flow fields to sample po-
sitions with similar semantics via measuring the similarity
between the warped source features and ground truth target
features. Refer to the supplementary material for details.

Then, with the pre-trained part-based flow generation
module, we train our whole model in an end-to-end way.
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Model Market-1501 DeepFashion

FID↓ LPIPS↓ Mask-LPIPS↓ SSIM↑ Mask-SSIM↑ PSNR↑ Mask-PSNR↑ FID↓ LPIPS↓ SSIM↑ PSNR↑
VU-Net 24.386 0.3211 0.1747 0.242 0.801 13.664 19.102 13.836 0.2637 0.745 16.255

Def-GAN 29.035 0.2994 0.1496 0.276 0.793 14.391 20.425 26.283 0.2330 0.747 17.524
PATN 24.917 0.3196 0.1590 0.282 0.799 14.241 20.482 20.399 0.2533 0.671 16.621
DIST 21.539 0.2817 0.1482 0.281 0.796 14.337 20.421 7.629 0.2341 0.714 17.445
Ours 24.254 0.2796 0.1464 0.290 0.802 14.526 20.726 8.755 0.1815 0.726 18.030

Table 1: Quantitative comparison with state-of-the-art methods on the Market-1501 and DeepFashion datasets. The first and
second best results are bolded and underlined respectively.

The full loss function is defined as:

L = λ1Lsam+λ2Lrec+λ3Ladv+λ4Lper+λ5Lsty, (10)

where Lrec denotes the reconstruction loss which is formu-
lated as the L1 distance between the generated target image
Ît and ground truth target image It,

Lrec =
∥∥∥It − Ît∥∥∥

1
. (11)

Ladv represents the adversarial loss (Goodfellow et al.
2014) which uses the discriminator D to promote the gener-
ator G to synthesize the target image with sharp details,

Ladv = E [log(1−D(G(Is, Ps, Pt)))] + E [logD(It)] .
(12)

Lper denotes the perceptual loss (Johnson, Alahi, and Fei-
Fei 2016) formulated as the L1 distance between features
extracted from special layers of a pre-trained VGG network,

Lper =
∑
i

∥∥∥φi(It)− φi(Ît)∥∥∥
1
, (13)

where φi is the feature maps of the i-th layer of the VGG
network pre-trained on ImageNet (Russakovsky et al. 2015).
Lsty denotes the style loss (Johnson, Alahi, and Fei-Fei

2016) which uses the Gram matrix of features to calculate
the style similarity between the images,

Lsty =
∑
j

∥∥∥Gφj (It)−Gφj (Ît)
∥∥∥
1
, (14)

where Gφj is the Gram matrix constructed from features φj .

Implementation Details. Our model is implemented in
the PyTorch framework using one NVIDIA GTX 1080Ti
GPU with 11GB memory. We adopt the Adam optimizer
(β1 = 0, β2 = 0.99) (Kingma and Ba 2014) to train our
model and the learning rate is fixed to 0.001 in all exper-
iments. For the Market-1501 dataset (Zheng et al. 2015),
we train our model using the images with resolution of
128 × 64, and the batch size is set to 8. For the DeepFash-
ion dataset (Liu et al. 2016), our model is trained using the
images with resolution of 256× 256, and the batch size is 6.

Experiment
In this section, we perform extensive experiments to demon-
strate the superiority of the proposed method over state-of-
the-art methods. Furthermore, we conduct the ablation study
to verify the contribution of each component in our model.

Datasets. We conduct our experiments on the ReID
dataset Market-1501 (Zheng et al. 2015) and the In-shop
Clothes Retrieval Benchmark DeepFashion (Liu et al. 2016).
The Market-1501 dataset contains 32,668 low-resolution
images (128 × 64) which vary enormously in the pose,
background, and illumination. Meanwhile, the DeepFash-
ion dataset contains 52,712 person images (256× 256) with
various appearances and poses. For a fair comparison, we
split the two datasets following the same setting in (Ren
et al. 2020). Consequently, we pick 263,632 training pairs
and 12,000 testing pairs for the Market-1501 dataset. For
the DeepFashion dataset, we randomly select 101,966 pairs
for training and 8,570 pairs for testing.

Metrics. It remains an open problem to evaluate the qual-
ity of generated images reasonably. Following the previous
works (Siarohin et al. 2018; Zhu et al. 2019; Ren et al. 2020),
we use the common metrics such as Learned Perceptual Im-
age Patch Similarity (LPIPS) (Zhang et al. 2018), Fréchet
Inception Distance (FID) (Heusel et al. 2017), Structural
Similarity (SSIM) (Wang et al. 2004), and Peak Signal-to-
noise Ratio (PSNR) to assess the quality of generated im-
ages quantitatively. Specifically, both LPIPS and FID calcu-
late the perceptual distance between the generated images
and ground truth images in the feature space w.r.t. each pair
of samples and global distribution, respectively. Meanwhile,
SSIM and PSNR indicate the similarity between paired im-
ages in raw pixel space. For the Market-1501 dataset, we fur-
ther calculate the masked results of these metrics to exclude
the interference of the backgrounds. Furthermore, consider-
ing that these quantitative metrics may not fully reflect the
image quality (Ma et al. 2017), we perform a user study to
qualitatively evaluate the quality of generated images.

Comparison with State-of-the-art Methods
Quantitative Comparison. As shown in Table 1, we com-
pare our method with four state-of-the-art methods including
VU-Net (Esser, Sutter, and Ommer 2018), Def-GAN (Siaro-
hin et al. 2018), PATN (Zhu et al. 2019), and DIST (Ren
et al. 2020) on the Market-1501 and DeepFashion datasets.
Specifically, we download the pre-trained models of state-
of-the-art methods and evaluate their performance on the
testing set directly. As we can see, our method outperforms
the state-of-the-art methods in most metrics on both datasets,
demonstrating the superiority of our model in generating
high-quality person images.
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Figure 5: Qualitative comparison with state-of-the-art methods on the DeepFashion(left) and Market-1501(right) datasets.

Qualitative Comparison. Figure 5 shows the qualitative
comparison of different methods on the two datasets. All the
results of state-of-the-art methods are obtained by directly
running their pre-trained models released by authors. As we
can see, for the challenging cases with large pose discrep-
ancies (e.g., the first two rows on the left of Figure 5), the
existing methods may produce results with heavy artifacts
and appearance distortion. In contrast, for the DeepFashion
dataset (Liu et al. 2016), our model can generate realistic
images in arbitrary target poses, which not only reconstructs
the reasonable and consistent global appearances, but pre-
serves the vivid local details such as the textures of clothes
and hat. Especially, our model is able to produce more suit-
able appearance contents for target regions which are invisi-
ble in the source image such as the legs and backs of clothes
(see the last three rows). For the Market-1501 dataset (Zheng
et al. 2015), our model yields natural-looking images with
sharp appearance details whereas the artifacts and blurs can
be observed in the results of other state-of-the-art methods.
More results can be found in the supplementary material.

User Study. We perform a user study to judge the realness
and preference of the images generated by different meth-
ods. For the realness, we recruit 30 participants to judge
whether a given image is real or fake within a second. Fol-
lowing the setting of previous work (Ma et al. 2017; Siarohin
et al. 2018; Zhu et al. 2019), for each method, 55 real images
and 55 generated images are selected and shuffled randomly.
Specifically, the first 10 images are used to warm up and the
remaining 100 images are used to evaluate. For the prefer-
ence, in each group of comparison, a source image, a target
pose, and 5 result images generated by different methods are
displayed to the participants, and the participants are asked
to pick the most reasonable one w.r.t. both the source ap-
pearance and target pose. We enlist 30 participants to take
part in the evaluation and each participant is asked to fin-
ish 30 groups of comparisons for each dataset. As shown in

Table 2, our method outperforms the state-of-the-art meth-
ods in all subjective measurements on the two datasets, es-
pecially for the DeepFashion dataset (Liu et al. 2016) with
higher resolution, verifying that the images generated by our
model are more realistic and faithful.

Model Market-1501 DeepFashion

G2R↑ Prefer↑ G2R↑ Prefer↑
VU-Net - - 11.44 - - 1.00

Def-GAN 41.03 10.00 5.23 1.44
PATN 38.03 14.00 10.93 2.22
DIST 47.37 23.11 38.30 28.89
Ours 50.00 41.45 43.83 66.45

Table 2: User study(%). “G2R” means the percentage of
generated images rated as real w.r.t. all generated images.
“Prefer” denotes the user preference for the most realistic
result among different methods.

Ablation Study
We further perform the ablation study to analyze the contri-
bution of each technical component in our method. We first
introduce the variants implemented by alternatively remov-
ing a corresponding component from our full model.
w/o the part-based decomposition (w/o Part). This model
removes the part-based decomposition in our flow genera-
tion module, and directly estimates the whole flow field of
human body to warp the global source image features.
w/o the hybrid dilated convolution block (w/o HDCB).
This model removes the hybrid dilated convolution block in
our local warping module, and directly uses the selected part
features to conduct the subsequent feature fusion.
w/o the pyramid non-local block (w/o PNB). This model
removes the pyramid non-local block in our global fusion
module, and simply takes the preliminary global fusion fea-
tures as input to generate the final target images.

2661



Full. This represents our full model.
Table 3 shows the quantitative results of ablation study on

the DeepFashion dataset (Liu et al. 2016). We can see that,
our full model achieves the best performance on all evalu-
ation metrics except SSIM, and the removal of any compo-
nents will degrade the performance of the model.

Model DeepFashion

FID↓ LPIPS↓ SSIM↑ PSNR↑
w/o Part 13.736 0.2090 0.716 17.420
w/o PNB 9.302 0.1832 0.728 17.945

w/o HDCB 9.326 0.1829 0.729 18.021
Full 8.755 0.1815 0.726 18.030

Table 3: The quantitative results of ablation study on the
DeepFashion dataset. The best results are bolded.

Qualitative comparison of different ablation models is
demonstrated in Figure 6. We can see that, although the
models w/o Part, w/o PNB, and w/o HDCB can generate
target images with correct poses, they can’t preserve the hu-
man appearances in source images very well. Specifically,
there exists heavy appearance distortion on the results pro-
duced by the model w/o Part, because of the difficulty in di-
rectly learning the overall flow fields of human body under
large pose discrepancies. The results generated by the model
w/o PNB often suffer from the inconsistency in global hu-
man appearance since it doesn’t explicitly consider the long-
range semantic correlations across different human parts.
Besides, the images produced by the model w/o HDCB may
lose some local appearance details because it can’t fully cap-
ture the short-range semantic correlations of local neighbors
within a certain part. In contrast, our full model can recon-
struct the most realistic images which not only possess con-
sistent global appearance, but maintain vivid local details.

Figure 6: The qualitative comparison of ablation study.

Visualization of The Relation Map
To illustrate the effectiveness of our pyramid non-local block
in capturing the global semantic correlations among differ-
ent human parts, in Figure 7 we visualize the generated re-
lation map (e.g., size of 6 × 6), which represents the rela-
tion values of all patches w.r.t a certain target patch. As we

can see, for a target patch in a certain image region (e.g.,
shirt, pants, background), the patches with similar seman-
tics usually have larger relation values w.r.t. this target patch,
indicating that our pyramid non-local block can capture the
non-local semantic correlations among different part regions
effectively.

Figure 7: Visualization of the relation map w.r.t. a certain
target patch marked by a red rectangle in the image.

Person Image Generation in Random Poses
As shown in Figure 8, given the same source person image
and a set of target poses selected from the testing set ran-
domly, our model is able to generate the target images with
both vivid appearances and correct poses , demonstrating the
versatility of our model sufficiently.

Figure 8: The results of generated person images in random
target poses on the DeepFashion dataset.

Conclusion
We present a structure-aware appearance flow based ap-
proach to generate realistic person images conditioned on
the source appearances and target poses. We decompose the
task of learning the overall appearance flow field into learn-
ing different local flow fields for different human body parts,
which can simplify the learning and model the pose change
of each part more precisely. Besides, we carefully design
different modules within our framework to capture the lo-
cal and global semantic correlations of features inside and
across human parts respectively. Both qualitative and quan-
titative results demonstrate the superiority of our proposed
method over the state-of-the-art methods. Moreover, the re-
sults of ablation study and visualization verify the effective-
ness of our designed modules.
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