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Abstract

Cascaded architectures have brought significant performance
improvement in object detection and instance segmentation.
However, there are lingering issues regarding the disparity
in the Intersection-over-Union (IoU) distribution of the sam-
ples between training and inference. This disparity can po-
tentially exacerbate detection accuracy. This paper proposes
an architecture referred to as Sample Consistency Network
(SCNet) to ensure that the IoU distribution of the samples
at training time is close to that at inference time. Further-
more, SCNet incorporates feature relay and utilizes global
contextual information to further reinforce the reciprocal rela-
tionships among classifying, detecting, and segmenting sub-
tasks. Extensive experiments on the standard COCO dataset
reveal the effectiveness of the proposed method over multi-
ple evaluation metrics, including box AP, mask AP, and in-
ference speed. In particular, while running 38% faster, the
proposed SCNet improves the AP of the box and mask pre-
dictions by respectively 1.3 and 2.3 points compared to the
strong Cascade Mask R-CNN baseline. Code is available at
https://github.com/thangvubk/SCNet.

Introduction
In recent years, instance segmentation has received con-
siderable attention for its applications in autonomous driv-
ing (Neven et al. 2018; Zhang, Fidler, and Urtasun 2016),
robotics (Danielczuk et al. 2019; Pathak et al. 2018), surveil-
lance (Mao et al. 2018; Zhang et al. 2018), and other vision
tasks (Kim et al. 2019, 2020). Given an image, instance seg-
mentation aims to predict class labels and instance masks
for objects of interest at pixel-level. Achieving an accu-
rate and robust instance segmentation in a real-world envi-
ronment is challenging: object occlusion, deformation, and
scale changes are of concern.

State-of-the-art instance segmentation methods attempt to
benefit from high performing object detectors, where the
predicted boxes are segmented using a fully convolutional
network (Long, Shelhamer, and Darrell 2015), such as Mask
R-CNN (He et al. 2017), and PANet (Liu et al. 2018). For
accurate object detection, Cascade R-CNN (Cai and Vascon-
celos 2018) has been recently proposed, showing significant
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performance improvement. It consists of a sequence of de-
tectors that progressively refine the box predictions to obtain
accurate localization at the final detection stage. The capa-
bility of this detector has been extended with the addition
of the mask branches for performing instance segmentation.
This architecture is referred to as the Cascade Mask R-CNN
(Cai and Vasconcelos 2019), which shows significant im-
provement compared to non-cascade ones. Although hav-
ing better performance compared to non-cascade methods,
Cascade Mask R-CNN still exhibits inconsistency in train-
ing and inference sample distribution. At training time, the
outputs of all the box stages are used for mask predictions;
however, at inference time only the output of the last box
stage is used for mask predictions. It has been shown in (Cai
and Vasconcelos 2018) that the box stages produce differ-
ent sample distributions since they are trained with different
Intersection over Union (IoU) thresholds. Such a mismatch
between training and inference sample distribution will po-
tentially worsen the performance.

This paper proposes an architecture referred to as Sample
Consistency Network (SCNet) that ensures the IoU distribu-
tion of the samples at training time to be close to that at infer-
ence time. To this end, only the outputs of the last box stage
are used for mask predictions at both training and inference.
Figure 1 shows the IoU distribution of the samples going to
the mask branch at training time with/without sample con-
sistency compared to that at inference time. The COCO (Lin
et al. 2014) train and val splits are using for training and
inference, respectively. When sample consistency is not en-
sured, nearly half of the training samples (49.1%) are at a
low IoU region (IoU <= 0.75), which are much larger than
that of training with sample consistency (34.2%) and infer-
ence (38.5%). Overall, training with sample consistency pro-
duces closer IoU distribution between training and inference
compared to that of training without sample consistency.

Instance segmentation requires synergy among the three
sub-tasks: detecting, classifying, and segmenting objects.
To further reinforce the reciprocal relationships among sub-
tasks, feature relay and global context are proposed. It is
well-known that joint training of closely related tasks can
improve the overall performance (He et al. 2017; Chen et al.
2019a). For instance, adding an extra mask branch to a de-
tector improves the detection performance, although there
is no direct information flow between the box and mask
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(a) Training w/o sample consistency.
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(b) Training w/ sample consistency.
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(c) Inference.

Figure 1: IoU distribution in training with/without sample consistency and inference. The red numbers show the percentages of
the samples having IoU less than the corresponding thresholds.

branches (He et al. 2017). It shows that the “implicit” mutual
information between detection and segmentation improves
the overall performance. This paper takes this concept a step
further and introduces an “explicit” connection linking the
output of the box branch to the input of the mask branch
to elevate mutual information between the outputs of the
two branches that ultimately enhance segmentation perfor-
mance. This process is referred to as feature relay.

Common methods for detection and segmentation are per-
formed in a region-wise manner, where the prediction is
made based on features extracted from a small region by
the pooling layer, such as RoIAlign (He et al. 2017). These
layers serve as a hard attention mechanism that enables the
detector to focus on the relevant region of the image. How-
ever, in a number of cases, objects are visually ambiguous
when they stand alone. To overcome this limitation, SCNet
relies on a global context branch to provide each object con-
text prior for the final prediction.

Related Work
Instance Segmentation. There are two main streams in
instance segmentation: proposal-based and proposal-free
methods. In proposal-based methods, conventional detectors
(Girshick 2015; Vu et al. 2019) generate region proposals,
then instance masks are predicted within the proposed re-
gions. DeepMask (Pinheiro, Collobert, and Dollár 2015),
SharpMask (Pinheiro et al. 2016), and InstanceFCN (Dai
et al. 2016) learn to produce segment candidates instead of
bounding boxes as proposals. Li et al. extend InstanceFCN
and propose FCIS for instance segmentation by introducing
position-sensitive score maps (Li et al. 2017). In (Dai, He,
and Sun 2016), a multi-task cascade is proposed, where the
output of a sub-task is used as input of the next sub-task.
He et al. present Mask R-CNN (He et al. 2017) by append-
ing a segmentation branch in parallel to the detection branch
of Faster R-CNN (Ren et al. 2015), showing promising re-
sults. Liu et al. extend Mask R-CNN and propose PANet
(Liu et al. 2018), which aims to enhance the feature hierar-
chy by adding a bottom-up path into the standard FPN (Lin
et al. 2017). Recent advanced methods (Cai and Vasconce-
los 2019; Chen et al. 2019a) extend the multi-stage detec-
tor Cascade R-CNN (Cai and Vasconcelos 2018) to produce

high-quality instance segmentation.
In proposal-free methods, object instances are directly

identified without proposals. In (Zhang, Fidler, and Urtasun
2016; Zhang et al. 2015), local instance labels are predicted
and integrated with a Markov Random Field (MRF) to ob-
tain globally consistent instance labels. In (Arnab and Torr
2016), a semantic segmentation map is first predicted, then
instances are identified, relying on a Conditional Random
Field (CRF) model. Bai and Urtasun propose a watershed
transform network to obtain an energy map, then derive in-
stances based on the energy levels (Bai and Urtasun 2017).
In (Liu et al. 2017), a sequence of networks is designed to
predict horizontal and vertical object breakpoints, which are
then merged to produce object instances. In (Tian, Shen, and
Chen 2020), a dynamic instance-aware network is proposed
to replace RoI opperation, leading to a compact and fast
model. Xie et al. propose PolarMask, which formulates the
instance segmentation problem as instance center classifica-
tion and dense distance regression in a polar coordinate (Xie
et al. 2020). Wang et al. propose SOLO which directly pre-
dicts mask instances by assigning categories to each pixel
within an instance according to the instances location and
size (Wang et al. 2020). Overall, the proposal-free methods
are simple and fast; however, proposal-based methods are
generally more accurate.

Multi-stage Instance Segmentation. In proposal-based
approach, benefiting from the high-performing multi-stage
detector, Cascade Mask R-CNN (Cai and Vasconcelos 2019)
shows improvement when compared to non-cascade meth-
ods for instance segmentation. Recently, Chen et al. (Chen
et al. 2019a) have extended Cascade Mask R-CNN and pro-
pose HTC to improve segmentation by constructing mask
information flow though stages and introducing a semantic
branch. Although showing improvements compared to non-
cascade methods, Cascade Mask R-CNN and HTC show
limitation of inconsistency in training and inference sample
distribution and the requirement of multi-stage mask predic-
tions, which is not computationally efficient. The proposed
SCNet differs from previous methods in that it ensures the
sample consistency between training and testing time. Sam-
ple consistency is optimized to not only improve the accu-
racy but also improve the inference speed by avoiding the
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Figure 2: Architecture of cascade approaches: (a) Cascade Mask R-CNN. (b) Hybrid Task Cascade (HTC). (c) the proposed
SCNet. Here, “F”, “RPN”, “Pool”, “B”, “M”, “FR” and “G” denote image features, Region Proposal Network (Ren et al. 2015),
region-wise pooling, box branch, mask branch, feature relay, and global context branch, respectively. It is noted that each box
branch performs both box regression and classification. Additionally, the semantic branch (Chen et al. 2019a), which is not
shown for a neat presentation, is applied to all cascade models for a fair comparison
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Figure 3: Individual components of the proposed SCNet, which are applied to the baseline Cascade Mask R-CNN.

repetition of expensive operations, including mask RoI fea-
ture extraction, feature upsampling, and mask prediction.
The performance of SCNet is also further improved with the
incorporation of feature relay and global context informa-
tion. Feature relay creates the information flow between box
and mask branch. Global context provides individual objects
with context prior for final prediction. The crucial difference
between the proposed global context branch with previous
methods in object detection (Wang et al. 2018; Cao et al.
2019; Qiao, Chen, and Yuille 2020) is that these methods in-
corporate global context in the backbone at pixel level mean-
while the proposed method incorporates global context in
the detector stages (R-CNN) at instance-level. It is nontriv-

ial to improve detection performance in R-CNN by global
context since simply applying Global Convolution Network
(Peng et al. 2017) does not show performance gain (Chen
et al. 2019a). It is expected that the proposed global context
branch is complemented with backbone-based global con-
text since they improve different parts of the detector.

Cascade Architectures
Cascade Mask R-CNN
Cascade Mask R-CNN is the combination of the high-
performing detector Cascade R-CNN and the popular seg-
mentation method Mask R-CNN. Figure 2a illustrates the
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architecture of a 3-stage Cascade Mask R-CNN. Mathemat-
ically, Cascade Mask R-CNN can be formulated as follows.

xbox
t ← P(x, bt−1), bt ← Bt(xbox

t ),

xmask
t ← P(x, bt−1), mt ←Mt(x

mask
t ).

(1)

Here, x is the feature maps from a convolutional backbone
network. At stage t, a region-wise pooling operator P ex-
tracts box features xbox

t and mask features xmask
t based on

the backbone features and predicted boxes (or region pro-
posals) at the previous stage bt−1. The predicted boxes bt
and masks mt are derived from the box branch Bt and mask
branchMt, respectively.

Even though performing better than other non-cascade
methods, Cascade Mask R-CNN exhibits two main limita-
tions in its architecture as follows. First, the mask predic-
tions at training and inference come from different distri-
butions. At training time, the outputs of all the box stages
are used for mask predictions; however, at inference time
only the output of the last box stage is used for mask predic-
tions. This is because at inference time, the mask ensemble
requires the mask predictions upon the same RoI locations.
Although using multiple box stages for mask prediction im-
proves the sample diversity (Cai and Vasconcelos 2018),
the proposed SCNet shows that making the training sample
distribution close to that of inference further improves the
performance. Second, the mask branches are isolated with-
out direct connections, and inaccurate mask predictions are
made on intermediate noisy boxes, as shown in Figure 2a.
The effectiveness of Cascade Mask R-CNN mainly stems
from the high-performing detector and the ensemble of mul-
tiple isolated mask branches.

Hybrid Task Cascade
To alleviate the problems of Cascade Mask R-CNN, Hybrid
Task Cascade (HTC) (Chen et al. 2019a) introduces inter-
leaved execution between box and mask branches and direct
information flow through the mask branches. The pipeline
of HTC can be described as follows.

xbox
t ← P(x, bt−1), bt ← Bt(xbox

t ),

xmask
t ← P(x, bt), mt ←Mt(F(xmask

t ,m1:t−1)).
(2)

Here, HTC performs interleaved execution to leverage the
observation that the boxes are more accurate after box re-
gression, where the segmentation step is based on the output
of detection step bt instead of bt−1. Besides, there is a direct
information flow through the mask branches. In concrete, the
current backbone features xmask

t are combined with the ac-
cumulated mask features from the previous stages m1:t−1

by a fusion operation F . Here, m1:t−1 denotes the accumu-
lated mask features taken from stage 1 to stage t− 1.

To a certain extent, the interleaved execution and mask
information flow alleviate the problems in Cascade Mask R-
CNN; however, these ideas still have limitations to be ad-
dressed. First, the sample inconsistency remains unsolved.
Second, HTC is still constrained by multi-stage mask pre-
dictions and mask ensemble. It requires multiple RoI feature
extractors, upsamplers, and predictors, and practically, they
are resource-consuming.

The proposed SCNet
Sample Consistency
The proposed SCNet introduces sample consistency that en-
sures the consistency in the sample distribution at training
and inference. Two versions of sample consistency are con-
sidered: naive and effective sample consistency. The naive
sample consistency moves all the mask branches after the
last box stage and the output of the last box stage is used
for extracting mask features for all mask branches at both
training and inference (Figure 3a). Although the sample con-
sistency is attained, it still requires the repetition of com-
putationally expensive operations, such as RoI feature ex-
traction, feature upsampling, and mask prediction. Compu-
tational efficiency is an important measure in segmentation,
which is usually used as a front-end task for many other
tasks. To speed up the network, the effective sample consis-
tency is proposed to use a single deep mask branch instead of
multiple shallow ones (Figure 3b), which is used by default
in SCNet. In detail, the common three 4-convolution mask
branches are “stacked” to be a sequence of 12 consecutive
convolution layers. Since the mask branches is deep, a skip
connect is used after every two convolution layers. Effective
sample consistency avoids the repetition of expensive opera-
tions since it relies on a single mask branch. Beside ensuring
sample consistency and speeding up the network, the pro-
posed method also addresses the problem of Cascade Mask
R-CNN in that all the mask branches are isolated without
direct connection, and the problem of mask predictions on
intermediate noisy boxes.

Feature Relay and Global Context
Feature relay and global context strengthen the relationships
among classifying, detecting and segmenting sub-tasks. Mo-
tivated by the observation that “implicit” mutual information
between the box and mask branches improves the overall
performance, the feature relay “explicitly” incorporates the
box features with the mask features to improve the mask
prediction. Feature relay exploits the relationship between
detection and segmentation sub-tasks such that the box fea-
tures provide the mask branch the prior for the mask pre-
diction, and the mask prediction supervises (refines) the box
features via back-propagation. This tightly coupled relation-
ship between detection and segmentation sub-tasks leads to
the performance gain. Figure 4 shows a detailed architecture
of the feature relay module. In concrete, the output features
of the box branch are first sliced to obtain the ones w.r.t. pos-
itive samples then fed into a fully connected layer to align
box feature space with mask feature space. The box fea-
tures, which are in vector-form, are reshaped to matrix-form
and upsampled before being fused with the mask features by
element-wise summation. It is noted that feature relay only
fuses the box and mask features at the same stage since they
share the common RoI locations. When feature relay is com-
bined with sample consistency, it is only applied to the last
stage, as shown in Figure 2c.

The global context branch takes as input the backbone
features and outputs the multi-label predictions and global
context features. Figure 5 shows the global context branch
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Figure 4: Architecture of feature relay. Here, “N” and “P”
denotes the number of total samples and positive samples,
respectively. “FC”, “×4 Conv”, and “Dconv” denote fully
connected layer, four consecutive convolution layers, and a
deconvolution layer, respectively.
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Figure 5: Global context branch takes the top-level features
(P6) of FPN (Lin et al. 2017) as the input and produces
multi-label predictions and global context features. Here,
“×2 RB“ and “GAP” denotes two residual blocks and a
global average pooling layer, respectively.

on the FPN backbone features. First, the top-level features
of FPN are fed into two consecutive residual blocks, fol-
lowed by global average pooling. The pooled features are
used in two sub-branches, which are multi-label classifica-
tion and global context features. The multi-label predictions
are supervised by all the known objects in the image, and the
context features are used to fuse with box and mask features,
as shown in Figure 3d.

Training
The proposed SCNet can be trained in an end-to-end manner
using multi-task loss as follows:

L =
T∑

t=1

αt(Lcls
t +Lreg

t ) + βLmask + γLsema + λLglbctx.

(3)
Here, Lcls, Lreg , Lmask, and Lsema are the losses of clas-
sification, regression, mask prediction, and semantic predic-
tion, respectively. The concrete loss types and loss weights
(i.e., αt and γ) are referred to in (Chen et al. 2019a) without
any modifications. Since effective sample consistency uses
only one mask branch, the mask loss weight is re-weighted
to equal the summation of stage-wise loss weights:

β =
T∑

t=1

αt. (4)

Besides, SCNet introduce a new global context loss Lglbctx,
which performs multi-label classification and is imple-
mented using binary cross entropy.

Experiments
Implementation Details
The default model consists of 3 cascading stages with the
ResNet FPN (Lin et al. 2017) being the backbone net-
work. The stage loss weights and semantic loss weight,
which are adopted from (Chen et al. 2019a), are set to
α = [1, 0.5, 0.25] and γ = 0.2, respectively. The global
context loss weight is set to λ = 3.

In all experiments, the long edge and short edge of the
images are resized to 1333 and 800, respectively, without
changing the aspect ratio. No data augmentation is used ex-
cept for standard horizontal image flipping. PyTorch (Paszke
et al. 2017) and MMDetection (Chen et al. 2019b) are used
for implementation. The models are trained with 8 GPUs
with a batch size of 16 (two images per GPU) for 20 epochs
using SGD optimizer. The learning rate is initialized to 0.02
and divided by 10 after 16 and 19 epochs, respectively. It
takes about one day for the models to converge on 8 Tesla
V100 GPUs.

During test time, object proposals are progressively re-
fined by box branches of different stages. The final classifi-
cation score for each detected box is obtained by averaging
the scores of multiple classifiers, referred to in Cascade R-
CNN (Cai and Vasconcelos 2018). Only the detected boxes
with classification scores higher than a threshold of 0.001
are segmented by the mask branch.

Detection and segmentation results are evaluated with the
standard COCO-style Average Precision (AP) metric. The
runtime is measured on a single Tesla V100 GPU.

Benchmarking Results
The performance of SCNet is compared to that of recent
state-of-the-art instance segmentation methods, including
Cascade Mask R-CNN (Cai and Vasconcelos 2019) and Hy-
brid Task Cascade (HTC) (Chen et al. 2019a). For a fair
comparison, the semantic branch, referred to in (Chen et al.
2019a), is adopted for all the cascade models. Besides, SC-
Net is also benchmarked with other non-cascade models,
including Mask R-CNN (He et al. 2017) and PANet (Liu
et al. 2018), LevelSet R-CNN (Homayounfar et al. 2020),
BlendMask (Chen et al. 2020), BMask R-CNN (Cheng et al.
2020), and D2Det (Cao et al. 2020).

Table 1 reports the benchmarking results of the state-of-
the-art segmentation methods. Overall, the cascade models
show better box AP and mask AP than those of the non-
cascade ones. Among cascade models, the proposed SCNet
achieves the best performance in not only box AP and mask
AP but also inference speed, irrespective of the backbone
strength. In particular, with the default setting of backbone
ResNet-50, the proposed SCNet achieves 1.3 and 2.3 points
box AP and mask AP improvements, respectively. The mask
AP at different IoU thresholds (AP50, AP75) and object
scales (APS , APM , APL) are also consistently higher than
other methods. Regarding inference speed, SCNet runs at
6.2 fps, which is 1.7 fps (38%) faster than Cascade Mask R-
CNN and HTC. When applying better backbones of ResNet-
101 or ResNeXt-101, SCNet also outperforms other meth-
ods among the benchmarking metrics, demonstrating the

2705



Type Method Backbone AP AP50 AP75 APS APM APL APbb Speed (fps)

None-
cascade
methods

Mask R-CNN

ResNet-50

35.6 57.6 38.0 18.9 38.4 46.4 38.9 7.7
PANet 36.6 58.0 39.9 16.3 38.1 52.4 41.2 -
LevelSet R-CNN 36.4 - - - - - - -
BlendMask 37.0 58.9 39.7 17.3 39.4 52.5 - -
BMask R-CNN 35.9 57.0 38.6 15.8 37.6 52.2 - -

D2Det ResNet-101 40.2 61.5 43.7 - - - 45.4 -

Cascade
methods

Cascade Mask R-CNN
ResNet-50

37.9 59.8 40.8 20.2 40.2 50.2 43.7 4.5
HTC 38.5 60.1 41.7 20.4 40.6 51.2 43.6 4.5
SCNet (ours) 40.2 62.3 43.4 22.4 42.8 53.4 45.0 6.2
Cascade Mask R-CNN

ResNet-101
39.2 61.3 42.4 20.9 41.7 52.2 45.3 4.4

HTC 39.7 61.8 43.0 20.9 42.4 53.0 45.1 4.4
SCNet (ours) 41.3 63.9 44.8 22.7 44.1 55.2 46.4 5.8
Cascade Mask R-CNN

ResNeXt-101
40.9 63.7 44.2 22.4 43.5 54.2 47.3 3.7

HTC 41.3 63.9 44.8 22.7 44.0 54.7 47.2 3.7
SCNet (ours) 42.7 65.7 46.4 24.1 45.7 56.3 48.3 4.6

Table 1: Benchmarking results between the proposed SCNet and other state-of-the-art methods on COCO test-dev. Here,
AP and APbb are the mask AP and box AP, respectively. The semantic branch (Chen et al. 2019a) is used for all cascade models.

Cascade Mask R-CNN Sample Consistency Feature Relay Global Context AP AP50 AP75 APbb Speed (fps)

X 37.4 59.0 40.0 43.3 4.5
X X 38.8 59.8 41.7 43.5 6.5
X X 38.0 59.2 40.8 43.4 4.1
X X 38.3 59.8 41.2 44.5 4.4
X X X 39.0 60.0 41.9 43.7 6.3
X X X X 39.8 61.4 42.7 44.6 6.2

Overall Improvement +2.4 +2.4 +2.7 +1.3 +1.7

Table 2: Ablation study of the proposed SCNet on COCO val, the baseline is Cascade Mask R-CNN (Cai and Vasconcelos
2019) with semantic (Chen et al. 2019a)

effectiveness of the proposed method. Qualitatively, Fig-
ure 6 shows the visual comparison of the proposed SC-
Net with other cascade models. It is clear that SCNet pro-
duces more accurate the number of instances with better-
segmented masks.

Ablation Study
Component-wise Analysis. To demonstrate the effective-
ness of the proposed SCNet, a comprehensive component-
wise analysis is performed, where different components are
omitted. The results are reported in Table 2. Here, the base-
line is Cascade Mask R-CNN (Cai and Vasconcelos 2019)
with the semantic branch (Chen et al. 2019a) being applied,
yielding the box AP and mask AP of 43.3 and 37.4, respec-
tively. When sample consistency is ensured, the mask AP
increases significantly to 38.8. The inference speed is also
improved to 6.5 fps. When feature relay and global con-
text are applied, the mask AP improvements are 0.6 and 0.9
points, respectively. When sample consistency and feature
relay is combined, the mask AP increase from 38.8 to 39.0.
The improvement of 0.2 points is because of the number of
feature relay modules reduces from 3 to 1 when sample con-

CM R-CNN Naive SC Effective SC AP AP bb Speed (fps)

X 37.4 43.3 4.5
X X 38.0 43.5 4.5
X X 38.8 43.5 6.5

Table 3: Comparison between naive and effective sample
consistency (denoted as SC). Cascade Mask R-CNN is de-
noted as CM R-CNN.

sistency is combined with feature relay. The combination of
all components brings the best mask and box AP of 39.8
and 33.6, respectively. Overall, SCNet achieves respectively
2.4 points, 1.3 points and 1.7 fps improvements in terms of
mask AP, box AP, and inference speed in comparison with
the baseline.

Sample Consistency. To demonstrate the effectiveness of
sample consistency, the experiments of the naive and effec-
tive sample consistency are reported, as shown in Table 3.
When naive sample consistency is applied, the mask AP
is improved from 37.4 to 38.0 and the speed is kept un-
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Figure 6: Qualitative comparison between the proposed SCNet and other methods on COCO val (zoom-in for best view).
The proposed SCNet produces more accurate the number of instances with better segmented masks.

Model Feature Relay AP APbb Speed (fps)

Mask R-CNN N 35.1 38.4 7.7
Y 35.7 38.3 7.4

Cascade Mask R-CNN N 37.4 43.3 4.5
Y 38.0 43.4 4.1

Table 4: Ablation study on Feature Relay.

changed of 4.5 fps. This is because the naive sample con-
sistency still requires multiple mask branches. When effec-
tive sample consistency is used, both mask AP and infer-
ence speed are significantly improved. The inference speed
is faster since it avoid the repetition of expensive operations
through stages. The better mask AP shows that using a single
deep network is more beneficial compared to using multiple
shallow ones.

Feature Relay. The feature relay fuses the adapted box
features with the mask features to achieves better mask pre-
diction. feature relay can be seamlessly applied to common
segmentation methods, such as Mask R-CNN and Cascade
R-CNN. Table 4 shows that feature relay can improve mask
AP by 0.6 points in both Mask R-CNN and Cascade Mask
R-CNN with marginal computational overhead. The box AP
is comparable to the baseline since the feature relay aims to
improve the mask predictions only.

Global Context. The effectiveness of global context
branch under different settings is studied in Table 5. Here,
when the global context is not used (λ is “None”), SC-
Net achieves the mask AP of 39.0. When the global con-
text branch is used but the loss weight is set to 0, the mask

λ AP AP50 AP75 APS APM APL APbb

None 39.0 60.0 42.0 20.2 41.8 54.5 43.7
0 39.6 61.3 42.6 21.9 42.7 54.8 44.4
1 39.6 61.3 42.6 21.9 42.8 55.0 44.5
2 39.7 61.2 42.8 21.7 42.9 55.1 44.6
3 39.8 61.4 42.7 22.1 43.0 54.5 44.6
5 39.6 61.3 42.6 21.8 42.7 55.0 44.5

Table 5: Ablation study of the global context loss weight λ.

AP increase to 39.6. The performance increases when the
loss weight is greater than 0 and is not sensitive to the loss
weight. Setting the weight to 3 achieves the best overall per-
formance, which is 0.8 points mask AP improvement.

Conclusion

This paper introduces SCNet, a simple yet effective archi-
tecture for instance segmentation. The proposed SCNet en-
sures sample consistency of IoU distribution in training and
inference while speeding up the network. Furthermore, SC-
Net strengthens the relationships of the sub-tasks by fea-
ture relay and global context. Extensive experiments on the
standard COCO dataset show the effectiveness of the pro-
posed method in multiple evaluation metrics. In concrete,
while running at a faster inference speed, the proposed SC-
Net improves the Average Precision of the box and mask
predictions by respectively 1.3 and 2.3 points compared to
the strong Cascade Mask R-CNN baseline.
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