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Abstract

When describing an image, reading text in the visual scene
is crucial to understand the key information. Recent work ex-
plores the TextCaps task, i.e. image captioning with reading
Optical Character Recognition (OCR) tokens, which requires
models to read text and cover them in generated captions. Ex-
isting approaches fail to generate accurate descriptions be-
cause of their (1) poor reading ability; (2) inability to choose
the crucial words among all extracted OCR tokens; (3) rep-
etition of words in predicted captions. To this end, we pro-
pose a Confidence-aware Non-repetitive Multimodal Trans-
formers (CNMT) to tackle the above challenges. Our CNMT
consists of a reading, a reasoning and a generation modules,
in which Reading Module employs better OCR systems to en-
hance text reading ability and a confidence embedding to se-
lect the most noteworthy tokens. To address the issue of word
redundancy in captions, our Generation Module includes a
repetition mask to avoid predicting repeated word in captions.
Our model outperforms state-of-the-art models on TextCaps
dataset, improving from 81.0 to 93.0 in CIDEr. Our source
code is publicly available 1.

Introduction
Image Captioning has emerged as a prominent area at the
intersection of vision and language. However, current Image
Captioning datasets (Chen et al. 2015; Young et al. 2014)
and models (Anderson et al. 2018; Huang et al. 2019) pay
few attention to reading text in the image, which is crucial to
scene understanding and its application, such as helping vi-
sually impaired people understand the surroundings. For ex-
ample, in Figure 1, Ushahidi on the screen tells the user the
website he is browsing. To address this drawback, Sidorov
et al. has introduced TextCaps (Sidorov et al. 2020) dataset,
which requires including text in predicted captions.

In order to generate captions based on text from images,
the model needs to (1) recognize text in the image with
Optical Character Recognition (OCR) methods; (2) capture
the relationship between OCR tokens and visual scenes;
(3) predict caption tokens from fixed vocabulary and OCR
tokens based on previous features. Current state-of-the-art
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Figure 1: Our model extracts text in image with better OCR
systems and records their recognition confidence as confi-
dence embedding, which represents semantic importance of
OCR tokens. After reasoning with objects and text features,
it predicts caption tokens with a repetition mask to avoid re-
dundancy.

model M4C-Captioner (Sidorov et al. 2020), adapted to
the TextCaps task from M4C (Hu et al. 2020), fuses vi-
sual modality and text modality by embedding them into a
common semantic space and predicts captions with multi-
word answer decoder based on features extracted from mul-
timodal transformers (Vaswani et al. 2017).

While M4C-Captioner manages to reason over text in im-
ages, it is originally designed for TextVQA (Singh et al.
2019), and thus fails to fit into Image Captioning task.
It mainly has three problems. Firstly, its OCR system
Rosetta (Borisyuk, Gordo, and Sivakumar 2018) is not ro-
bust enough, making it suffer from bad recognition results.
As words in captions come from either pre-defined vocab-
ulary (common words) or OCR tokens, even a tiny error in
recognizing uncommon words can lead to missing key in-
formation of the image.

Secondly, compared with answers in TextVQA where
all OCR tokens can be queried in questions, captions in
TextCaps should only focus on the most important OCR to-
kens in the image. In Figure 1, the key OCR tokens should
be nokia and ushahidi, while others like location, descrip-
tion are dispensable. In fact, having these words in captions
makes them verbose and even has negative effects. However,
M4C-Captioner simply feeds all the OCR tokens into trans-
formers without paying attention to their semantic signifi-
cance, so irrelevant OCR tokens can appear in captions.
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Thirdly, due to the use of Pointer Network (Vinyals, For-
tunato, and Jaitly 2015) which directly copies input OCR
tokens to output, M4C-Captioner’s decoding module tends
to predict the same word multiple times (e.g. describe one
object or OCR token repeatedly) in captions, like describing
the image in Figure 1 as a nokia phone saying nokia. This
redundancy leads to less natural captions which also misses
key information ushahidi, thus it should be avoided.

In this paper, we address these limitations with our new
model Confidence-aware Non-repetitive Multimodal Trans-
formers (CNMT), as shown in Figure 1. For the first issue,
we employ CRAFT (Baek et al. 2019b) and ABCNet (Liu
et al. 2020) for text detection, and four-stage STR (Baek
et al. 2019a) for text recognition. These new OCR systems
help to improve reading ability of our model.

For the second issue, we record recognition confidence
of each OCR token as a semantic feature, based on the in-
tuition that OCR tokens with higher recognition confidence
are likely to be crucial and should be included in captions,
as they are frequently more conspicuous and recognizable.
For instance, among all the OCR tokens in Figure 1, tokens
with high recognition confidence (nokia, ushahidi) are con-
sistent with our analysis on the key information in the image,
while less recognizable ones (location, description) match
dispensable words. Besides, tokens with lower confidence
are more likely to have spelling mistakes. Therefore, we use
recognition confidence to provide confidence embedding of
OCR tokens. In Reasoning Module, OCR tokens and their
recognition confidence are embedded together with multi-
ple OCR token features, and fed into the multimodal trans-
formers with object features of the image, fusing these two
modalities in a common semantic space.

For the third issue, we apply a repetition mask on the orig-
inal pointer network (Vinyals, Fortunato, and Jaitly 2015)
in the decoding step, and predict caption tokens iteratively.
Repetition mask helps our model avoid repetition by mask-
ing out words that have appeared in previous time steps. We
ensure that the repetition mask ignores common words such
as a, an, the, of, says, for they act as an auxiliary role in
captions and are essential for fluency. As shown in Figure 1,
at decoding step t, predicted score of nokia is masked out
as it appeared at step 2, allowing our model to generate the
correct caption a nokia phone saying ushahidi without rep-
etition. Meanwhile, previously predicted common words a,
saying is not affected in case of necessary repetition of them.

In summary, our contributions are threefold: (1) We
propose our Confidence-aware Non-repetitive Multimodal
Transformers (CNMT) model, which employs better OCR
systems to improve reading ability, and uses confidence em-
bedding of OCR tokens as representation of semantic signif-
icance to select the most important OCR tokens; (2) With the
repetition mask, our model effectively avoids redundancy in
predicted captions, and generates more natural captions; (3)
Our model significantly outperforms current state-of-the-art
model of TextCaps dataset by 12.0 in CIDEr on test set, im-
proving from 81.0 to 93.0.

Related Work
Text based Image Captioning. In recent years, many works
have focused on vision or language tasks (Zheng et al. 2019;
Gao et al. 2020; Liao et al. 2020). Conventional Image Cap-
tioning datasets (Chen et al. 2015; Young et al. 2014) aim to
describe each image with a caption, but they tend to ignore
text in the images as another modality, which is of great im-
portance when describing the key information in the image.
Recently TextCaps (Sidorov et al. 2020) dataset has been in-
troduced, which requires reading text in the images. State-
of-the-art models for conventional Image Captioning like
BUTD (Anderson et al. 2018), AoANet (Huang et al. 2019)
fail to describe text in TextCaps images. M4C-Captioner
(Sidorov et al. 2020), adapted from TextVQA (Singh et al.
2019) benchmark model M4C (Hu et al. 2020), is proposed
to fuse text modality and image modality to make predic-
tions. It employs multimodal transformers (Vaswani et al.
2017) to encode image and text and predicts captions with an
iterative decoding module. However, its performance is lim-
ited by poor reading ability and its inability to select the most
semantically important OCR token in the image. Besides,
its decoding module, originally designed for TextVQA task,
shows redundancy in predicted captions. In this paper, we
propose our CNMT model, which applies confidence em-
bedding, better OCR systems and a repetition mask to ad-
dress these limitations.

Optical Character Recognition (OCR). OCR helps to
read text in images, which is crucial to TextCaps task.
OCR involves two steps: detection (find text regions in
the image) and recognition (extract characters from text re-
gions). One way of text detection method is to use box re-
gression adapted from popular object detectors (Liao, Shi,
and Bai 2018). Another method is based on segmenta-
tion (Long et al. 2018). For text detection, CRAFT (Baek
et al. 2019b) effectively detects text regions by exploring
character-level affinity. Recent work ABCNet (Liu et al.
2020) presents a way to fit arbitrarily-shaped text by using
Adaptive Bezier-Curve. For scene text recognition (STR),
existent approaches have benefited from the combination
of convolutional neural networks and recurrent neural net-
works (Shi, Bai, and Yao 2016) and employment of trans-
formation modules for text normalization such as thin-plate
spline (Shi et al. 2016). Baek et al. introduce four-stage STR
framework for text recognition. As for the TextCaps task,
M4C-Captioner uses Rosetta (Borisyuk, Gordo, and Sivaku-
mar 2018) as OCR processor, but it is not robust enough to
read text correctly. To solve this problem, our model adapts
CRAFT (Baek et al. 2019b) and ABCNet (Liu et al. 2020)
as the detection module, and four-stage STR (Baek et al.
2019a) as the recognition module.

Methods
Pipeline Overview
Our CNMT is composed of three modules as shown in Fig-
ure 2. The input image is first fed into Reading Module to
extract OCR tokens along with their recognition confidence,
as the token-confidence table on the top right part. Then Rea-
soning Module extracts object features of the image, embeds
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Figure 2: Overview of our CNMT model. In Reading Module, we extract OCR tokens with better OCR systems, and record their
recognition confidence; Then Reasoning Module fuses OCR token features and object features with multimodal transformers,
and Generation Module predicts caption tokens iteratively from a fixed vocabulary OCR tokens based on pointer network. A
repetition mask is employed to avoid repetition in predictions.

objects and OCR features into a common semantic space,
and fuses them and previous output embedding with mul-
timodal transformers. Finally, Generation Module uses out-
put of the multimodal transformers and predicts caption to-
kens iteratively based on Pointer Network and the repetition
mask, like predicting LG at current step.

Reading Module
As shown in the top part of Figure 2, Reading Module de-
tects text regions in the image, and extract OCR tokens from
these regions, jointly with confidence features of tokens.

OCR systems. We use two models for text detection,
CRAFT (Baek et al. 2019b) and ABCNet (Liu et al. 2020).
Text regions detected separately by CRAFT and ABCNet
are combined together and fed into the text recognition part,
as the four blue OCR boxes in the top part of Figure 2. For
text recognition, we use deep text recognition benchmark
based on four-stage STR framework (Baek et al. 2019a). We
combine OCR tokens extracted from our new OCR systems
with the original Rosetta OCR tokens, and feed them into
Reasoning Module.

Confidence embedding. Our previously mentioned intu-
ition is that OCR tokens with higher recognition confidence
tend to be crucial that should be included in captions, as
they are frequently more conspicuous, recognizable and less
likely to have spelling mistakes. Based on this, we record
recognition confidence xconf of each OCR token from our
text recognition system STR, where xconf is between 0 and
1. We then feed these confidence features into the next mod-
ule to provide confidence embedding. As original Rosetta
tokens do not include recognition confidence, OCR tokens
that only appear in Rosetta recognition result are recorded

by a default confidence value cdefault. As shown in the top
right part of Figure 2, we get several token-confidence pairs
as the result of Reading Module.

Reasoning Module
For Reasoning Module we mainly follow the design of
M4C-Captioner (Sidorov et al. 2020), but with better OCR
token embedding. As shown in the bottom left part of Fig-
ure 2, object features and OCR token features are jointly
projected to a d-dimensional semantic space, and extracted
by multimodal transformers.

Object embedding. To get object embedding, we ap-
ply pretrained Faster R-CNN (Ren et al. 2015) as the
detector to extract appearance feature xfr

m of each ob-
ject m. In order to reason over spatial information of
each object, we denote its location feature by xb

m =
[xmin/W, ymin/H, xmax/W, ymax/H]. The final object
embedding xobj

m is projected to a d-dimensional vector as

xobj
m = LN(W1x

fr
m ) + LN(W2x

b
m) (1)

, where W1 and W2 are learnable parameters, and LN de-
notes layer normalization.

OCR token embedding. To get rich representation of
OCR tokens, we use FastText (Bojanowski et al. 2017),
Faster R-CNN, PHOC (Almazán et al. 2014) to extract sub-
word feature xft, appearance feature xfr and character-level
feature xp respectively. Location feature is represented as
xb
i = [xmin/W, ymin/H, xmax/W, ymax/H]. Then we add

the confidence feature xconf , based on the intuition that our
model should focus more on tokens with higher recognition
confidence. The final OCR token embedding xocr

i is a list of
d-dimensional vectors
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xocr
i = LN(W3x

ft
i +W4x

fr
i +W5x

p
i )

+LN(W6x
b
i ) + LN(W7x

conf
i )

(2)

where W3, W4, W5, W6 and W7 are learnable parameters,
and LN denotes layer normalization.

Multimodal transformers. After extracting object em-
bedding and OCR token embedding, a stack of transformers
(Vaswani et al. 2017) are applied to these two input modali-
ties, allowing each entity to attend to other entities from the
same modality or the other one. Decoding output of previous
step is also embedded and fed into the transformers, like pre-
vious output says in Figure 2. Previous decoding output xdec

t−1
is the corresponding weight of the linear layer in Generation
Module (if previous output is from vocabulary), or OCR to-
ken embedding xocr

n (if from OCR tokens). The multimodal
transformers provide a list of feature vectors as output:

[zobj , zocr, zdect−1] = mmt([xobj , xocr, xdec
t−1]) (3)

where mmt denotes multimodal transformers.

Generation Module
Generation Module takes output of multimodal transformers
in Reading Module as input, predicts scores of each OCR
token and vocabulary word, employs the repetition mask,
and selects the predicted word of each time step, as shown
in the bottom right part of Figure 2.

Predicting scores. Each token in the predicted caption
may come from fixed vocabulary words {wvoc

n } or OCR to-
kens {wocr

i }. Following the design of M4C-Captioner, we
compute scores of these two sources based on transformer
output zdect−1 (corresponding to input xdec

t−1). Scores of fixed
vocabulary words and OCR tokens are calculated with a lin-
ear layer and Pointer Network (Vinyals, Fortunato, and Jaitly
2015) respectively. Pointer Network helps to copy the input
OCR token to output. Linear layer and Pointer Network gen-
erate a V dimensional OCR score yocrt and a N dimensional
vocabulary score yvoct . Here V is the number of words in the
fixed vocabulary and N is pre-defined max number of OCR
tokens in an image. This process can be shown as:

yocrt = PN(zdect−1) (4)

yvoct = Wzdect−1 + b (5)
where PN denotes Pointer Network. W and b are learnable
parameters.

Previous approaches consider scores of OCR tokens and
vocabulary separately even if one word appears in both
sources. However, this may lead to two sources competing
with each other and predicting another inappropriate word.
Therefore, we add scores of one word from multiple sources
together to avoid competition. Adding scores of n-th vocab-
ulary word can be described as:

yaddt,n = yvoct,n +
∑

i:wocr
i =wvoc

n
yocrt,i (6)

Then the final scores are the concatenation of added vo-
cabulary scores and OCR scores:

yt = [yaddt , yocrt ] (7)

Repetition mask. As we have mentioned in Section 1,
repetition in captions brings negative effects on their fluency.
In order to avoid repetition, we apply a repetition mask in
Generation Module. At step t of inference, the N + V di-
mensional concatenated scores yt is added by a mask vector
Mt ∈ RN+V , where the i-th element of Mt is

Mt,i =

{
−∞ if wordi appeared in previous steps
0 otherwise

(8)
m is set to a minimum value. This helps to minimize the

scores of elements that have appeared in previous steps, like
the masked word billboard in Figure 2.

Note that M is applied only during inference. It focuses
on repeating words, so when one word appears in both fixed
vocabulary and OCR tokens or in multiple OCR tokens,
all the sources will be masked out together. In addition,
we ignore common words when applying mask, consider-
ing words like a, an, of, says, on are indispensable to the
the fluency of captions. Common words are defined as top-
C frequency words in ground-truth captions of training set,
where C is a hyper-parameter.

In Figure 3 we show an illustration of the repetition mask.
Each row shows outputs(left) and predicted scores(right) at
each decoding step. Since nokia is predicted at step 2, its
score is masked out from step 3 to the end (marked as grey).
Scores of phone are masked out from step 4. Common words
a and saying are not masked. This mask prevents our model
from predicting nokia at the last step.

Therefore, the output word at step t is calculated as

outputt = argmax(yt +Mt) (9)

Our model iteratively predicts caption tokens through
greedy search, starting with begin token 〈s〉. Decoding ends
when 〈\s〉 is predicted.

Figure 3: Illustration of the repetition mask. We show scores
of words and predicted word at each step. Grey indicates
masked word. Common words like a, saying are ignored for
their essentiality.
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# Method BLEU-4 METEOR ROUGE L SPICE CIDEr

1 BUTD (Anderson et al. 2018) 20.1 17.8 42.9 11.7 41.9
2 AoANet (Huang et al. 2019) 20.4 18.9 42.9 13.2 42.7
3 M4C-Captioner (Sidorov et al. 2020) 23.3 22.0 46.2 15.6 89.6

4 CNMT (ours) 24.8 23.0 47.1 16.3 101.7

Table 1: Evaluation on TextCaps validation set. We provide a comparison with prior works. Benefiting from better OCR systems,
recognition confidence embedding and the repetition mask, our model outperforms state-of-the-art approach by a significant
amount.

# Method BLEU-4 METEOR ROUGE L SPICE CIDEr

1 BUTD (Anderson et al. 2018) 14.9 15.2 39.9 8.8 33.8
2 AoANet (Huang et al. 2019) 15.9 16.6 40.4 10.5 34.6
3 M4C-Captioner (Sidorov et al. 2020) 18.9 19.8 43.2 12.8 81.0

4 CNMT (ours) 20.0 20.8 44.4 13.4 93.0

5 Human (Sidorov et al. 2020) 24.4 26.1 47.0 18.8 125.5

Table 2: Evaluation on TextCaps test set. Our model achieves state-of-the-art performance on all of the TextCaps metrics,
narrowing the gap between models and human performance.

Experiments
We train our model on TextCaps dataset, and evaluate its
performance on validation set and test set. Our model out-
performs previous work by a significant margin. We also
provide ablation study results and qualitative analysis.

Implementation Details
For text detection, we use pretrained CRAFT (Baek et al.
2019b) model and ABCNet (Liu et al. 2020) model with
0.7 confidence threshold. Affine transformation is applied
to adjust irregular quadrilateral text regions to rectangular
bounding box. We use pretrained four-stage STR framework
(Baek et al. 2019a) for text recognition. For OCR tokens
that only appear in Rosetta results, we set default confidence
cdefault = 0.90. We set the max OCR number N = 50,
and apply zero padding to align to the maximum number.
The dimension of the common semantic space is d = 768.
Generation Module uses 4 layers of transformers with 12 at-
tention heads. The other hyper-parameters are the same with
BERT-BASE (Devlin et al. 2018). The maximum number of
decoding steps is set to 30. Words that appear ≥ 10 times in
training set ground-truth captions are collected as the fixed
vocabulary, together with 〈pad〉, 〈s〉 and 〈\s〉 tokens. The
total vocabulary size V = 6736. Common word ignoring
threshold C of the repetition mask is set to 20.

The model is trained on the TextCaps dataset for 12000 it-
erations. The initial learning rate is 1e-4. We multiply learn-
ing rate by 0.1 at 5000 and 7000 iterations separately. At
every 500 iterations we compute the BLEU-4 metric on val-
idation set, and select the best model based on all of them.
The entire training takes approximately 12 hours on 4 RTX
2080 Ti GPUs. All of our experimental results are generated
by TextCaps online platform submissions.

Comparison with SoTA
We measure our model’s performance on TextCaps dataset
using BLEU (Papineni et al. 2002), METEOR (Banerjee and
Lavie 2005), ROUGE L (Lin 2004), SPICE (Anderson et al.
2016) and CIDEr (Vedantam, Lawrence Zitnick, and Parikh
2015), and mainly focus on CIDEr when comparing differ-
ent methods, following the original TextCaps paper (Sidorov
et al. 2020).

We evaluate our model on TextCaps validation set and test
set, and compare our results with TextCaps baseline mod-
els BUTD (Anderson et al. 2018), AoANet (Huang et al.
2019) and state-of-the-art model M4C-captioner(Sidorov
et al. 2020), as shown in Table 1 and Table 2. Our proposed
model outperforms state-of-the-art models on all five met-
rics by a large margin, improving by around 12 CIDEr scores
on both validation set and test set. While the original gap
between human performance and M4C-Captioner is 44.5 in
CIDEr, our model narrows this gap by 27% relative.

Ablation Study
We conduct ablation study on OCR systems, confidence em-
bedding and the repetition mask on validation set, and prove
their effectiveness.

Ablation on OCR systems. We first examine our new
OCR systems through ablation study. We extract new OCR
tokens with CRAFT and ABCNet and use four-stage STR
for recognition, combine them with the original Rosetta
OCR tokens, and extract their sub-word, character, appear-
ance and location features. To focus on OCR system im-
provement, other parts of the model are kept consistent with
M4C-Captioner. The result is shown in Table 3. Compared
with only using Rosetta-en, the model improves by around 3
CIDEr scores after employing CRAFT, and another 3 CIDEr
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OCR system(s) CIDEr
Rosetta 89.6 -
Rosetta + CRAFT 92.7 (+3.1)
Rosetta + CRAFT + ABCNet 95.5 (+5.9)

Table 3: OCR systems experiment on TextCaps validation
set. We keep other parts of the same configuration as M4C-
Captioner in order to focus on OCR improvements. Our two
detection modules CRAFT and ABCNet both bring signifi-
cant improvements.

OCR system(s) # Total tokens # In GT tokens

Rosetta-en 40.8k 5.5k

Rosetta-en +
CRAFT + ABCNet 117.5k 10.0k

Table 4: OCR tokens analysis on validation set. We compare
the original OCR system with our new ones, and demon-
strate that both number of total OCR tokens and number of
tokens that appear in ground truth captions have increased
by a large amount.

scores after jointly employing ABCNet and CRAFT.
Another analysis can be seen in Table 4, where we com-

pute number of all OCR tokens and tokens that appear in
ground truth captions to evaluate our OCR system improve-
ment. After employing new OCR systems, total OCR tokens
nearly tripled, and tokens that appear in ground truth cap-
tions nearly doubled, indicating our model’s stronger read-
ing ability. Jointly analyzing Table 3 and Table 4, we con-
clude that better OCR systems lead to a larger amount of
OCR tokens and thus higher probability to predict the cor-
rect word.

Ablations on confidence embedding. We evaluate the
performance of OCR confidence embedding by ablating
recognition confidence, as shown in Table 5. Comparing line
1 and 3, we find that confidence embedding helps to improve
performance by around 2.0 in CIDEr. This validates our in-
tuition that recognition confidence serves as a way to un-
derstand semantic significance of OCR tokens and select the
most important one when generating captions.

We compare our embedding method with a rather simple
one: simply multiply recognition confidence (scalar between
0 and 1) to the final OCR token embedding xocr

i . Through
this way, an OCR token is nearly a padding token (all ze-
ros) if its confidence is small. However, as shown in line 2,
this method actually brings negative effects, because it dis-
turbs the original rich OCR token embedding. It also lacks
learnable parameters, so the model is unable to decide the
importance of confidence on its own.

Ablations on the repetition mask. In Table 6 we pro-
vide ablation study on the repetition mask. It can be seen
that the repetition mask improve performance by a relatively
large amount of 3.6 in CIDEr. This proves our model’s abil-
ity to predict more fluent and natural captions after remov-

Method CIDEr
CNMT (w/o confidence) 99.7 -
CNMT (multiply confidence) 98.9 (-0.8)
CNMT (confidence embedding) 101.7 (+2.0)

Table 5: Ablation of confidence embedding on validation
set. Confidence embedding brings improvement on perfor-
mance, while simply multiplying confidence to OCR token
embedding leads to negative results.

Method Ignoring threshold C CIDEr
CNMT (w/o mask) - 98.1
CNMT 0 92.6
CNMT 10 101.6
CNMT 20 101.7
CNMT 50 99.4

Table 6: Ablation of the repetition mask on validation set.
Repetition mask helps to improve performance significantly.
Experiment on hyper-parameter C indicates that a small ig-
noring threshold has negative effects because of the essen-
tial auxiliary effects of these common words, while a large
threshold limits the scope of the repetition mask.

ing repeating words, which solves an existing problem of
previous approaches. Qualitative examples of therepetition
mask can be found in Figure 4 (a,c,g) where we give predic-
tions of M4C-Captioner and our CNMT model, and prove
our model’s ability to avoid repetition effectively.

To prove the essentiality of ignoring common words when
applying the repetition mask, we evaluate our model with an
indiscriminate repetition mask, i.e. all words include words
like a, an, says are masked out once they appear in previ-
ous steps. The result is shown in line 2 of Table 6, where
we find a large decrease in CIDEr, demonstrating the impor-
tance of ignoring common words. In fact, we find indiscrim-
inate mask often generating unnatural captions, such as a
poster for movie called kaboom with man holding gun where
articles a are masked out, or a coin from 1944 next to other
monedas where money is replaced with rarely used synonym
monedas. Such examples indicate that it is necessary to al-
low repetition of common words.

We conduct further experiments on hyper-parameter C,
which is shown in Table 6. When C is set to a relatively
small value, the repetition mask is applied on more com-
monly appeared words, and becomes indiscriminate when
C = 0. On the contrary, when C is set to a large value,
the scope of the repetition mask is limited, which brings
negative effects. We observe that the best performance is
achieved when C is set to 20.

Qualitative Analysis
In Figure 4 we provide example images of validation set
and predictions from our model and M4C-Captioner. In
Figure 4 (e), with the help of confidence embedding, our
model chooses the most recognizable OCR token 21 instead
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a b c d

M4C-Captioner: a plate of
food is on a table with a plate
of food and a plate of honghe
on it.
Ours: a plate of food is on a
table with a box that says
honghe.
Human: a plate of skewed
meat sits on a table next to a
pack of honghe cigarettes.

M4C-Captioner: a bottle of
double ipa is next to a
glass.
Ours: a bottle of india pale
ale is next to a glass.
Human: a bottle of india
pale ale is next to a glass of
beer.

M4C-Captioner: a sign for
dog dog hangs on the side
of a building.
Ours: a billboard for dog
janitor hangs on a street.
Human: a billboard for dog
janitor is on a pole next to
a building.

M4C-Captioner: a sign for
the wrigley field of chicago
cubs.
Ours: a sign for the wrigley
home of chicago field.
Human: the digital sign at
wrigley field states "welcome
to wrigley field".

e f g h

M4C-Captioner: a baseball
field with a banner that says
cket.
Ours: a baseball player with
the number 21 on his jersey is
standing on the field.
Human: a player on a field
with the number 21 on their
back.

M4C-Captioner: a wooden
box with a sign that says
the urban ketplace.
Ours: a wooden door with a
sign that says the urban
wood marketplace.
Human: wooden wall with
a yellow sign that says "the
urban wood marketplace".

M4C-Captioner: a bottle
of gireau gireau pure
french gin.
Ours: a bottle of gireau
gin is on a wooden shelf.
Human: a bottle of gireau
gin is sitting on a wooden
shelf.

M4C-Captioner: a paper
that says opt-out!! on it.
Ours: a paper that says stop
before all school on it.
Human: a piece of paper on
a wall informs of a deadline
of oct. 1.

Figure 4: Qualitative examples on TextCaps validation set. Yellow indicates words from OCR tokens. Italic font indicates
repetitive words. Compared to with previous work, our model has better reading ability, and can select the most important
words from OCR tokens with confidence embedding. It also avoids repetition in predictions compared with M4C-Captioner.

of out-of-region word CKET which is predicted by M4C-
Captioner. Figure 4 (b,f) shows our model’s robust reading
ability towards curved text and unusual font text. From Fig-
ure 4 (a,c,g) we can see that our model significantly avoids
repetition of words from both vocabulary and OCR tokens,
and generates more fluent captions. While our model can
detect multiple OCR tokens in the image, it is not robust
enough to combine these tokens correctly, as shown in Fig-
ure 4 (d) where our model puts the token field in a wrong po-
sition. In Figure 4 (h), our model fails to infer deadline from
text before Oct. 1. As it requires more than simply reading,
reasoning based on text remains a tough issue of predicting
captions on the TextCaps dataset.

Conclusion
In this paper we introduce CNMT, a novel model for
TextCaps task. It consists of three modules: Reading mod-
ule which extracts text and recognition confidence, Rea-
soning Module which fuses object features with OCR to-
ken features, and Generation Module which predicts cap-

tions based on output of Reading module. With recogni-
tion confidence embedding of OCR tokens and better OCR
systems, our model has stronger reading ability compared
with previous models. We also employ a repetition mask to
avoid redundancy in predicted captions. Experiments sug-
gest that our model significantly outperforms current state-
of-the-art model of TextCaps dataset by a large margin. We
also present a qualitative analysis of our model. Further re-
search on avoiding repetition may include making the model
learn by itself with reinforcement learning approach. As for
semantic significance of OCR tokens, other features besides
recognition confidence can be explored. We leave these as
future work.
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