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Abstract

We propose a novel convolutional neural network (Con-
vNet) equipped with two new semantic calibration and re-
finement approaches for automatic polyp segmentation from
colonoscopy videos. While ConvNets set state-of-the-are per-
formance for this task, it is still difficult to achieve satisfac-
tory results in a real-time manner, which is a necessity in
clinical practice. The main obstacle is the huge semantic gap
between high-level features and low-level features, making
it difficult to take full advantage of complementary seman-
tic information contained in these hierarchical features. Com-
pared with existing solutions, which either directly aggregate
these features without considering the semantic gap or em-
ploy sophisticated non-local modeling techniques to refine
semantic information by introduce many extra computation-
al costs, the proposed ConvNet is able to more precisely yet
efficiently calibrate and refine semantic information for bet-
ter segmentation performance without increasing model com-
plexity; we call the proposed ConvNet as SCR-Net, which
has two key modules. We first propose a semantic calibration
module (SCM) to effectively transmit the semantic informa-
tion from high-level layers to low-level layers by learning the
semantic-spatial relations during the training procedure. We
then propose a semantic refinement module (SRM) to, based
on the features calibrated by SCM, enhance the discrimina-
tion capability of the features for targeting objects. Extensive
experiments on the Kvasir-SEG dataset demonstrate that the
proposed SCR-Net is capable of achieving better segmenta-
tion accuracy than state-of-the-art approaches with a faster
speed. The proposed techniques are general enough to be
applied to similar applications where precise and efficien-
t multi-level feature fusion is critical. The code is available
at https://github.com/jiafuz/SCR-Net.

Introduction
Colorectal cancer (CRC) is a common malignant tumor in
the gastrointestinal tract. Fortunately, we can effectively pre-
vent the CRC if the colon polyps, the masses bulging on the
surface of colon, are removed in time before developing to
the CRC (Kolligs 2016). Colonoscopy is the primary method
for prevention of colon cancer, in which a tiny camera is nav-
igated into the colon in order to locate and remove polyps.
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Figure 1: Illustration of challenges in automatic polyp seg-
mentation: (a)-(b) small polyps, (c)-(d) middle polyps, and
(e)-(f) large polyps, while (b), (d) and (e) show the polyps
with low contrast to the background.

However, according to the study reported in (Leufkens et al.
2012), one out of every four polyps was missed during the
colonoscopy procedures. Therefore, automatic approach to
identifying and segmenting polyps from colonoscopy videos
is highly demanded to improve the outcome of colonoscopy.

Precisely segment polyps from colonoscopy videos is in-
deed a challenging task. First, the variation of polyps is quite
large; see Fig. 1 (a)-(f). Second, the low intensity contrast
between polyp and background may worsen the discrimina-
tion of foreground features and hence increase the proba-
bility of incorrect segmentation, see Fig. 1 (b) and (d)-(e).
Third, the segmentation should be carried out in a real-time
manner, as it is anticipated that the results can be present-
ed to doctors immediately for their prompt action during the
colonoscopy procedures.

Early works for this task employ hand-crafted features
to distinguish polyps from background, including intensi-
ty distribution, geometric features, and volumetric proper-
ties (Jerebko, Franaszek, and Summers 2002; Jerebko et al.
2003; Yao et al. 2004; Gross et al. 2009). However, the rep-
resentative capability of these hand-crafted features is far
from sufficient to meet above-mentioned challenges. In re-
cent years, with the development of deep learning, more and
more effort has been dedicated to using convolutional neural
networks (CNNs) to handle this challenging task. For exam-
ple, Li et al. (Li et al. 2017) and Brandao et al. (Brandao et al.
2017) propose to use fully convolutional networks (FCNs) to
segment the polyps. However, the detailed boundary infor-
mation is always missing in FCN architecture due to a series
of down-sampling operations. Sun et al. (Sun et al. 2019)
propose to improve the feature representation ability by in-
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troducing the dilated convolution(Yu and Koltun 2015), but
it is difficult to find suitable receptive fields to capture the
appropriate contexts. ResU-Net++(Jha et al. 2019) attempts
to capture multi-scale contexts by introducing atrous spa-
tial pyramid pooling (Chen et al. 2017), but the multi-scale
contexts still cannot be fully harnessed due to the existing of
semantic gap between high-level and low-level features. Pra-
Net (Fan et al. 2020) proposes a reverse attention module to
calibrate misaligned predictions, but it still cannot effective-
ly model the global context to deal with large variation of
polyps. Overall, existing models are incapable of meeting
above-mentioned challenges and, simultaneously, maintain-
ing real-time performance to fulfill the clinical requirement.

In this paper, we propose a novel ConvNet equipped with
two new semantic calibration and refinement approaches to
meet these challenges. Compared with existing solutions,
which either directly aggregate low-level and high-level fea-
tures without considering the semantic gap or employ so-
phisticated non-local modeling techniques to refine semantic
information by introducing many extra computational costs,
the proposed ConvNet, is able to more precisely yet effi-
ciently calibrate and refine semantic information for better
segmentation performance without increasing model com-
plexity; we call the proposed ConvNet as SCR-Net. The pro-
posed SCR-Net has two key components. We first propose
a semantic calibration module (SCM) to effectively trans-
mit the semantic information from high-level layers to low-
level layers by learning the semantic-spatial relations dur-
ing the training procedure, which is able to greatly allevi-
ate the semantic shift problem that cause blurring and im-
plausible boundaries. We further propose a semantic refine-
ment module (SRM) to, based on the features calibrated by
SCM, enhance the discrimination capability of the features
for targeting objects. Extensive experiments on the Kvasir-
SEG dataset (Jha et al. 2020) demonstrate the effectiveness
of the proposed method.

Our contributions can be summarized as:

• We propose a novel ConvNet to accurately segmen-
t polyps from colonoscopy videos in a real-time manner,
which has potential to be applied to colonoscopy exami-
nation and improve the outcomes of this intervention.

• We propose two novel and efficient semantic calibration
and refinement approaches to bridge the semantic gap be-
tween feature maps with different levels and hence take
full advantage of the complementariness of these fea-
tures to boost the segmentation performance; these two
approaches are general enough to be harnessed in appli-
cations with similar challenges.

• We evaluate the proposed ConvNet on a popular dataset
and experimental results demonstrate the proposed Con-
vNet achieves better segmentation results than state-of-
the-art approaches with a faster speed.

Related Work
Polyp Segmentation
Early studies for this task are mainly based on various hand-
crafted features. Nappi et al. (Nappi and Yoshida 2002) and

Yoshida et al. (Yoshida et al. 2002) first relied on hystere-
sis thresholding with volumetric properties (such as shape
and curvedness) to identify polyps. Jianhua et al. (Yao et al.
2004) also employed fuzzy clustering and deformable mod-
els for polyp segmentation. Sebastian et al. (Gross et al.
2009) and Ganz et al. (Ganz, Yang, and Slabaugh 2012) al-
so applied multi-scale filtering and a shape-based algorithm
to improve the segmentation accuracy respectively. Due to
the limited representation capability of the hand-crafted fea-
tures, these methods are not able to deal with challenging
cases and their performance also would be greatly degraded
when the datasets become larger.

Recently, with the rise of deep learning, convolutional
neural networks (CNN) have been used in this challenging
task. Li et al. (Li et al. 2017) and Brandao et al. (Bran-
dao et al. 2017) first used fully convolutional networks (FC-
Ns) (Long, Shelhamer, and Darrell 2015) to segment the
polyps. Sun et al. (Sun et al. 2019) introduced the dilated
convolution (Yu and Koltun 2015) to improve the feature
representation ability of U-Net (Ronneberger, Fischer, and
Brox 2015). ResU-Net++(Jha et al. 2019) also employed
atrous spatial pyramid pooling (Chen et al. 2017) to cap-
ture multi-scale contexts. Besides, Pra-Net(Fan et al. 2020)
further proposed a reverse attention module to calibrate the
misaligned predictions. However, these methods are still not
able to efficiently bridge the semantic gap among different
layers and utilize the non-local relations for better segmen-
tation accuracy with real-time performance.

Semantic Gap within Multi-level Feature Maps
U-Net (Ronneberger, Fischer, and Brox 2015) and many it-
s variants introduced skip connections to compensate for
the loss of spatial details caused by multiple pooling op-
erations. Despite preserving the dissipated spatial features,
the shallow features are too noisy to provide sufficient high-
resolution semantic guidance, resulting in a certain seman-
tic gap in the fusion among different level features. A lot
of effort have been devoted to alleviate this semantic gap.
To guide the feature fusion with more semantic information,
Exfuse (Zhang et al. 2018) embed high-level features into
low-level features based on an element-wise multiplication.
By introducing attention mechanisms, Attention U-Net (Ok-
tay et al. 2018) further optimized this process. MultiResU-
Net (Ibtehaz and Rahman 2020) integrated several convolu-
tions into the skip connection to resolve the disparity within
the features of different levels. SF-Net (Li et al. 2020) fur-
ther improved the feature fusion between adjacent feature
maps by minimizing semantic misalignment. In this paper,
we propose two efficient semantic calibration and refine-
ment modules to further address the semantic gap, which
can take full advantage of the complementariness within
multi-level feature maps to improve the segmentation per-
formance.

Method
Network Architecture
The architecture of our proposed SCR-Net is as shown in
Figure 2, which is mainly consists of a semantic calibra-

2917



Figure 2: Our proposed SCR-Net, which is mainly consists of a semantic calibration encoder and a semantic refinement decoder.
Our semantic calibration encoder obtains a better semantic transmission from deeper layer to the relative shallow layer based
on semantic calibration, while our semantic refinement decoder also enhances the feature discrimination between the polyps
and background tissues.

tion encoder and a semantic refinement decoder. As feature
maps extracted in two neighboring layers contain differen-
t semantic information, we can utilize the higher-level se-
mantic information in the deeper layer to enhance the fea-
ture map in current layer. To accurately transmit the rich
higher-level semantic information from (i + 1)th layer to
ith layer, we propose a semantic calibration module (SCM)
to replace the traditional bilinear upsampling operation. By
addressing the semantic misalignment problem based on our
SCM, we can obtain a better semantic fusion between two
neighboring feature maps in our encoder. For the top layer,
we further employ a pyramid pooling module (PPM) (Zhao
et al. 2017) to enrich the highest level semantics in our SCR-
Net with global context information. On the other hand, we
also introduce a semantic refinement module (SRM) to en-
hance the discrimination capability of the features for target-
ing objects in the decoder. According to the global context
information, we can simultaneously strengthen the targets
and weaken the backgrounds by re-weighting feature map-
s before the feature fusion in our decoder. Based on better
distinction between the polyps and other tissues, our SCR-
Net finally achieves a higher accuracy of polyp segmentation
from colonoscopy videos.

Semantic Calibration Module
To reinforce the higher-level semantic information in each
layer, we can employ a feature pyramid network (FPN) to
rearrange the feature maps extracted in the original encoder,
as shown in the middle of Figure 2. Because the resolution-
s of feature maps in two neighboring layers are different,
we need upsample the higher-level feature map in (i+ 1)th

layer to meet the resolution of feature map in ith layer for
feature pyramid fusion. Previously, the upsampling for tra-
ditional feature pyramid fusion is usually based on a simple
bilinear upsampling, which may cause semantic misalign-
ments and damage the transmission accuracy of higher-level

semantics from deeper layer to shallow layer. In this paper,
we employ a semantic calibration module (SCM) to replace
the traditional bilinear upsampling operation, aiming to ad-
dress the semantic misalignment problem based on the se-
mantic offset calculated between two neighboring layers in
the encoder.

The detailed implementation of our SCM is as shown
in Figure 3. To achieve semantic calibration before feature
pyramid fusion, The key issue for our SCM is how to ac-
curately obtain the semantic offset between two neighbor-
ing layers. Specifically, given two adjacent feature maps
Xi+1 ∈ RH×W×C and Xi ∈ R2H×2W×C/2, whereC is the
number of channels and H and W is the height and width
of the feature map, respectively. As shown in Figure 3, to
obtain a feature map with the same resolution and channel
number with Xi, we first apply a 1 × 1 convolution and a
bilinear upsampling to Xi+1, which can be written as

X
′

i+1 = Up(Conv1×1(Xi+1)) (1)

where Conv1×1(·) denotes the 1 × 1 convolution, and the
Up(·) denotes the bilinear upsampling. After concatenat-
ing X

′

i+1 and Xi together, we can further obtain a semantic
offset Si+1 with 2 channels based on a 3 × 3 convolution.
Therefore, our semantic offset Si+1 can be written as

Si+1 = Conv3×3(Cat(X
′

i+1,Xi)) (2)

where Conv3×3(·) denotes the 3 × 3 convolution, and the
Cat(·) represents a concatenation along the channel dimen-
sion. Note that, our 3×3 convolution calculates the semantic
offset based on the corresponding semantic flow field be-
tween X

′

i+1 and Xi. Based on the semantic offset Si+1, we
can calibrate the semantics in the higher-level feature map
Xi+1 by remapping each pixel in Xi+1 to a grid with the
same size as Xi. Finally, the calibrated higher-level feature
map can be fused with the feature map Xi, through which
we can accurately transmit the higher-level semantics from
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Figure 3: Semantic calibration module. By calibrating the
feature pyramid fusion based on the semantic flow offset,
our SCM can obtain a better transmission from the rich
higher-level semantic information in (i + 1)th layer to the
adjacent ith layer.

deeper (i + 1)th layer to ith layer for our feature pyramid
fusion in the encoder. Mathematically, above process can be
written as

Ii = Xi ⊕Map(X
′

i+1,Si+1) (3)
where the⊕ represents the broadcast element-wise addition,
the Ii represent the output of the SCM in the (i + 1th lay-
er, and the Map is implemented by adding a corresponding
semantic offset to each pixel in the feature map. Obvious-
ly, our SCM addresses the semantic misalignment problem
between two neighboring layers. Based on the semantic cali-
bration for the higher-level feature map, our SCR-Net obtain
a better semantic transmission from deeper layer to the rela-
tive shallow layer in feature pyramid fusion, which improves
the accuracy of polyp segmentation.

Semantic Refinement Module
Based on semantic reinforced feature map in each layer
in our semantic calibration encoder, we need further fuse
multi-level feature maps and restore the final dense predic-
tion to the original spatial resolution. However, due to the
contrast between the target objects and the backgrounds can
be very low for our polyp segmentation task, which makes
the target features and the background features very difficult
to discriminate, especially for the challenging cases where
have blur polyp boundaries, as shown in Figure 1. To en-
hance the discrimination capability of the features between
the targeting polyps and other background tissues, we intro-
duce a semantic refinement module (SRM) to simultaneous-
ly strengthen the targets and weaken the backgrounds by re-
weighting features before the fusion between two adjacent
feature maps in our decoder.

As depicted in Figure 4, our proposed SRM takes two fea-
ture maps Ii ∈ RC×H×W and Ii+1 ∈ R2C×H/2×W/2 as
input, where Ii and Ii+1 are two neighboring feature map-
s produced by our semantic calibration encoder. Specifical-
ly, the input feature map Ii+1 is first mapped to the feature
Uv = [Uv1

, Uv2
, ..., Uvc

] ∈ RC×1×1 by a global average
pooling (GAP) (Lin, Chen, and Yan 2013) for global context

Figure 4: Semantic refinement module. To enhance the dis-
crimination capability of the features between the targeting
polyps and other background tissues, we introduce a seman-
tic refinement module (SRM) to simultaneously strengthen
the targets and weaken the backgrounds by re-weighting fea-
tures based on global context information.

modeling. The Uvi
is the ith element of Uv, which can be

calculated based on the ith channel descriptor of the feature
Ii+1 and written as

Uvi
=

1

H ×W

H∑
j=1

W∑
k=1

fi(j, k) (4)

where fi(j, k) indicates a local pixel value at position (j, k)
in the ith channel of feature Ii+1. To align Uv and lower-
level feature map Ii with the same channel number, we
transform the feature map Uv using a channel rescaling
function φv , which can be written as

Ûv = φv(Uv, θ) (5)

where Ûv is a unified feature vector. θ is the relevant learn-
able parameter, and the φv is simply implemented through a
1 × 1 convolution followed by a ReLU activation function.
After that, the global context information is embedded into
each pixel in Ii by broadcast element-wise addition for fea-
ture fusion. In this way, the target features and background
features in the lower-level feature map Ii can be associated
with global context information, so we can further employ a
gating function to generate a global-relation weighting map
Ûg , which can be written as

Ûg = δ(Ûv + Ii) (6)

where δ refers to the Sigmoid function. Finally, we get the
output feature map Oi by multiplying Ii with the global-
relation weight map Ûg .

Oi = Ii ⊗ Ûg (7)

where ⊗ is broadcast element-wise multiplication. There-
fore, we can obtain re-weighted feature maps by strength-
ening the distinction between the target features and back-
ground features. By enhancing feature discrimination be-
tween polyps and the background tissues, our semantic re-
finement module can further improve the segmentation ac-
curacy.
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Loss Function
For the challenging polyp segmentation task, we train our
framework with the designed loss function which composed
of a cross entropy loss and a dice coefficient loss (Crum, Ca-
mara, and Hill 2006) (Milletari, Navab, and Ahmadi 2016),
as shown in Eq 8. Cross entropy loss function is a well-
validated classification loss, which is widely used in pixel-
wise classification problems. However, if we only apply a
single cross entropy loss, pixels can be easily classified to
the classes with more samples due to the class imbalance.
Considering that our polyp segmentation task has the prob-
lem of class imbalance, where some polyps appear with in
the very small regions, we also equip a dice coefficient loss
to our loss function. Therefore, to further address the prob-
lem of class imbalance problem, our loss function can be
written as

Loss = λC + (1− λ)D + γ‖ω‖22, λ ∈ [0, 1] (8)

where C indicates the binary cross entropy loss. D is the
dice coefficient loss, and γ‖ω‖22 represents the L2 regular-
ization loss (Hoerl and Kennard 1970) used to avoid overfit-
ting. We also balance the C and D by a weight coefficien-
t λ. In our experiments, the loss has the best performance
when we set the λ to 0.4. For a fair comparison, we apply
the same loss function in all experiments, including the fol-
lowing comparisons with state-of-the-art methods.

Experiments
Dataset and Evaluation Metrics
In our experiments, we used the Kvasir-SEG dataset to e-
valuate the performance of our proposed SCR-Net. The
Kvasir-SEG dataset is obtained from colonoscopy videos,
which contains 1000 frames with a resolution ranging from
332 × 487 to 1920 × 1072 pixels. Since the Kvasir-SEG
dataset does not provide an additional test dataset, we ran-
domly divided the 1000 images into 700 images for training,
100 images for validation and 200 images for testing. To nor-
malize the image resolution and improve the computational
efficiency, we also resized all images to 448× 448 pixels.

To measure the performance of polyp segmentation, we
adopt the four commonly-used metrics to evaluate our SCR-
Net and other competitors on this dataset, including inter-
section over union (IoU), dice coefficient (Dice), sensitivity
(SE), specificity (SP).

Implementation Details
We implemented our SCR-Net with PyTorch on a single
NVIDIA RTX2080Ti GPU card with 11 GB memory. To
accelerate the convergence in training phase, we employed
Kaiming initialization (He et al. 2015) to initialize the pa-
rameters of our model. To avoid overfitting, we also per-
formed 6 kinds of data augmentations to increase the num-
bers of the images, including horizontal flipping, vertical
flipping, random contrast adjustment, zoom out and zoom
in with a coefficient of 0.5 and 2.0, and random cropping.
The batch size is empirically set to 8. To obtain a fast con-
vergence, we also employ the Adam optimizer to train our

Figure 5: Visual comparison of our ablation study for
SCM and SRM. Ground truth is outlined with red
lines. (a) Original image. (b) Ground truth. (c) Baseline.
(d) Baseline+SCM. (e) Baseline+SRM. (f) Ours (Base-
line+SCM+SRM).

Figure 6: Visual comparison of feature maps in our abla-
tion study for SRM. (a) Original image. (b) Ground truth.
(c) Feature map extracted without SRM. (d) Feature map
with SRM.

model, where the initial learning rate is set to 0.001. To fur-
ther achieve better model training, we also adopt the Gradual
Warmup (Goyal et al. 2017) in fine tuning the decay learning
rate. Specifically, we first setup a small learning rate lrmin

and gradually increase it to the initial learning rate. This step
can be expressed as lr = lrmin × (1 + step

warmup step )
power,

where lrmin and power are set to 0.00001 and 0.9, respec-
tively. Then the learning rate gradually decreases by lr =
lrinit× (1− step

total step−warmup step )
power, where power is

set to 0.9, and total step = epoch × num samples
batch size . As the

learning rate decays, the models can gradually achieve the
approximate global optimum.

Ablation Studies
To demonstrate the performance of our proposed SCR-Net,
we conducted the following ablation studies to evaluate the
effectiveness of SCM and SRM based on the Kvasir-SEG
dataset. In our experiments, we used a light-weight feature
pyramid network (FPN) equipped with PPM as our Baseline.

Ablation Study for SCM As mentioned before, our SCM
is inserted to the FPN framework to address the semantic
misalignment problem in transmitting the higher-level se-
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Figure 7: Visual comparison with state-of-the-art methods. (a) Input images. (b) Ground truth. (c) U-Net. (d) PSP-Net. (e)
Attention U-Net. (f) ResUNet++. (g) CE-Net. (h) CPF-Net. (i) Pra-Net. (j) Ours.

Method IoU (%) SE (%) SP (%)
Baseline (FPN+PPM) 64.96 84.13 94.98
Baseline+SCM 68.48 87.25 96.89
Baseline+SRM 67.43 86.43 96.28
Baseline+SCM+SRM 70.85 89.17 98.21

Table 1: Statistical comparison of our ablation study for
SCM and SRM.

mantic information from deeper layers to their adjacent lay-
ers. Note that, we also have applied a PPM (Zhao et al. 2017)
to enrich the highest level semantics in the top layer of our
semantic calibration encoder, as shown in Figure 2.

Typical challenging cases for visual comparison of our ab-
lation study are as shown in Figure 5, where ground truth
is outlined with red lines. Without addressing the seman-
tic misalignment problem in sematic transmission, Baseline
method still cannot obtain accurate polyp segmentation, as
shown in Figure 5 (c). After calibrating the semantics, we
can observe much better segmentation results in Figure 5
(d), clearly indicating the effectiveness of our SCM in hand-
ing the multi-scale polyp segmentation.

In addition, we also performed a statistical comparison
in our ablation studies by collecting the mean IoU, SE and
SP values over the Kvasir-SEG dataset. As shown in Ta-
ble 1, the Baseline+SCM method achieves 68.48%, 87.25%,
96.89% in terms of IoU, SE and SP metrics, which outper-
forms the Baseline by 3.52%, 3.12% and 1.91%, respective-
ly. This also implies that our SCM can effectively improve
the polyp segmentation by utilizing the better higher-level
sematic transmission between two neighboring layers based
on the proposed semantics calibration.

Ablation Study for SRM By fully utilizing the global
context information, our SRM enhances feature discrimina-
tion between target objects and background tissues. Com-
pared with the Baseline method, which may suffer serious
ambiguity between the target objects and background tis-
sues, our Baseline+SRM (Figure 5 (e)) can obtain much bet-

Method Year IoU(%) Dice(%) SE(%) SP(%) FPS
U-Net 2015 63.89 75.18 83.24 94.78 31

PSP-Net 2017 66.27 75.92 85.27 95.39 27
Attention U-Net 2018 65.93 75.46 84.92 95.14 23

ResUNet++ 2019 66.42 76.12 86.14 95.97 9
CE-Net 2019 67.28 76.97 87.14 96.36 24

CPF-Net 2020 69.43 78.39 86.81 96.83 21
Pra-Net 2020 69.07 78.56 87.37 96.53 23
Ours 2020 70.85 80.78 89.17 98.21 32

Table 2: Statistical comparison of with different state-of-the-
art methods.

ter polyp segmentation results, especially for the boundary
regions of the target objects, clearly indicating the effective-
ness of our SRM in handing low contrast between polyps
and the background tissues in the challenging polyp seg-
mentation. On the other hand, the statistical results shown
in Table 1 also verify the advantages of our SRM,, where
Baseline+SRM achieves 67.43%, 86.43%, 96.28% in terms
of IoU, SE and SP metrics, outperforming the Baseline by
2.47%, 2.30% and 1.30%, respectively.

In addition, we also visualized the feature maps to further
investigate the effectiveness of SRM. As shown in Figure 6,
without the guidance of SRM, Baseline (Figure 6 (c)) cannot
easily distinguish the boundaries between the target objects
and background regions. In contrast, feature maps obtained
with SRM clearly validates that we can achieve much better
discrimination between target objects and background tis-
sues, with much clear boundaries as shown in Figure 6 (d).

Finally, by seamless integrating both SCM and SRM in
our SCR-Net, we cannot only obtain better higher-level se-
matic transmission between two neighboring layers in en-
coder, but also enhances feature discrimination between tar-
get objects and background tissues in the decoder, as shown
in the Figure 5 (f).
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Comparison with the State-of-the-art Methods
To further verify the segmentation performance of proposed
SCR-Net, we also compared our method with several state-
of-the-art methods, including U-Net (Ronneberger, Fischer,
and Brox 2015), PSP-Net (Zhao et al. 2017), Attention U-
Net (Oktay et al. 2018), ResUNet++ (Jha et al. 2019), CE-
Net (Gu et al. 2019), CPF-Net (Feng et al. 2020), and Pra-
Net (Fan et al. 2020). To guarantee a fair comparison, all
of approaches are implemented under the same computing
environments and with the same data augmentations. Note
that all methods are trained from scratch without loading any
pre-trained weights.

Visual comparison for different competitors on several
challenging cases is as shown in Fig7, where we can ob-
serve the major challenging issues for polyp segmentation,
including irregular shapes, scale variations, and low contrast
between the polyps and the surrounding tissues. By simply
stacking the continuous convolution and pooling operations,
U-Net still cannot accurately segment some challenging cas-
es. Based on region-based context aggregation to exploit
global contexts, PSP-Net obtains better segmentation results
than U-Net. On the other hand, by capturing more high-level
information and retaining rich spatial information, CE-Net
also obtains improvements in polyp segmentation. Similar-
ly, ResUNet++ also achieves improvements in segmenting
polyps with different scales based on multi-scale feature ex-
traction. However, above methods still cannot tackle the is-
sues of blurred boundaries and low contrast between target
objects and background tissues, especially where have very
much irrelevant background noises. Attention U-Net tried to
use a novel attention gate to suppress irrelevant background
noise while highlighting the target region, but it is still can-
not handle well the blurred boundary discrimination, espe-
cially for the small targets, as shown in the first and sec-
ond rows in the Figure 7. More recently, by exploiting and
fusing rich contexts progressively through a global pyramid
guidance module and a scale-aware pyramid fusion module,
CPF-Net can achieve better segmentation results than the
above methods. To address the blur boundary between the
polyps and its surrounding tissues, Pra-Net further develops
a reverse attention module to calibrate misaligned predic-
tions. Without fully utilizing multi-level features based on
an excellent sematic transmission between different levels
of feature maps, where feature discrimination ability is also
weak between target objects and background tissues, all the
above competitors are still not obtain satisfactory segmen-
tation results for polyp segmentation. Based on a seamless
combination of both SCM and SRM, our SCR-Net generally
outperform existing competitors. As shown in Figure 7 (j),
compared with other methods, our results are the closest to
the ground truth, which cannot only handle well the targets
with large variations of sizes, but also better deal with the
target objects with low contrast between polyps and back-
ground tissues.

In addition, we also performed a statistical comparison
by collecting the mean IoU, Dice, SE, SP, and FPS values.
Our proposed method achieves scores of 70.85%, 80.78%,
89.17%, and 98.21% in terms of IoU, Dice, SE, and SP
metrics respectively, which also generally outperforms other

Figure 8: Failure cases. Green and red contours denote our
segmented polyps and the ground truth, respectively.

state-or-the-art methods. Compared with the widely used U-
Net, our SCR-Net improves IoU and Dice by approximate
7.0% and 5.6%, respectively. More importantly, our SCR-
Net can still reach a speed of 32 FPS on a commonly-used
GPU card (NVIDIA GTX 965M), which is sufficient to be
applied to colonoscopy procedures for real-time segmenta-
tion of polyps.

Discussions and Limitations
Through the above extensive experiments, it is clearly ob-
served that our SCR-Net achieves the best performance
and successfully solves the major polyp segmentation chal-
lenges, including irregular shapes, scale variations, and low
contrast between the polyps and the surrounding tissues. By
addressing the semantic misalignment problem based on our
SCM, we obtain a better semantic fusion between two neigh-
boring feature maps in our encoder, which also provides
a good tool for segmenting objects with multi-scale prob-
lem or with multi-level feature fusion. By simultaneously
strengthening the targets and weakening the backgrounds
with a re-weighting strategy based on global context, we al-
so enhance the discrimination capability of the features for
targeting objects in the decoder, which also provides a good
hint to solve similar segmentation tasks with blur boundaries
among different classes of targets.

Although ablation studies and comparisons have demon-
strated the effectiveness of our SCR-Net, our method stil-
l has some limitations. As shown in Figure 8, our method
still may be failed when there contains multiple extremely
small polyps, such as the cases shown in Figure 8 (a)-(b),
or the color contrast between polyps and the background
is extremely low, such as the cases shown in Figure 8 (c)-
(d). However, as our SCR-Net can still handle well most of
polyp segmentation except the extreme cases, which remain-
s potentially a useful tool for a real-time polyp detection and
operation system.

Conclusion
We present a novel ConvNet with two new semantic cal-
ibration and refinement techniques to bridge the semantic
gap between feature maps at different levels for more ac-
curate polyp segmentation. More important, the proposed
techniques are efficient enough to maintain real-time perfor-
mance when conducting segmentation, which is critical in
clinical practice. Extensive experiments demonstrate the ef-
fectiveness of the proposed ConvNet. Future investigation-
s include testing it on more datesets and integrating it into
colonoscopy procedures.
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