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Abstract

Almost all existing amodal segmentation methods make
the inferences of occluded regions by using features corre-
sponding to the whole image. This is against the human’s
amodal perception, where human uses the visible part and
the shape prior knowledge of the target to infer the occluded
region. To mimic the behavior of the human and solve
the ambiguity in the learning, we propose a framework, it
firstly estimates a coarse visible mask and a coarse amodal
mask. Then based on the coarse prediction, our model infers
the amodal mask by concentrating on the visible region
and utilizing the shape prior in the memory. In this way,
features corresponding to background and occlusion can be
suppressed for amodal mask estimation. Consequently, the
amodal mask would not be affected by the occlusion when
given the same visible regions. The leverage of shape prior
makes the amodal mask estimation more robust and reason-
able. Our proposed model is evaluated on three datasets.
Experiments show that our proposed model outperforms
existing state-of-the-art methods. The visualization of shape
prior indicates that the category-specific feature in the
codebook has certain interpretability. The code is available
at https://github.com/YutingXiao/Amodal-Segmentation-
Based-on-Visible-Region-Segmentation-and-Shape-Prior.

Introduction
Amodal segmentation aims to infer the amodal mask, in-
cluding both the visible region and the possible invisible re-
gion of the target object. Different from semantic segmenta-
tion or traditional instance segmentation, amodal segmenta-
tion is designed to exploit the amodal perception capability
(Zhu et al. 2017), where human could infer and perceive the
whole semantic concept of the target object mainly accord-
ing to the partially visible region of the target object.

Simulating the amodal perception is quite challenging
Lots of efforts have been done for the amodal segmenta-
tion, which could be roughly divided into two groups. Meth-
ods in the first group directly estimate both the visible and
the amodal regions from the images (Qi et al. 2019; Foll-
mann et al. 2019; Zhu et al. 2017), while methods in the
second group use inferred depth order information to help
the amodal mask prediction (Zhang et al. 2019). However,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

all of them learn the mapping relationship from the feature
corresponding to the whole view to the amodal mask. This
processing brings explicitly ambiguity that the same image
appearances of occlusion may require different predictions.

Motivated by the behavior of human leveraging only vis-
ible regions and memorizing the category-specific shape
prior for amodal segmentation, we propose a solution that
estimates the visible region of the target object and lever-
ages the visible region and shape prior for amodal segmen-
tation. Without the shape prior of an object, the amodal mask
inferred by human might be in an arbitrary shape. Similarly,
the estimated amodal mask might also suffer from the lack of
shape prior, resulting in the arbitrary edges. Thus, our model
leads to more robust results. As shown in Fig. 1, although the
target (green vegetable) is occluded by different objects, our
method could perceive the almost same occluded regions,
like human ignoring the different occlusion contexts such as
banana, apples, or cabbage. However, the existing baseline
estimates the different occluded regions.

In particular, our proposed method consists of a coarse
mask segmentation module, a visible mask segmentation
module, and an amodal mask segmentation module. In the
coarse mask segmentation module, we utilize the backbone
of Mask R-CNN (He et al. 2017) with an amodal mask head
and a visible mask head to predict the coarse amodal and
visible mask respectively. In the visible mask segmentation
module, we propose to leverage the amodal mask to refine
the visible mask and a reclassification regularizer to alleviate
the misleading effect of occlusion in classification. Specifi-
cally, we use the coarse amodal mask as the attention multi-
plying with the feature of region-of-interest for more accu-
rate visible mask estimation. The coarse amodal mask allevi-
ates the effect of the background and contains more informa-
tion than the coarse visible mask, which provides a cue for
the visible mask. Further, for the reclassification regularizer,
we propose to apply the feature of the visible region instead
of the whole view to for classification, which alleviates the
influence of the occlusion and background. In the amodal
mask segmentation module, we propose to use the feature of
the visible region and the shape prior to refine the amodal
mask. Unlike the diversity of the visible mask, the amodal
mask has the inherent category-specific shape prior. To en-
code the shape prior, we design an auto-encoder for amodal
mask encoding, and a codebook is used as the memory ob-
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Figure 1: Performance comparison between ours and Mask R-CNN. We overlay different objects on top of the target green
vegetables with Adobe Photoshop. Our method could estimate the almost same invisible regions, given different occlusions.
For the Mask R-CNN using features corresponding to both occlusions and visible regions, the results are different.

tained from the K-Means of amodal ground-truth mask em-
beddings. We utilize the shape prior for amodal mask pre-
diction in two aspects: Firstly, we utilize the shape prior to
refine the amodal mask. Secondly, in the inference, after the
final amodal mask prediction, we use the shape prior to post-
process the score of proposed boxes to filter out the propos-
als with a low-quality amodal mask.

As shown in Fig. 1, although the target (green vegetable)
is occluded by different objects, our method could perceive
the almost same occluded regions with different occlusion
contexts such as banana, apples, or cabbage. However, the
existing baseline estimates the different occluded regions
with features corresponding to different occlusions.

The contributions of this paper could be summarized as
followings: (1) inspired by the behavior of human’s amodal
perception, we propose a novel amodal segmentation model;
(2) a cross-task attention based refinement strategy is pro-
posed, where the amodal mask and the visible mask is used
as attention to refine each other for improving the perfor-
mance of amodal segmentation; (3) this is the first work that
proposes to utilize the shape prior knowledge in the amodal
segmentation, and two ways to use shape prior are discussed;
(4) experimental results on three public datasets show our
method outperforms the existing state-of-the-art methods.

Related Work
Visual Occlusion Learning
Occlusion is inevitable in a large amount of visual task re-
gardless of detection (Huang et al. 2020; Chu et al. 2020),
segmentation (Fu et al. 2019; Huang et al. 2019) or inpaint-
ing (Ren et al. 2019; Yu et al. 2019; Kar et al. 2015) tasks.
Some researches about occlusion propose interesting and in-
novative methods or framework to solve the occlusion prob-
lem. In (Yang et al. 2019), Yang et al. propose a strategy to
see the information behind the occlusion by moving the po-
sition of the camera. The BANet(Chen et al. 2020) computes
the similarity of the pixels in the boundary region of instance
to recognize whether these pixels belong to the occlusion
or not. Some other works tend to explicitly remove the in-
fluence of occlusion, the conditional random fields (CRFs)
is applied in (Winn and Shotton 2006) to represent the oc-
clusion probability of object parts. The recent work (Huang

et al. 2020; Chu et al. 2020) deals with the occlusion prob-
lem in human crowd detection which is another task with
heavy occlusion. The visible region is used to guide the full
region of human in (Huang et al. 2020) which indicates that
a pair of boxes is generated by a single proposal. Besides,
in (Chu et al. 2020), Xuan et al. applied a similar measure
which takes advantage of a proposal corresponding to mul-
tiple predictions to avoid the ambiguous regression. In 3D
area, many methods (Zhang, Huang, and Wang 2020), (Ra-
mamonjisoa, Du, and Lepetit 2020; Cheng et al. 2019) about
solving the negative influence of occlusion are utilized for
3D keypoint, mesh and depth estimation.

Amodal Segmentation
A large number of researches has been accomplished on in-
stance segmentation (Bai and Urtasun 2017; Ren and Zemel
2017; Xu et al. 2019; Neven et al. 2019; Chen et al. 2019),
based on classic detection framework such as Faster-RCNN
(Ren et al. 2015) or YOLO (Redmon et al. 2016). Mask R-
CNN (He et al. 2017), one of the most representative two-
stage approach, uses a mask head added in the Faster-RCNN
to process the aggregated feature sampled by the ROIAlign
module. In order to utilize the multiple scale information,
the FPN (Lin et al. 2017) is proposed to detect instances on
different scales. Further, the Path aggregation network (Liu
et al. 2018) is proposed to boost information flow in feature
hierarchy. Besides, some other works localize the position
of instances by the center point of each instance (Xie et al.
2020) instead of the boundary box or iteratively deform an
initial contour to the boundary box (Peng et al. 2020).

As a newly developing direction of instance segmenta-
tion, The earliest work about amodal segmentation is pro-
posed by (Li and Malik 2016), which utilizing generated
data by overlapping instances on other instances to train and
test their method. They extend the boxes of each instance
and refine the heatmap. And in (Zhu et al. 2017), the Sharp-
Mask (Pinheiro, Collobert, and Dollár 2015) which predicts
the object mask from coarse to fine is provided as the base-
line model. Recently, several amodal segmentation datasets
are released to help for the amodal segmentation research.
The ORCNN (Follmann et al. 2019) uses a visible mask
head and an amodal mask head to directly predict the visible
mask and amodal mask respectively, obtaining the occlusion
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Figure 2: The overview of our approach.

mask by subtracts the visible mask from the amodal mask.
The SLN (Zhang et al. 2019) modeling a depth order repre-
sentation to infer the amodal mask. The method proposed in
(Qi et al. 2019) utilizes an occlusion classifier to recognize
whether an instance is occluded and ensemble the feature
from box and class head by multi-level coding.

Method
Problem Formulation
Given an image I, amodal segmentation aims to estimate
the amodal mask Ma as well as the visible mask Mv for
a region-of-interest (ROI). The visible mask Mv could be
estimated directly from the image. The amodal mask Ma

consists of both the visible part and the invisible part. The
most challenging part of amodal segmentation is to estimate
the invisible region based on the visible region and without
being affected by the occlusions.

The human amodal perception means the ability to in-
fer the global instance according to the partial observation.
When inferring the invisible region, human utilizes the fea-
ture of the visible region and the shape prior of the object.
Inspired by this, we formulate the amodal segmentation as
learning a nonlinear mapping function that maps the ROI
feature F of an image I to the visible mask Mv and the
amodal mask Ma with the regularization of shape prior. As
shown in Fig. 2, our proposed method consists of a coarse
mask segmentation module, a visible mask segmentation
module, and an amodal mask segmentation module.

The Coarse Mask Segmentation Module
The coarse mask segmentation module aims to extract the
target visual features and predict the coarse amodal mask
Mc

a and the coarse visible mask Mc
v . Following the exist-

ing works (Zhang et al. 2019; Follmann et al. 2019; Qi et al.
2019), we also employ a ResNet50 (He et al. 2016) based
FPN (Lin et al. 2017) as the backbone to extract the visual
feature of the region-of-interest F containing the target ob-
ject. Specifically, in this module, both the visible mask head
fv and the amodal mask head fa take the feature F as input.

The amodal mask head and the visible mask head have the
same network structure that consists of 4 convolution layers
and 1 deconvolution layer with different parameters.

There are four loss terms in this module, including a
coarse amodal mask loss LBCE(M

c
a,M

g
a), a coarse visi-

ble mask lossLBCE(M
c
v,M

g
v), a classification lossLcls and

an object bounding box regression loss Lreg.The Mg
a and

Mg
v are the amodal and visible ground-truth mask. Both of

the Lcls and Lreg are the same as the loss function of the
class and box head in Mask R-CNN (He et al. 2017). The
LBCE(·, ·) is the binary cross-entropy loss.

The Visible Mask Segmentation Module
The visible segmentation module aims to further refine the
visible mask, via the amodal mask and the reclassification
regularizer. Because the amodal mask contains the visible
region, we use it as the attention to multiple with the ROI
feature F for the visible mask refinement. This operation
enhances the capability to distinguish occlusion and target
instance of the visible mask head. Further, it also alleviates
the effect of background features for visible mask refine-
ment. The loss term of visible mask refinement is

Lr
v =

1

N

∑N
i
LBCE(fv(Fi ·Mc

a,i),M
g
v,i), (1)

where N is the number of predicted instances. We denote
the refined visible mask of ith instance as Mr

v,i, which is
the output of the visible mask head fv in this term.

The reclassification regularizer aims to classify each in-
stance by processing the feature of the visible region, which
avoids the misleading effect of the feature corresponding to
the occlusion and background. The input of the reclassifi-
cation regularizer is the feature of refined visible region re-
garded as F ·Mr

v . The reclassification regularizer frc com-
poses of two fully connected layers. In the inference, we ob-
tain the class score of each instance by multiplying the score
of the class head and reclassification regularizer. The loss
term of the reclassification regularizer is

Lrc =
λrc
N

∑N
i
LCE(frc(Fi ·Mr

v,i), yi), (2)
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where yi is the class label of ith instance. LCE(·, ·) is the
cross-entropy loss. The the hyper-parameter λrc = 0.25.

Feature matching Feature matching is commonly used in
network model acceleration and compression (Ba and Caru-
ana 2013; Li, Jin, and Yan 2017), where a compact stu-
dent model mimics the feature maps extracted from a large
teacher model to improve its accuracy. In this work, we also
employ the feature matching strategy for the visible mask
head to reduce the gaps between feature maps extracted in
the coarse mask prediction and the refined mask prediction.
Since the visible mask head has the same network structure
and the same parameters in predicting the coarse and re-
fined mask, and the only difference is the inputs. The feature
matching loss between the coarse visible mask prediction
and refined visible mask prediction helps the network con-
centrate more on visible region appearance for visible mask
segmentation and alleviate the effect of the background.

In our implementation, we use feature in the last two con-
volution layers of the visible mask head to measure the fea-
ture matching loss. We denote the loss function of the feature
matching of the visible mask head as Lvfm, and use a sub-
script (j) on the visible mask head fv to denote the feature
maps in the ith layer. Here j = 4, 5, which means we only
use features in the higher level convolution layers. Then the
feature matching loss of the visible mask head is

Lvfm =
1

N · S
∑N,S

i,j λjLS(f
(j)
v (Fi), f

(j)
v (Fi ·Mc

a,i)),

(3)
where N,S is the number of instances and the number of
convolution layers of the visible mask head respectively.
And we apply cosine similarity LS (Zhu et al. 2019) in
feature matching. We set the hyper-parameters λ4 = 0.01,
λ5 = 0.05 and λj = 0 (j ∈ {1, 2, 3}).

The Amodal Mask Segmentation Module
The amodal mask segmentation module is designed to refine
the coarse amodal mask by using the feature of the visible
region and the shape prior. Inferring the amodal mask from
the visible region appearance helps our model alleviate the
misleading effect of the occlusion feature. Besides, differ-
ent from the visible mask, for each category, the shapes of
amodal masks are explicitly more stable, without the effect
of arbitrary occlusions. The feature of the visible region can
be obtained by using the refined visible mask Mr

v from the
visible mask segmentation module as visible attention.

In the pre-training phase, to model the shape prior, we
collect the amodal ground-truth masks in the training set and
use an auto-encoder to obtain the embedding of each amodal
mask. Then, for each category, we partition the embeddings
into K clusters via K-Means clustering and use the centers
of these clusters as a codebook. Thus the codebook could
memorize the embeddings of category-specific shape prior.
This codebook is used to further refine the amodal mask.

In the training phase, for a predicted coarse amodal mask
Mc

a, we feed it into the encoder of the pre-trained auto-
encoder to obtain the embedding. We use an L2 distance
to find k nearest embeddings in the category-specific code-
book according to the predicted category. This is denoted
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Figure 3: The illumination of the shape prior post-process.
The predicted amodal mask of box B gets a higher IoU value
than the predicted amodal mask of box A. But the class score
of box B (0.97) is lower than box A (0.99), which results
in the suppression of box B in NMS. The shape prior post-
process multiplies the shape prior similarity with the class
score to refine the score of object. The score of A is 0.99 ×
0.69 ≈ 0.68 while the score of B is 0.97×0.91 ≈ 0.88. The
box B is remained while the box A is suppressed by NMS.

as shape prior search to obtain the shape prior embed-
dings. Then we feed these k nearest embeddings into the
decoder to get decoded shape prior masks Mk

sp = fsp(M
c
a)

(Mc
a∈RH×W , Mk

sp∈Rk×H×W ). The fsp denotes the opera-
tion using an auto-encoder with category-specific codebook
for shape prior search. From this operation, we obtain the
category-specific shape prior masks Mk

sp which are the most
similar to the coarse amodal mask in the shape prior. Then,
we concatenate the feature of the visible region F ·Mr

v and
the k nearest shape prior amodal masks Mk

sp as the input
of the amodal mask head for amodal mask refinement. This
process is to imitate the perception of human that infers the
amodal mask objects by focusing on the appearance at the
visible region and using the shape prior knowledge. The to-
tal loss term of this processing can be denoted by

Lr
a =

1

N

∑N
i
LCE(fa(cat(Fi ·Mr

v,i,M
k
sp,i)),M

g
a,i), (4)

where the fa is the amodal mask head whose output is Mr
a.

The cat(·, ·) is the matrix concatenate operation. In our im-
plementation, we set k = 16. Besides, similar to the equa-
tion (3) of the visible segmentation module, we also apply
feature matching to the amodal mask head to enhance the
capacity of focusing on the visible region. The loss function
of feature matching in the amodal mask head is

Lafm =
1

N · S
∑N,S

i,j λjLS(f
(j)
a (Fi), f

(j)
a (Fi ·Mr

v,i)).

(5)
In the inference phase, the shape prior can also be used

to help the network further improve amodal segmentation.
As shown in Fig. 3, we use the difference between the re-
fined amodal mask and its nearest counterpart in the code-
book ‖Mr

a −Mk
sp‖2 as a measurement to rank the scores

of bounding box proposals, and filter out the proposals with
larger differences. Here the difference is measured by an L1
distance. Here we set k = 1. If the predicted amodal mask
shape of an instance is explicitly different from the nearest
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Methods
D2SA KINS COCOA cls

Amodal Visible Amodal Visible Amodal Visible

AP AP50 AP75 AR AP
(Occ) AP AR AP AP50 AP75 AR AP

(Occ) AP AR AP AP50 AP75 AR AP
(Occ) AP AR

MRCNN 63.6 83.9 68.0 65.2 NA 68.9 70.1 30.0 54.5 30.1 19.4 NA 28.0 19.2 33.6 56.5 35.8 34.1 NA 30.1 31.5
MRCNN(C8) 64.8 84.0 70.7 65.6 NA 69.8 70.5 30.7 54.3 31.4 19.7 NA 28.7 19.3 34.7 57.5 36.9 35.4 NA 31.8 32.8
ORCNN 64.2 83.5 69.1 65.2 45.2 69.6 70.4 30.6 54.2 31.2 19.6 34.2 28.7 20.0 28.0 53.6 25.3 29.8 17.4 30.8 32.2
SLN 25.1 30.8 29.4 19.2 NA NA NA 6.6 10.7 6.9 6.1 NA NA NA 14.4 23.6 15.8 17.1 NA NA NA
Our method 70.2 85.1 75.8 69.1 51.1 72.2 71.8 32.0 55.3 33.3 20.9 37.4 29.8 19.8 35.4 56.0 38.6 37.1 22.1 34.5 36.4

Table 1: The comparison on the D2SA dataset, the KINS dataset, and the COCOA cls dataset. Because some methods only
output the amodal mask prediction, the AP (Occluded) and visible mask prediction performance of them are unavailable (NA).

shape prior in the memory, it should be treated as a low-
quality prediction even with a high class score.

The Implementation Details
Our model could predict the amodal mask and the visible
mask. In the visible mask segmentation module and amodal
mask segmentation module, we use the coarse amodal mask
and refined visible mask as attention. However, if directly
using the predicted masks in the warm-up phase, these inac-
curate predictions might destroy the following parts. Thus,
we design a weighting operation, where each instance is as-
signed an amodal weight and a visible weight to measure the
weight of an instance in optimization. This operation can be
found in supplementary. The final loss function is

L = Lcls+Lreg+Lc
a+Lc

v+Lr
a+Lr

v+Lrc+Lafm+Lvfm.
(6)

Stochastic Gradient Descent (SGD) (Zinkevich et al. 2010)
with weight decay is used for optimization in the training.

Experiments
Experimental Setting
We implement our proposed model based on Detectron2
(Wu et al. 2019) on the PyTorch framework. The main
parameter setting is: For the D2SA dataset, batch size(2),
learning rate (0.005), and the number of iteration (70000).
For the KINS dataset, batch size(1), learning rate (0.0025),
and the number of iteration (48000). For the COCOA cls
dataset, batch size (2), learning rate (0.0005), and the num-
ber of iteration (10000).

Datasets. We evaluate the model performance for amodal
segmentation on three datasets: the D2SA (D2S amodal)
(Follmann et al. 2019), the KINS dataset (Qi et al. 2019),
the COCOA cls dataset (Zhu et al. 2017).

The D2SA dataset is built based on the D2S(Densely
Segmented Supermarket) dataset with 60 categories of in-
stances. It contains 2000 images in the training set and 3600
images in the validation set, where the annotations of the
amodal mask are generated by overlapping one to another.

The KINS dataset is built based on the KITTI dataset
(Geiger, Lenz, and Urtasun 2012). It consists of 7474 im-
ages in the training set and 7517 images in the validation
set. Different from the D2SA dataset, its amodal ground-
truth is manually annotated. There are 7 categories about the
autonomous driving task in the KINS dataset.

The COCOA cls dataset (Zhu et al. 2017) is built based
on the COCO dataset (Lin et al. 2014). It consists of 2476
images in the training set and 1223 images in the validation
set. There are 80 categories in this dataset.

Metrics. Following the (Zhu et al. 2017; Zhang et al.
2019), we use the mean average precision (AP) and mean
average recall (AR) to evaluate performances. The AP (Oc-
cluded) is computed on the instances whose occlusion rate
is larger than 15%. We use the evaluation api of the COCO
dataset (Lin et al. 2014) for fair comparisons.

Baselines. We use following related methods for compar-
ison.

(1) MRCNN indicates Mask RCNN (He et al. 2017)
which predicts the amodal masks by a mask head consist-
ing of 4 convolution layers and 1 deconvolution layer. We
train two Mask R-CNN baselines predicting amodal mask
and visible mask respectively since the Mask R-CNN can-
not predict both of them simultaneously. The Mask RCNN
(C8) means that the mask head has 8 convolution layers.

(2) ORCNN (Follmann et al. 2019) uses an amodal mask
head and a visible mask head to infer the amodal masks and
visible maks. The invisible mask is obtained by abstracting
the visible mask from the amodal mask.

(3) SLN (Zhang et al. 2019) claims the importance
of depth information in amodal segmentation. It uses a
semantics-aware distance map to predict the amodal mask
by utilizing depth order information.

Performance Comparison
We compare our model with all comparative methods on the
datasets mentioned, and the performance comparisons are
shown on Table 1. We can see that our model always out-
performs other methods. Compared with Mask R-CNN and
Mask R-CNN (C8), the improvement resulting from directly
adding the depth of the mask head is explicitly lower than
the improvement achieved by our model. Our method gets
better performance mainly due to our reasonable design of
the network rather than the expansion of the network.

We also show some qualitative results estimated by Mask
R-CNN, ORCNN, and our method in Fig .4. We can see that
our method can segment more accurately than other meth-
ods, owning to the help of the attention on the visible region
and the shape prior. For the 1st and 2nd row, the predictions
of our method are not misled by the feature of occlusions
such as the glass bottle and cabbage. For the 3rd and 4th row,
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Images Mask R-CNNGT ORCNN Ours

Figure 4: Examples show the images, the ground-truth amodal masks, estimations of Mask RCNN, ORCNN and ours.

Ablation Study D2SA KINS
Amodal Visible Amodal Visible

Visible
Attention Reclass Shape Prior

Refinement
Shape Prior
Post-process

Feature
Matching AP AR AP

(Occ)
Visible

AP
Visible

AR AP AR AP
(Occ) AP AR

1 X X X 66.67 65.68 46.40 70.50 70.24 31.61 20.16 36.84 29.44 19.61
2 X X X 69.02 68.09 50.31 71.66 70.83 31.65 20.55 36.93 29.25 19.81
3 X X X 68.84 67.42 49.08 71.53 70.70 31.70 20.33 37.25 29.45 19.63
4 X X X 68.15 68.30 50.03 70.71 70.43 31.87 20.46 37.48 29.53 19.70
5 X X X X 69.98 68.87 51.01 71.92 71.15 31.94 20.60 37.55 29.61 19.88
6 X X X X X 70.27 69.17 51.17 72.28 71.85 32.08 20.90 37.57 29.88 19.88

Table 2: The ablation studies results on the D2SA dataset and the KINS dataset.

our method keeps robust even the occlusion rate is large.

Ablation Studies
We conduct the ablation studies on both the D2SA dataset
and the KINS dataset. All the results are shown on Table 2.

The Effect of Visible Attention. To evaluate the effect of
visible attention in refining the amodal mask, we design the
baseline refining the amodal mask without using the visi-
ble mask as attention. The input of the amodal mask head
for predicting refined amodal mask is the concatenation of
ROI feature F and shape prior Mk

sp. Experimental results
are shown at the 1st and 5th rows on Table 2.

The Effect of Reclassification Regularizer. To validate
the effectiveness of the reclassification regularizer. We con-
duct the experiments at the 2nd and 5th rows on Table 2. The
experimental results show the importance of the reclassifica-
tion regularizer.

The Effect of the Shape Prior Refinement. To investi-
gate the effect of shape prior in refinement, we plan to train
the baseline at the 3rd. We only utilize the feature of the
refined visible region to refine the amodal mask. The gap
between the results at the 3rd row the 5th row shows the im-

portance of shape prior knowledge, which agrees with the
usage of shape prior in the human’s amodal perception.

The Effect of the Shape Prior Post-process. To investi-
gate the effect of shape prior post-process, we plan to re-
move the shape prior post-process based on the baseline at
the 5th row. The result is shown at the 4th row. Compared
with the results at the 5th row, the gap shows that the utiliz-
ing of shape prior post-process can achieve improvement.

The Effect of Feature Matching. To validate the effect of
feature matching in our method, we train a baseline via re-
moving the feature matching on both the amodal and visible
mask head. The result is shown in the 5th row on Table 2.
Compared with our model at 6th row, the feature matching
could achieve further better performance, which indicates
that the feature matching could further help the amodal mask
head learn the feature extracted from the visible regions.

Attention Analysis
To evaluate the effect of amodal and visible attention in our
model, we propose 4 different types to utilize amodal and
visible attention. The details are shown in supplementary.
We conduct the experiments on Table 3 to compare different
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Types of Utilizing Attention
D2SA KINS

Amodal Visible Amodal Visible

AP AP50 AP75 AR AP
(Occ) AP AR AP AP50 AP75 AR AP

(Occ) AP AR

(a) Both Self Attention 64.55 82.53 68.96 65.62 44.31 70.50 71.02 31.18 54.24 32.08 20.15 36.89 29.27 19.76
(b) Only Visible Attention 66.98 83.99 72.87 67.78 47.53 70.92 71.50 31.32 54.79 32.23 20.25 36.98 29.40 19.81
(c) Cross Attention 67.11 83.90 72.81 67.70 47.75 71.79 71.77 31.57 54.58 32.54 20.61 37.13 29.65 20.09
(d) Ours 67.33 84.10 72.97 68.06 47.91 71.88 72.43 31.69 54.52 32.96 20.75 37.30 29.68 20.01

Table 3: The experimental results of the attention analysis on the D2SA dataset and the KINS dataset.

(a) Carrot (b) Bottle (c) Cucumber

Figure 5: Visualization of shape prior embeddings in shape codebook. We use t-SNE (Van der Maaten and Hinton 2008) to
visualize the latent space of each category in the codebook. This proves that the learned shape prior has certain interpretability.

ways to use amodal and visible attention. The shape prior
and reclassification regularizer are removed in this section.

(a) Both Self-Attention uses the coarse amodal mask and
coarse visible mask as attention to refine amodal mask and
visible mask respectively. The input of the amodal mask
head and the visible mask head in attention-based refine-
ment are the feature of the amodal region F ·Mc

a and the
feature of the visible region F ·Mc

v respectively.
(b) Only Visible Attention uses the coarse visible mask

as attention to refine the visible mask prediction, which in-
dicates Mr

v = fv(F ·Mc
v). Then, the refined visible mask

Mr
v is utilized as attention to refine amodal mask prediction.

The refined amodal mask is obtained by Mr
a = fa(F ·Mr

v).
(c) Cross Attention uses the coarse amodal mask and

coarse visible mask as attention to refine the visible and
amodal mask prediction respectively. The formula is Mr

a =
fa(F ·Mc

v) and Mr
v = fv(F ·Mc

a).
(d) Ours uses the coarse amodal mask as attention to re-

fine the visible mask, Mr
v = fv(F ·Mc

a). Then, using the
refined visible mask as attention to refine the amodal mask,
Mr

a = fa(F ·Mr
v).

We can observe that utilizing the visible mask as atten-
tion to refine amodal mask (b,c,d) achieves explicitly bet-
ter performance on amodal mask prediction than using the
coarse amodal mask (a). This indicates that applying visi-
ble attention for amodal mask prediction is more reasonable
than applying amodal attention. Using the amodal mask as
attention (c,d) to refine visible mask can get better perfor-
mance on visible mask prediction than using the coarse vis-
ible mask (a,b). This indicates the effect of applying amodal
attention in visible mask prediction. Using the refined vis-
ible mask as attention to refine amodal mask (d) has slight

improvement than using the coarse visible mask (c). This
result shows that using more accurate visible attention can
obtain improvement in amodal mask prediction.

Visualization of Shape Prior in the Codebook
We also show some category-specific shape prior such as
carrot, bottle and cucumber, via t-SNE (Van der Maaten and
Hinton 2008) in Fig. 5. For each category, we partition the
latent feature into 1024 clusters via K-Means, since we need
to use many redundant shape prior items to store the vari-
ous changes of rotation. Thus, there exist a huge number of
shape prior in each category in Fig. 5 (a)-(c). In particular,
Fig. 5 (c) represents the learned codebook of cucumber, just
like a circle. As we know, cucumber is a formable object
with little shape changes, while the 6 amodal masks reflect
its rotation changing process. This visualization shows that
the shape prior has certain interpretability.

Conclusion
In this work, we propose a novel model to mimic the hu-
man amodal perception using the shape prior to imagine the
invisible regions mainly based on the feature of visible re-
gions. However, almost existing methods use the appearance
of the whole region-of-interest to infer the amodal masks,
which is against the human amodal perception. And this
strategy brings the ambiguity that the same appearance of
occlusion may require different predictions. To simulate the
imagination from visible region and shape prior, we use the
visible mask as attention to focus on the visible regions and
build a codebook to store the collected amodal shape prior
embeddings. The experimental results indicate our method
outperforms other state-of-the-art methods.
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