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Abstract
Recent studies have witnessed that self-supervised meth-
ods based on view synthesis obtain clear progress on multi-
view stereo (MVS). However, existing methods rely on the
assumption that the corresponding points among different
views share the same color, which may not always be true
in practice. This may lead to unreliable self-supervised signal
and harm the final reconstruction performance. To address the
issue, we propose a framework integrated with more reliable
supervision guided by semantic co-segmentation and data-
augmentation. Specially, we excavate mutual semantic from
multi-view images to guide the semantic consistency. And
we devise effective data-augmentation mechanism which en-
sures the transformation robustness by treating the predic-
tion of regular samples as pseudo ground truth to regular-
ize the prediction of augmented samples. Experimental re-
sults on DTU dataset show that our proposed methods achieve
the state-of-the-art performance among unsupervised meth-
ods, and even compete on par with supervised methods. Fur-
thermore, extensive experiments on Tanks&Temples dataset
demonstrate the effective generalization ability of the pro-
posed method. The code is released at: https://github.com/
ToughStoneX/Self-Supervised-MVS.

Introduction
Multi-view stereo (MVS) aims at recovering 3D scenes from
multi-view images and calibrated cameras, which is an im-
portant problem and widely studied in computer vision com-
munity (Seitz et al. 2006). Recent success of deep learning
has triggered the interest of extending MVS pipelines to end-
to-end neural networks. The learning-based methods (Yao
et al. 2018, 2019) adopt CNNs to estimate the feature maps
and build a cost volume upon the reference camera frustum
to predict a per-view depth map for reconstruction. With the
help of large-scale 3D ground truth, they outperform tradi-
tional geometry-based approaches and dominate the leader-
board. Whereas the learning-driven approaches strongly de-
pend on the availability of 3D ground truth data for train-
ing, which is not easy to acquire (Zhong, Li, and Dai 2018).
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Figure 1: Comparison between SOTA supervised and unsu-
pervised MVS methods.

Thus it drives the community to focus on unsupervised/self-
supervised MVS approaches.

Recently, there has been a surge in the number of self-
supervised MVS methods that transform the depth estima-
tion problem to an image reconstruction problem (Khot et al.
2019; Dai et al. 2019; Huang et al. 2020). The predicted
depth map and the input image are used to reconstruct the
image on another view, thus the self-supervision loss is built
to estimate the difference between the reconstructed and re-
alistic image on that view. However, as summarized in Fig-
ure 1, despite the impressive efforts in previous unsuper-
vised methods, there still exists a clear gap between super-
vised and unsupervised results. In this paper, we suggest to
rethink the task of self-supervision itself to improve the ac-
curacy in MVS.

Previous self-supervised MVS methods largely rely on
the same color constancy hypothesis, assuming the corre-
sponding points among different views have the same color.
However, as Figure 2 shows, in realistic scenarios, vari-
ous factors may disturb the color distribution, such as light
conditions, reflections, noise, etc. Consequently, the ideal
self-supervision loss is susceptible to be confused by these
common disturbances in color, leading to ambiguous su-
pervision in challenging scenarios, namely color constancy
ambiguity. To address the issues, we aim to incorporate
the following extra priors of correspondence with the prior
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Figure 2: Illustration of the color constancy ambiguity problem in self-supervised MVS.

of color constancy in self-supervision loss: (1) The prior
of semantic correspondence can provide abstract matching
clues to guide the supervision. (2) The prior of data aug-
mentation consistency can enhance the robustness towards
color fluctuation. Hence, we propose a novel Joint Data-
Augmentation and Co-Segmentation self-supervised MVS
framework, namely JDACS.

For the prior of semantic consistency, most of the previ-
ous methods rely on the manually annotated semantic la-
bels (Yang et al. 2018; Dovesi et al. 2019) restricted in
fixed scenarios like autonomous driving with specified se-
mantic classes. Whereas in the concern of MVS, on the
one hand the semantic annotations are relatively expensive,
on the other hand the huge variation in scenarios makes
the semantic categories unfixed for segmentation which re-
quires specified classes. Differently, we adopt non-negative
matrix factorization (NMF) (Ding, He, and Simon 2005)
to excavate the common semantic clusters among multi-
view images dynamically for unsupervised co-segmentation
(Collins, Achanta, and Susstrunk 2018). Then the seman-
tic consistency is maximized among the re-projected multi-
view semantic maps.

For the prior of data augmentation consistency, heavy data
augmentation seldom appears in previous self-supervised
MVS methods (Khot et al. 2019; Dai et al. 2019; Huang
et al. 2020), because the natural color fluctuation in data aug-
mentation will lead to the color constancy ambiguity in self-
supervision. To preserve the reliability of self-supervision,
we attach an additional data-augmentation branch with var-
ious transformations to the regular training branch. The out-
put of regular training branch is taken as pseudo ground truth
to supervise the output of augmented training branch.

In summary, our contributions are:
(1) We propose a unified unsupervised MVS pipeline

called Joint Data-Augmentation and Co-Segmentation
framework(JDACS) where extra priors of semantic consis-
tency and data augmentation consistency can provide reli-
able guidance to overcome the color constancy ambiguity.

(2) We propose a novel self-supervision signal based on
semantic consistency, which can excavate mutual semantic
correspondences from multi-view images at unfixed scenar-
ios in a totally unsupervised manner.

(3) We propose a novel way to incorporate heavy data
augmentation into unsupervised MVS, which can provide

regularization towards color fluctuation.
(4) The experimental results show that our proposed

method can lead to a leap of performance among unsuper-
vised methods and compete on par with some top supervised
methods.

Related Work
Supervised MVS: Recent advances in deep learning have
interested a series of learnable systems for solving MVS
problems (Huang et al. 2018; Ji et al. 2017). MVSNet (Yao
et al. 2018) is an end-to-end MVS pipeline that builds a cost
volume upon the reference camera frustum and learns the 3D
regularization with CNNs. Many variants based on MVS-
Net have been proposed for improving the performance (Yao
et al. 2019; Luo et al. 2019). Concurrently, along with the
fervor for expanding the MVS framework to a coarse-to-
fine manner, (Chen et al. 2019; Yu and Gao 2020; Yang
et al. 2020; Cheng et al. 2020; Gu et al. 2020; Xu and Tao
2020) separate the single MVS pipeline into multiple stages,
achieving impressive performances.
Unsupervised MVS: Under the assumption of photometric
consistency (Godard, Mac Aodha, and Brostow 2017), un-
supervised learning has been developed in multi-view sys-
tems. (Khot et al. 2019) inherit the self-supervision signal
based on view synthesis and dynamically aggregates infor-
mative clues from nearby views. (Dai et al. 2019) predict
the depth maps for all views simultaneously and filter the oc-
cluded regions. (Huang et al. 2020) further endow the depth-
normal consistency into the MVS pipeline for improvement.
Whereas all these methods share the assumption of color
constancy, suffering from ambiguous supervision in chal-
lenging scenarios.
Segmentation Guided Algorithms: By assigning each
pixel in the image to a specific class, semantic segmenta-
tion (Long, Shelhamer, and Darrell 2015) can provide an ab-
stract representation. Several methods incorporate the scene
parsing information with other tasks. SegStereo (Yang et al.
2018) enables joint learning for segmentation and disparity
esitimation simultaneously and (Cheng et al. 2017) utilize
semantic clues to guide the training of optical flow estima-
tion. These methods rely on annotated labels for segmen-
tation in specific scenes like autonomous driving, whereas
we differently concentrate on excavating semantics from dy-
namic scenarios. Co-segmentation methods aim at predict-
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Figure 3: Illustration of our Joint Data-Augmentation and Co-Segmentation (JDACS) MVS framework.

ing foreground pixels of objects given an image collection
(Joulin, Bach, and Ponce 2012). We apply unsupervised co-
segmentation (Casser et al. 2019) on the multi-view pairs to
exploit the common semantics.

Method
In this section, we present Joint Data-Augmentation and Co-
Segmentation framework(JDACS). To improve the reliabil-
ity towards color constancy ambiguity, we incorporate extra
priors of semantic consistency and data-augmentation con-
sistency with a basic structure of deep MVS pipeline (Yao
et al. 2018) in JDACS. As Figure 3 shows, the architec-
ture of JDACS consists of Depth Estimation branch, Co-
Segmentation branch and Data-Augmentation branch.

Depth Estimation Branch
As an unsupervised method, our proposed framework can
be combined with arbitrary MVS networks. Here, we adopt
MVSNet (Yao et al. 2018) as a representative backbone. The
network firstly extracts features using a CNN from N input
images. Then a variance-based cost volume is constructed
via differentiable homography warping and a 3D U-Net is
used to regularize the 3D cost volume. Finally, the depth
map is inferred for every reference image. A sketch of the
pipeline is shown in Figure 3.
Photometric Consistency: The key idea of photometric
consistency (Barnes et al. 2009) is to minimize the differ-
ence between synthesized image and original image on the
same view. Denote that the 1-st view is the reference view
and the remaining N − 1 views as source views indexed by
i(2 ≤ i ≤ N). For a particular pair of images (I1, Ii) with
associated intrinsic and extrinsic parameters (K,T ). We can
calculate the corresponding position p′j in source view based
on its coordinate pj in reference view.

p′j = KT (D(pj)K
−1pj) (1)

where j(1 ≤ j ≤ HW ) is the index of pixels and D repre-
sents the predicted depth map.

The warped image I ′i can then be obtained by using the
differentiable bilinear sampling from Ii.

I ′i(pj) = Ii(p
′
j) (2)

Along with the warping, a binary validity maskMi is gen-
erated simultaneously, indicating valid pixels in the novel
view because some pixels may be projected to the external
area of images. In a MVS system, we can warp all N − 1
source views to the reference view to calculate the loss.

LPC =
N∑
i=2

||(I ′i − I1)�Mi||2 + ||(∇I ′i −∇I1)�Mi||2
||Mi||1

(3)
where∇ denotes the gradient operator and� is dot product.

Co-Segmentation Branch
In previous methods (Yang et al. 2018; Casser et al. 2019),
handcrafted semantic annotations are usually utilized to pro-
vide extra supervision to improve the performance. How-
ever, due to the huge variation of scenarios and the expensive
cost for manual annotations in MVS, we differently choose
to mine the implicit common segments from multi-view
images via unsupervised co-segmentation. Co-segmentation
aims at localizing the foreground pixels of the common ob-
jects given an image collection. It has been proven that non-
negative matrix factorization (NMF) has an inherent clus-
tering property in (Ding, He, and Simon 2005). Following
a classical co-segmentation pipeline (Collins, Achanta, and
Susstrunk 2018), NMF applied to the activations of a pre-
trained CNN layer can be exploited to find semantic corre-
spondences across images.
Non-negative Matrix Factorization: Non-negative matrix
factorization(NMF) is a group of algorithms in multivariate
analysis and linear algebra where a matrix A is factorized
into two matrices P and Q. All the three matrices are with
the property that having no negative elements. As (Ding, He,
and Simon 2005) shows, NMF has an inherent clustering
property that it automatically clusters the columns of ma-
trix A = (a1, ..., an). More specifically, if we impose an or-
thonormal constraint on Q(QQT = I), then the approxima-
tion ofA byA ' PQ achieved by minimizing the following
error function is equivalent to the optimization of K-means
clustering.

||A− PQ||F , P ≥ 0, Q ≥ 0 (4)
where the subscript F means the Frobenius Norm.
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Figure 4: Brief illustration of the clustering effect of NMF.

Clustering on CNN Activations: ReLU is a common com-
ponent for many modern CNNs, due to its desirable gradient
properties. The CNN feature maps activated by ReLU result
in non-negative activations, which naturally fit for the target
of NMF. As shown in Figure 3, we apply a pretrained VGG
network (Simonyan and Zisserman 2014) for feature extrac-
tion. Denote that the extracted feature map is of dimension
(H,W,C) on each of theN views. Then the multi-view fea-
ture maps are concatenated and reshaped to a (NHW,C)
matrix A. By utilizing multiplicative update rule in (Ding,
He, and Simon 2005) to solve NMF, A is factorized into a
(NHW,K) matrix P and (K,C) matrix Q, where K is the
NMF factors representing the number of semantic clusters.
For a comprehensive understanding, we provide a brief in-
terpretation of the results P , Q and the clustering effect of
NMF in Figure 4.
The Q matrix: Due to the orthonormal constraints of
NMF(QQT = I) (Ding, He, and Simon 2005), each row of
the (K,C) matrix Q can be viewed as a cluster centroid ofC
dimensions, which corresponds to a coherent object among
views.
The P matrix: The rows of the (NHW,K) matrix P corre-
spond to the spatial positions of all pixels from N views. In
general, the matrix factorizationA ≈ PQ enforces the prod-
uct between each row of P and each column of Q to best
approximate the C dimensional feature of each pixel in A.
As shown in Figure 4, K = 3 semantic objects are clustered
in Q from the feature embeddings of all pixels in A, thus P
contains the similarity between each pixel and each of the
K = 3 clustered semantic objects. Consequently, P can fur-
ther be reshaped into N heat maps of dimension (H,W,K)
and fed into a softmax layer to construct the co-segmentation
maps S.
Semantic Consistency Loss: With the co-segmentation
maps S extracted from matrix P , we can design a self-
supervision constraint based on semantic consistency. The
key idea is to expand the photometric consistency across
multiple views (Barnes et al. 2009) to the segmentation
maps. Similar to the photometric consistency discussed in
Section , we can calculate the corresponding position p′j in
source views with the pixel pj in reference view according
to Equation 1, given the predicted depth valueD(pj) and the
j-th pixel in the image. Then the warped segmentation map
S′i from the i-th source view can be reconstructed by bilinear
sampling.

S′i(pj) = Si(p
′
j) (5)

Finally, the semantic-consistency objective LSC is mea-

sured by calculating the per-pixel cross-entropy loss be-
tween the warped segmentation map S′i and the ground truth
labels converted from reference segmentation map S1.

LSC = −
N∑
i=2

[
1

||Mi||1

HW∑
j=1

f(S1,j) log(S′i,j)Mi,j ] (6)

where f(S1,j) = onehot(arg max(S1,j)) and Mi is a bi-
nary mask indicating valid pixels from the i-th view to ref-
erence view.

Data-Augmentation Branch
Some recent works (Xie et al. 2019; Chen et al. 2020) in con-
trastive learning demonstrate the benefits of data augmen-
tation in self-supervised learning. The intuition is that data
augmentation brings challenging samples which bust the re-
liability of unsupervised loss and hence provides robustness
towards variations.

Briefly, a random vector θ is defined to parameterize an
arbitrary augmentation τθ : I → Īτθ on image I . How-
ever, data augmentation has seldom been applied in self-
supervised methods (Khot et al. 2019; Dai et al. 2019;
Huang et al. 2020), because natural color fluctuation in aug-
mented images may disturb the color constancy constraint of
self-supervision. Hence, we enforce the unsupervised data
augmentation consistency by contrasting the output of orig-
inal data and augmented samples as a regularization, instead
of optimizing the original objective of view synthesis.
Data Augmentation Consistency Loss: Specifically, as
shown in Figure 3, the prediction of a regular forward pass
for original images I in Depth Estimation branch is de-
noted as D. Accordingly, the prediction of augmented im-
ages Īτθ is denote as D̄τθ . In a contrastive manner, the data-
augmentation consistency is ensured by minimizing the dif-
ference between D and D̄τθ :

LDA =
1

||Mτθ ||1

∑
||(D − D̄τθ )�Mτθ ||2 (7)

where Mτθ represents the unoccluded mask under transfor-
mation τθ. Due to the epipolar constraints among different
views, the integrated augmentation methods in our frame-
work should not change the spatial location of pixels. We
will show some augmentation methods used in our method
as follows:
Cross-view Masking: To simulate the occlusion hallucina-
tion among the multi-view situations, we randomly gener-
ate a binary crop mask 1 −Mτθ1

to block out some regions
on reference view. Then the occlusion mask is projected to
other views to mask out the corresponding area in images.
Following the assumption that the remaining regions Mτθ1
should be immune to the transformation, we can contrast
the validity regions between the results of original and aug-
mented samples.
Gamma Correction: Gamma correction is a nonlinear op-
eration used to adjust the illuminance of images. To simulate
various illuminations, we integrate random gamma correc-
tion τθ2 parameterized by θ2 to challenge the unsupervised
loss.
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Method Acc. Comp. Overall

Geo.

Furu 0.613 0.941 0.777
Tola 0.342 1.190 0.766

Camp 0.835 0.554 0.694
Gipuma 0.283 0.873 0.578

Sup.

Surfacenet 0.450 1.040 0.745
MVSNet 0.396 0.527 0.462

P-MVSNet 0.406 0.434 0.420
R-MVSNet 0.383 0.452 0.417

Point-MVSNet 0.342 0.411 0.376
Fast-MVSNet 0.336 0.403 0.370
CVP-MVSNet 0.296 0.406 0.351

UnSup.

Unsup MVS 0.881 1.073 0.977
MVS2 0.760 0.515 0.637

M3VSNet 0.636 0.531 0.583
JDACS 0.571 0.515 0.543

JDACS-MS 0.398 0.318 0.358

Table 1: Quantitative results on DTU evaluation benchmark.
Geo. represents traditional geometric methods. Sup. repre-
sents supervised methods. UnSup. represents unsupervised
methods.

Color Jitter and Blur: Many transformations can attach
color fluctuation to images, such as random color jitter, ran-
dom blur, random noise. The color fluctuation makes the un-
supervised loss in MVS unreliable, because the photometric
loss requires the color constancy among views. In contrast,
these transformations denoted as τθ3 can create challenging
scenes and regularize the robustness towards color fluctua-
tion in self-supervision.

The overall transformation τθ can be represented as a
combination of the aforementioned augmentations: τθ =
τθ3 ◦ τθ2 ◦ τθ1 , where ◦ represents function composition.

Overall Architecture and Loss
As shown in Figure 3, the overall framework has three
components: Depth Estimation branch, Co-Segmentation
branch and Data-Augmentation branch. In our paper, we aim
to handle the color constancy ambiguity problem in self-
supervised MVS, as discussed in Section . Apart from the
basic self-supervision signal based on photometric consis-
tency LPC (Equation 1), we add two extra self-supervision
signals of semantic consistency LSC and data-augmentation
consistency LDA to the framework. In addition to the afore-
mentioned loss, some common regularization terms sug-
gested by (Mahjourian, Wicke, and Angelova 2018; Khot
et al. 2019) for depth estimation are applied, such as struc-
tured similarity LSSIM and depth smoothness LSmooth.

The final objective can be constructed as follows:
L = λ1LPC + λ2LSC + λ3LDA

+λ4LSSIM + λ5LSmooth
(8)

where the weights are empirically set as: λ1 = 0.8, λ2 =
0.1, λ3 = 0.1, λ4 = 0.2, λ5 = 0.0067.

Experiments
In this section, we conduct comprehensive experiments to
evaluate the proposed JDACS framework. First, we intro-
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Figure 5: Qualitative comparison in 3D reconstruction be-
tween our JDACS and SOTA supervised method(CVP-
MVSNet) on DTU dataset. From left to right: ground truth,
results of supervised CVP-MVSNet, our results.

duce the implementation details. Then, we evaluate the pro-
posed method on DTU benchmark (Aanæs et al. 2016)
and further conduct ablation studies to analyze the signifi-
cant components. At last, we test the proposed method on
Tanks&Temples benchmark (Knapitsch et al. 2017) to verify
the generalization ability.

Implementation Details

Backbone: In default, the most concise MVSNet (Yao et al.
2018) is applied as backbone in our JDACS framework. We
denote the framework as JDACS-MS if a multi-stage MVS-
Net like CVP-MVSNet (Yang et al. 2020) is selected as
backbone.
Training and Testing: During the training phase, we only
use the training set of DTU without any ground truth depth
maps. Our proposed JDACS is implemented in Pytorch and
trained on 4 NVIDIA RTX 2080Ti GPUs. In default, the
hyper-parameters during training and testing phase follow
the same setting of Unsup MVS (Khot et al. 2019). With a
pattern of data-parallel, the batch size is set to 1 per GPU for
JDACS and 4 per GPU for JDACS-MS, which consume no
more than 10G memories in each GPU. We use Adam opti-
mizer with a learning rate of 0.001 which decreases by 0.5
times for every two epochs. JDACS is trained for 10 epochs
as MVSNet (Yao et al. 2018) and JDACS-MS is trained for
27 epochs as CVP-MVSNet(Yang et al. 2020).
Error Metrics: In the DTU benchmark, Accuracy is mea-
sured as the distance from the result to the ground truth, en-
capsulating the quality of reconstruction; Completeness is
measured as the distance from the ground truth to the result,
encapsulating how much of the surface is captured; Over-
all is a the average of Accuracy and Completeness, acting
as a compositive error metric. In the Tanks&Temples bench-
mark, F-score in each scene is calculated following the offi-
cial evaluation process.
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Method Supervised Input Size Depth Map Size Acc. Comp. Overall
MVSNet X 1152× 864 288× 216 0.456 0.646 0.551
JDACS × 1152× 864 288× 216 0.571 0.515 0.543

CVP-MVSNet X 1600× 1152 1600× 1152 0.296 0.406 0.351
JDACS-MS × 1600× 1152 1600× 1152 0.398 0.318 0.358

Table 2: Comparison between the backbone networks with same settings trained by supervision and our JDACS self-supervision
framework. Due to the GPU memory limitation, we decrease the resolution of MVSNet to 1152× 864 as (Chen et al. 2019).

Ground Truth

Figure 6: Qualitative results JDACS on scan12 of the DTU dataset. Top row: Overview of generated point clouds with different
combinations of self-supervision components. Bottom row: zoomed local areas. LPC : Photometric-Consistency Loss; LSC :
Semantic-Consistency Loss; LDA: Data-Augmentation-Consistency Loss.

LPC LSC LDA Acc. Comp. Overall
X 0.7215 0.6339 0.6777
X X 0.6134 0.5771 0.5953
X X 0.5908 0.5887 0.5898
X X X 0.5713 0.5146 0.5429

Table 3: Ablation Study of different components in our
JDACS self-supervision network.

LPC LSC LDA Acc. Comp. Overall
X 0.4645 0.4092 0.4369
X X 0.4433 0.3892 0.4163
X X 0.4330 0.3373 0.3851
X X X 0.3977 0.3177 0.3577

Table 4: Ablation Study of different components in our
JDACS-MS self-supervision network.

Benchmark Results on DTU
Comparison with SOTA: The official metrics of the DTU
dataset (Aanæs et al. 2016) are: Accuracy, Completeness
and Overall. These metrics are used to compare our pro-
posed methods with other methods. The comparison in-
cludes traditional methods such as Furu (Furukawa and
Ponce 2009), Tola (Tola, Strecha, and Fua 2012), Camp
(Campbell et al. 2008), Gipuma (Galliani, Lasinger, and
Schindler 2015). For the supervised methods, single stage
networks such as Surfacenet (Ji et al. 2017), MVSNet (Yao
et al. 2018), P-MVSNet (Luo et al. 2019), R-MVSNet
(Yao et al. 2019), and multi-stage networks such as Point-
MVSNet (Chen et al. 2019), Fast-MVSNet (Yu and Gao
2020), CVP-MVSNet (Yang et al. 2020) are included. Fur-
thermore, the current state-of-the-art unsupervised methods
such as Unsup MVS (Khot et al. 2019), M2VS (Dai et al.

Clusters Acc. Comp. Overall
K = 2 0.6166 0.5752 0.5959
K = 4 0.6134 0.5771 0.5953
K = 6 0.6207 0.5827 0.6017
K = 8 0.6224 0.6030 0.6127

Table 5: Ablation Study of different numbers of semantic
clusters K.
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Figure 7: Visualization of the co-segmentation results with
different number of segmentation parts K.

2019) and M3VSNet (Huang et al. 2020) are compared.
The quantitative results are shown in Table 1. From Table

1, we can conclude that our proposed method outperforms
previous unsupervised methods in all official metrics. Fur-
thermore, our proposed method can reconstruct better point
cloud than traditional methods and some supervised meth-
ods in the metric of Overall. The supervised methods tend
to have better performance in the metric of Accuracy, while
unsupervised methods usually achieve better performance in
the metric of Completeness. The qualitative comparisons in
Figure 5 demonstrate that our proposed method is compara-
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Method Mean Family Francis Horse Lighthouse M60 Panther Playground Train
MVS2 37.21 47.74 21.55 19.50 44.54 44.86 46.32 43.38 29.72

M3VSNet 37.67 47.74 24.38 18.74 44.42 43.45 44.95 47.39 30.31
Ours 45.48 66.62 38.25 36.11 46.12 46.66 45.25 47.69 37.16

Table 6: Quantitative comparison with previous unsupervised methods without finetuning on Tanks&Temples dataset.

ble with some of the SOTA supervised methods.

Supervised vs Self-Supervised: From Table 1, we can find
that there still exists a clear gap of performance between
SOTA supervised methods and previous unsupervised meth-
ods. To provide a fair comparison without extra components,
we compare our proposed self-supervision framework with
supervised methods in the same network settings. The only
difference is that our model is trained without any ground
truth depth maps. The comparison is provided in Table 2.
The supervised baselines are borrowed from previous pa-
pers(MVSNet from (Chen et al. 2019), CVP-MVSNet from
(Yang et al. 2020)). The results in Table 2 demonstrate that
our proposed framework can compete on par with the super-
vised opponents in the same network settings.

Ablation Studies

Effect of Different Prior Components: To evaluate the ef-
fect of our proposed prior of semantic consistency and data
augmentation consistency, we train the networks with differ-
ent combinations of these self-supervised signals. The quan-
titative results with different components in our proposed
JDACS framework are summarized in Table 3 and Table 4.
The model settings of JDACS in Table 3 and JDACS-MS
in Table 4 is the same as the ones in Table 2. The qualita-
tive visualization of the results of different components in
JDACS-MS is provided in Figure 6. The experimental re-
sults demonstrate that endowing these extra priors into the
self-supervision training can promote the performance in
MVS. For example, as illustrated in Table 3, the Overall er-
ror metric decreases from 0.6777mm to 0.5953mm by in-
cluding the prior of semantic consistency, from 0.6777mm
to 0.5898mm with the help of involving data augmentation
based branch.

Effect of Semantic Cluster Numbers: Different from man-
ual semantic annotations in supervised learning, the seman-
tic concepts excavated in an unsupervised manner are am-
biguous. The number of semantic clusters K is a significant
hyper-parameter for determining the categories of common
semantic concepts among different views. Hence we con-
duct experiments about the effect of different semantic clus-
ter numbers K and the results are reported in Table 5. Fur-
thermore, a brief visualization of these semantic clusters is
provided in Figure 7. From the visualization and the table,
we can conclude that when the semantic clusters are more
than 4, the localization of the semantic parts becomes less
accurate than the ones with less than 4 clusters. As a result,
we selectK = 4 clusters as a default setting in our proposed
method.

(a) Family (b) Horse

(c) Train (d) Panther

Figure 8: Visualization of the generated 3D point clouds
without any finetuning on Tanks&Temples dataset.

Generalization

In this section, we compare our proposed JDACS with previ-
ous unsupervised methods on Tanks&Temples dataset. Due
to the requirement of more than 20G memories in GPU
using the original post-processing tool provided by (Yao
et al. 2018), instead, we use an open simplified version on
https://github.com/xy-guo/MVSNet pytorch, which can be
deployed on a GPU with 11G memories like RTX 2080Ti.
We follow the same hyper-parameter settings as MVS2 (Dai
et al. 2019). The quantitative comparison with previous un-
supervised methods is provided in Table 6 and the visualiza-
tion of the reconstructed dense point clouds is shown in Fig-
ure 8. Our proposed JDACS has better performance by the
mean score of 8 scenes than previous unsupervised methods,
which is the best unsupervised MVS method until Septem-
ber 9, 2020.

Conclusion

In this paper, we have proposed a novel unsupervised learn-
ing based MVS framework, JDACS, aiming at alleviating
the gap between supervision and self-supervision caused
by the coarse hypothesis of color constancy. On the one
hand, our proposed method can enforce cross-view data-
augmentation consistency into self-supervision with chal-
lenging variations. On the other hand, we can excavate the
implicit common semantic clusters among different views
and enforce the cross-view semantic consistency to provide
a semantic-level correspondence metric. Experimental re-
sults on multiple benchmarks demonstrate the effectiveness
of our proposed self-supervised framework.
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