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Abstract
LiDAR point cloud analysis is a core task for 3D computer vi-
sion, especially for autonomous driving. However, due to the
severe sparsity and noise interference in the single sweep Li-
DAR point cloud, the accurate semantic segmentation is non-
trivial to achieve. In this paper, we propose a novel sparse Li-
DAR point cloud semantic segmentation framework assisted
by learned contextual shape priors. In practice, an initial se-
mantic segmentation (SS) of a single sweep point cloud can
be achieved by any appealing network and then flows into
the semantic scene completion (SSC) module as the input.
By merging multiple frames in the LiDAR sequence as su-
pervision, the optimized SSC module has learned the con-
textual shape priors from sequential LiDAR data, completing
the sparse single sweep point cloud to the dense one. Thus,
it inherently improves SS optimization through fully end-to-
end training. Besides, a Point-Voxel Interaction (PVI) mod-
ule is proposed to further enhance the knowledge fusion be-
tween SS and SSC tasks, i.e., promoting the interaction of in-
complete local geometry of point cloud and complete voxel-
wise global structure. Furthermore, the auxiliary SSC and
PVI modules can be discarded during inference without extra
burden for SS. Extensive experiments confirm that our JS3C-
Net achieves superior performance on both SemanticKITTI
and SemanticPOSS benchmarks, i.e., 4% and 3% improve-
ment correspondingly.

Introduction
LiDAR point clouds, compared with data from other sen-
sors, such as cameras and radars in autonomous driving per-
ception, have advantages of both accurate distance measure-
ments and fine semantic descriptions. Semantic segmenta-
tion of LiDAR point clouds is usually conducted by assign-
ing a semantic class label to each point. It is traditionally
viewed as a typical task in the computer vision community.
In autonomous driving, accurate and effective point cloud
semantic segmentation undoubtedly plays a critical role.

Previous studies (Thomas et al. 2019; Wu, Qi, and Fuxin
2019) about point cloud semantic segmentation mainly fo-
cused on the complete or dense point cloud scenarios,
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Figure 1: Learning shape priors from multiple frames. For
the sparse per-sweep point cloud shown in (a), it is nontriv-
ial for current methods to recognize the truck from partial
components. However, if we introduce the auxiliary infor-
mation from adjacent frames (b) and (c), it is much easier to
segment the complete truck in (d).

which are post-processed by merging multiple collected Li-
DAR or RGB-D sequences (e.g., ScanNet (Dai et al. 2017),
S3DIS (Armeni et al. 2016) and Semantic3D (Hackel et al.
2017)). However, raw per-sweep LiDAR point clouds, as
the original input of autonomous driving, are much sparser.
Their sparsity usually increases with the reflection distance,
which often leads to extremely shapes missing and uneven
point sampling for various categories. Therefore, despite the
promising performance on complete data (e.g., 80% mIOU
on Semantic3D), the semantic segmentation of sparse sin-
gle sweep LiDAR point cloud still remains a big challenge,
which extremely limits its accuracy in real applications.

In this paper, we try to break through the barrier of se-
mantic segmentation on sparse single sweep LiDAR point
clouds. One plausible way to solve this problem is to fully
utilize the sequential nature of LiDAR data. Taking the sce-
nario shown in Fig. 1(a) as an example, for a per-sweep point
cloud with extremely sparse points of the truck, it seems
impossible for previous methods to conduct accurate seg-
mentation. Nevertheless, such segmentation would be possi-
ble, if we introduce the richer shape information from the
other two frames, i.e., Fig. 1(b) and Fig. 1(c), to recon-
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struct a shape-complete truck as shown in Fig. 1(d). For
this purpose, some previous works utilized historical adja-
cent frames to supplement the local details missing from
the point clouds. For instance, SpSequenceNet (Shi et al.
2020) and MeteorNet (Liu, Yan, and Bohg 2019) use the
point cloud of the current frame to query the nearest neigh-
bors from the previous frames, following which a feature
aggregation is conducted to fuse the adjacent-frame infor-
mation. PointRNN (Fan and Yang 2019) applies Recurrent
Neural Networks (RNNs) to select available features from
previous scenes. However, all of the above methods become
unavailable in most real scenarios since the following rea-
sons: (1) These methods exclusively use historical frames of
the current scene in LiDAR sequence. Thus, they cannot in-
troduce priors for newly incoming objects in this scene, i.e.,
they cannot utilize future frames. (2) Their proposed feature
aggregation methods (i.e., through kNN or RNN) inevitably
increase the computational burden, which makes it less ef-
fective and unsuitable for self-driving task.

To solve the above issues, we propose an enhanced Joint
single sweep LiDAR point cloud Semantic Segmentation
by exploiting learned shape prior form Scene Completion
network, i.e., JS3C-Net. Specifically, by merging dozens
of consecutive frames in a LiDAR sequence, a large com-
plete point cloud is achieved as ground truth for the Seman-
tic Scene Completion (SSC) task without extra annotation.
The optimized SSC by using these annotations could capture
the compelling shape priors, making the incomplete input
complete to the acceptable shape with semantic labels (Song
et al. 2017). Therefore, the completed shape priors can inher-
ently benefit the semantic segmentation (SS) due to the fully
end-to-end training strategy. Furthermore, a well-designed
Point-Voxel Interaction (PVI) module is further proposed for
implicit mutual knowledge fusion between the SS and SSC
tasks. Concretely, the point-wise segmentation and voxel-
wise completion are leveraged to maintain the coarse global
structure and fine-grained local geometry through PVI mod-
ule. More importantly, we design our SSC and PVI modules
to be disposable. To achieve this, JS3C-Net combines the SS
and SSC in a cascaded manner, which means that it would
not influence the information flow for SS while discarding
the SSC and PVI modules in inference stage. Thus, it can
prevent bringing the extra computing burden from generat-
ing complete high-resolution dense volumes.

Our main contributions are: 1) To the best of our knowl-
edge, the proposed JS3C-Net is the first to achieve the en-
hanced sparse single sweep LiDAR semantic segmentation
via auxiliary scene completion. 2) For better trade-off be-
tween performance and effectiveness, our auxiliary compo-
nents are designed in cascaded and disposable manners, and
a novel point-voxel interaction (PVI) module is proposed for
better feature interaction and fusion between the two tasks.
3) Our method shows superior results in both SS and SSC on
two benchmarks, i.e., SemanticKITTI (Behley et al. 2019)
and SemanticPOSS (Pan et al. 2020), by a large margin.

Related Work
Point Cloud Semantic Segmentation. Unlike 2D images
with regular grids, point clouds are often sparse and dis-

ordered. Thus, point clouds processing is a challenging
task. There are three main strategies to approach this prob-
lem: projection-based, voxel-based and point-based. (1)
Projection-based methods map point clouds onto 2D pix-
els, so that traditional CNN can play a normal role. Pre-
vious works projected all points scanned by the rotating
LiDAR onto 2D images by plane projection (Lawin et al.
2017; Boulch, Le Saux, and Audebert 2017; Tatarchenko
et al. 2018) or spherical projection (Wu et al. 2018, 2019).
(2) Considering the sparsity of point clouds and mem-
ory consumption, it is not very effective to directly vox-
elize point clouds and then use 3D convolution for feature
learning. Various subsequent improved methods have been
proposed, e.g., efficient spatial sparse convolution (Choy,
Gwak, and Savarese 2019; Graham, Engelcke, and van der
Maaten 2018) and octree based convolutional neural net-
works (Wang et al. 2017; Riegler, Osman Ulusoy, and
Geiger 2017). Also (Tang et al. 2020) use NAS to obtain a
more efficient feature representation. (3) Point-based meth-
ods directly process raw point clouds (Qi et al. 2017a,b).
Usually, most methods use sampling strategies to select
sub-points from the original point clouds, and then use lo-
cal grouping with feature aggregation function for local
feature learning of each sub-point. Among these methods,
graph-based learning (Wang et al. 2019a; Landrieu and Si-
monovsky 2018; Landrieu and Boussaha 2019; Wang et al.
2019c) and convolution-like operations (Thomas et al. 2019;
Wu, Qi, and Fuxin 2019; Hu et al. 2020) are widely used.
However, previous methods often suffer from local informa-
tion missing in LiDAR scenes due to insufficient priors and
bias in data collection.

Semantic Scene Completion. Semantic scene completion
(SSC) aims to produce a complete 3D voxel representa-
tion from an incomplete input. Concretely, Song et al.(Song
et al. 2017) firstly use single-view depth as input to con-
struct an end-to-end model SSCNet, which can predict the
results of scene completion and semantic labeling simulta-
neously. Spatially sparse group convolution is used in Zhang
et al. (Zhang et al. 2018) for fast 3D dense prediction. Mean-
while, coarse-to-fine strategies (e.g., LSTM based model)
are used in (Dai et al. 2018; Han et al. 2017) to recover miss-
ing parts of 3D shapes. More recently, some works introduce
color information (Garbade et al. 2019a) and use more pow-
erful two-stream feature extractor (Li et al. 2019) or feature
fusion (Liu et al. 2020) to enhance the performance. How-
ever, SSC is rarely studied in large-scale LiDAR scenarios,
and the serious geometric details missing and real-time re-
quirements make it difficult.

Multi-task Learning on Segmentation. Multi-task learn-
ing aims to improve the learning efficiency and prediction
accuracy for each task through knowledge transfer, which
is widely used in 2D images segmentation (Kendall, Gal,
and Cipolla 2018). Wang et al. (Wang et al. 2019b), Pham
et al. (Pham et al. 2019) and Wei et al. (Wei et al. 2020)
innovatively combine semantic and instance segmentation
with specific-designed fusion modules to improve the per-
formance. OccuSeg (Han et al. 2020) proposes a 3D voxel
projection-based segmentation network with voxel occu-
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Figure 2: Overall pipeline of JS3C-Net. Given a sparse incomplete single sweep point cloud, it firstly uses a sparse convolution
U-Net to conduct point feature encoding Fenc. Based on the initial encoding, MLP1 is used to generate shape embedding (SE)
FSE , which flows into MLP3 together with initial encoding transferred through MLP2 to generate Fout for point cloud semantic
segmentation. Afterwards, the incomplete fine-grained point features from SE and complete voxel features from semantic scene
completion (SSC) module flows into the Point-Voxel Interaction (PVI) module to achieve the refined features, which finally
outputs the completion voxels with supervision. Note that the SSC and PVI modules can be discarded during inference.

pancy size regression and owns advantages of robustness in
prediction. However, the shape priors brought by completion
tasks are often neglected in previous works, while a proper
use could improve the performance of segmentation.

Method
Overview
The pipeline of JS3C-Net1 is illustrated in Fig. 2. In prac-
tice, we firstly use the general appealing point cloud seg-
mentation network to obtain initial point semantic segmen-
tation and a shape embedding (SE) for each incomplete
single-frame point cloud. Then SSC module takes results of
segmentation network as input and generates the completed
voxel of the whole scene with dense convolution neural net-
work. Meanwhile, a point-voxel interaction (PVI) module is
proposed to conduct shape-aware knowledge transfer.

Semantic Segmentation
In general, a point cloud has two components: the points
P ∈ RN×3 and their features F ∈ RN×D, where the points
record spatial coordinates of N points and D-dimensional
features can include any point-wise information, e.g., RGB
information. Here we only use point coordinates as inputs.

For semantic segmentation stage, we simply choose Sub-
manifold SparseConv (Graham, Engelcke, and van der
Maaten 2018) as our backbone. Unlike traditional voxel-
based methods (Ronneberger, Fischer, and Brox 2015; Choy,
Gwak, and Savarese 2019) directly transforming all points
into the 3D voxel grids by averaging all input features, it
only stores non-empty voxels by the Hash table, and con-
duct convolution operations only on these non-empty voxels
with more efficient way. Afterwards, the voxel-based out-
put from sparse convolution based U-Net (SparseConv U-
Net) is transformed back to the point-wise features Fenc ∈
RN×F by nearest-neighbor interpolation. To further intro-
duce shape priors (see latter section) to point-wise features,
we use multi-layer perceptions (MLP1) to transfer their fea-
tures to shape embedding (SE) FSE ∈ RN×De

, which

1https://github.com/yanx27/JS3C-Net.

works as the input of the subsequent point-voxel interac-
tion module. Furthermore, an element-wise addition oper-
ation after MLP2 is used to fuse shape embedding with fea-
tures from SparseConv U-Net. Finally, Fout ∈ RN×C are
generated by MLP3 and prepare for further semantic scene
completion stage.

Cascaded Semantic Scene Completion
The Semantic Scene Completion (SSC) module aims to in-
troduce contextual shape priors from the entire LiDAR se-
quence. For stage of SSC, it takes the semantic probabil-
ity Fout from the SparseConv as input, and then predict the
completion results.

The architecture of our SSC module is depicted in Fig. 3
(a). Taking an incomplete point cloud with per points cat-
egorical probability as input, the network firstly conducts
voxelization to obtain high-resolution 3D volume, and uses
one convolution layer following by a pooling layer to reduce
the resolution and the complexity of computation. Then, sev-
eral basic blocks using convolutions with skip-connection
are exploited to learn a local geometry representation. Af-
terwards, the features from different scales are concatenated
to aggregate information from multiple scales. For achiev-
ing original resolution of SSC output, we leverage dense up-
sampling (Liu et al. 2018) shown in Fig. 3(a) to avoid the in-
terpolation inaccuracy, instead of dilation convolution based
upsampling (Song et al. 2017). Finally, we obtain a voxel
output with C + 1 channels (C semantic categories label
and one non-object label). This coarse completion will be
fed into the PVI module for further mutual enhancements.

Shape-aware Point-Voxel Interaction
To fully utilize implicit knowledge transfer for mutual im-
provements of two tasks, we innovatively propose a shape-
aware Point-Voxel Interaction (PVI) module for knowledge
fusion between incomplete point clouds and complete vox-
els from former two steps. Although the SSC module can
generate voxel-wise output with complete shape, such out-
put is relatively coarse due to the voxelization procedure,
leading to local geometric details missing. The entire geo-
metric representation in raw point cloud data can, neverthe-
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Figure 3: Part (a) shows the inner structure of SSC module, which uses semantic probability from segmentation network as
inputs, generating complete volume by several convolution blocks and dense upsample. Part (b) illustrates a 2D case of PVI
module, which uses the center points of the coarse global structure of number ’5’ to query k nearest neighbors from the raw
point cloud, and then applies graph-based aggregation to achieve the completed ’5’ through fine-grained local geometry.

less, provide semantic guidance during completion process
despite missing parts.

The inner structure of PVI module is shown in Fig. 3 (b),
which aims to conduct a coarse-to-fine process for the SSC
prediction. To be more precise, per point shape embedding
FSE ∈ RN×De

and coarse completion from SSC module V
flow into PVI module as input. Afterwards, PVI firstly se-
lects geometric centers of all non-empty voxels from V as
a new point cloud Pv ∈ RN ′×(C+1), then it uses k-nearest
neighbor by Euclidean distance to query the closest points
from original point cloud P . To this end, a graph convolu-
tional network is further employed to enhance the relation
learning between Pv and P in both spatial and semantic
spaces. In particular, the nodes of the graph are defined by
the point positions with associated points features. For each
point pvi ∈ Pv and its j-th neighboring point pj ∈ P , we
adopt the convolutional operator from DGCNN (Wang et al.
2019c) to define edge-features eij between two points as:

eij = φ([pvi , f
v
i ], [p

v
i , f

v
i ]− [pj , fj ]), (1)

where fvi and fj are features of point pvi and pj respec-
tively, and [·, ·] means concatenation operation. The share-
weighted non-linear fuction φ is the multi-layer perceptron
(MLP) in this paper (any differentiable architecture alterna-
tive). Finally, by stack l graph convolutional network (GCN)
layers, we obtain final fine-grained completion.

The feature interaction process enables features of sparse
point cloud to acquire the ability to predict semantics of
complete voxels. Therefore, the information on complete
details can positively affect the segmentation part through
back propagation. Furthermore, PVI module enhances the
probability of predicting whether the corresponding voxel
of pvi represents an object in the fine-grained architecture,
which fully utilizes spatial and semantic relationships be-
tween each pj and pvi . Finally, this enhanced feature will
be added to the original coarse completion output through
a residual connection for further refinement (see the refined
number ’5’ in Fig. 3 (b)).

Uncertainty-weighted Multi-task Loss
In order to further balance these two tasks and avoid com-
plicated manual attempts during the end-to-end training, we
use the uncertainty weighting method proposed in (Kendall,
Gal, and Cipolla 2018). It introduces acquirable parameters
to automatically adjust the optimal proportion between dif-
ferent tasks. Specifically, the joint loss can be written as:

L(W,σ1, σ2) =
1

2σ2
1

Lseg(Wseg) +
1

2σ2
2

Lcomplet(W )

+logσ1 + logσ2,

(2)

where losses Lseg for segmentation and Lcomplet for com-
pletion are both weighted cross-entropy losses exploited to
update the network parameters W . Note that gradients from
segmentation outputs are only conducted on parameters of
segmentation network Wseg ∈W . In addition, we use train-
able parameters σ1 and σ2 to weight the proportion of these
two tasks for optimal trade-off. Their uncertainty can be de-
duced as two log term to control their values. Finally, during
the training process, these two tasks will promote each other
through back-propagation of joint learning.

Disposable Properties of Auxiliary Components
Our proposed JS3C-Net is a general joint learning frame-
work to improve the point cloud segmentation by introduc-
ing complete shape extracted by LiDAR sequence itself. The
network used in semantic segmentation stage is flexible and
can be replaced by other appealing networks. Furthermore,
our JS3C-Net is effective enough for real-time applications,
since the auxiliary components (i.e., SSC module and PVI
module) can be discarded during inference to prevent intro-
ducing any computing burden for segmentation. That is to
say, the completion part are only exploited in the training
process as the dotted line shown in Fig. 2.

Experiments
Dataset
To further verify the effectiveness of our method, we evalu-
ate JS3C-Net on two benchmarks SemanticKITTI (Behley
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SqueezeSegV2 (Wu et al. 2019)

64*2048
pixels

39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 26.3
DarkNet53Seg (Behley et al. 2019) 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2
RangeNet53++ (Milioto et al. 2019) 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9
3D-MiniNet (Alonso et al. 2020) 55.8 91.6 74.5 64.2 25.4 89.4 90.5 28.5 42.3 42.1 29.4 82.8 60.8 66.7 47.8 44.1 14.5 60.8 48.0 56.6
SqueezeSegV3 (Xu et al. 2020) 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9
PointNet++ (Qi et al. 2017b)

50K pts

20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9
TangentConv (Tatarchenko et al. 2018) 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5
PointASNL (Yan et al. 2020) 46.8 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9
RandLA-Net (Hu et al. 2020) 55.9 90.5 74.0 61.8 24.5 89.7 94.2 43.9 29.8 32.2 39.1 83.8 63.6 68.6 48.4 47.4 9.4 60.4 51.0 50.7
KPConv (Thomas et al. 2019) 58.8 90.3 72.7 61.3 31.5 90.5 95.0 33.4 30.2 42.5 44.3 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4
PolarNet (Zhang et al. 2020)

50K pts
54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5

SparseConv (Baseline) 61.8 89.9 72.1 56.5 29.6 90.5 94.5 43.5 51.0 42.4 31.3 83.9 67.4 68.3 60.4 61.3 41.1 65.6 57.9 67.7
JS3C-Net (Ours) 66.0 88.9 72.1 61.9 31.9 92.5 95.8 54.3 59.3 52.9 46.0 84.5 69.8 67.9 69.5 65.4 39.9 70.8 60.7 68.7

Table 1: Semantic segmentation on the SemanticKITTI benchmark. Underline marks results that ∼ 10% higher than baseline.

et al. 2019) and SemanticPOSS (Pan et al. 2020). Se-
manticKITTI is currently the largest LiDAR sequential
dataset with point-level annotations, which consists of
43552 densely annotated LiDAR scans belonging to 21 se-
quences. These scans are annotated with a total of 19 valid
classes and each scan spans up to 160×160×20 meters with
more than∼ 105 points. We follow the official split for train-
ing, validation and online testing. SemanticPOSS is a newly
proposed dataset with 11 similar annotated categories with
SemanticKITTI. However, it is more challenging because
each scene contains more than twenty times sparse small ob-
jects (i.e., people and bicycle), while the total frames number
are only 1/20 of SemanticKITTI.

On both two datasets, we firstly merge consecutive 70
frames for every single frame to generate the complete vol-
ume of the entire scans. Then we select a volume of 51.2m
in front of the LiDAR, 25.6m to each side of the LiDAR,
and 6.4m in height with the resolution of 0.2m, which re-
sults in a volume of 256 × 256 × 32 voxels for prediction.
Each voxel is assigned a single label based on a majority
vote over all labeled points inside a voxel. Voxels contain-
ing no point are labeled as empty voxels. Note that voxels
absent in all frames will not be considered in the loss calcu-
lation and evaluation.

Joint Learning Protocol
During the end-to-end training process of JS3C-Net, we use
the Adam optimizer as our optimizer. The batch size is set
to 6 for the total 50 epochs. The initial learning rate is set
as 0.001 and decreases by 30% after every 5 epochs. The
weighted terms σ1 and σ2 in Eqn. 2 are randomly initial-
ized and are trained with ×10 learning rates. For semantic
segmentation, 0.05m grids are used to conduct voxelization
in SparseConv model. We randomly rotate the input point
cloud along the y-axis during the training process and ran-
domly scale it in the range of 0.9 to 1.1. During the infer-
ence, we apply the general voting strategy (Thomas et al.
2019; Hu et al. 2020) to average multiple prediction results
of randomly augmented point clouds. Similar data augmen-

Selected 3 classes 11 classes
Method People Rider Bike avg IoU
SequeezeSegV2 18.4 11.2 32.4 29.8
PointNet++ 20.8 0.1 0.1 20.1
RandLA-Net 69.2 26.7 43.9 53.5
KPConv 77.3 29.4 53.2 55.2
SparseConv 76.3 30.5 53.5 57.2
JS3C-Net (Ours) 80.0 39.1 59.8 60.2

Table 2: Semantic segmentation results on the Semantic-
POSS benchmark. The upper, medium and bottom parts con-
tain previous projection-based, point-based and voxel-based
methods, respectively.

tation and voting strategies are also exploited for semantic
scene completion. However, due to the particularity of the
input volume, we use random flip along the x-axis and z-
axis, and randomly rotate along y-axis by 90 degrees. All
experiments are conducted on an Nvidia Tesla V100 GPU.
More network details will be described in the supplementary
material.

Semantic Segmentation
In Tab. 1, we compare our JS3C-Net with recent methods
on SemanticKITTI benchmark. The upper, medium and bot-
tom parts of the table contain projection-based, point-based
and voxel-based methods, respectively. The class averaged
interactions over union (mIoU) is used in evaluation.

As shown in Tab. 1, our JS3C-Net surpasses all exist-
ing methods by a large margin. Merely using the Spar-
seConv (Graham and van der Maaten 2017), training from
scratch already improves upon prior arts. Yet, using our
joint-learning strategy achieves markedly better segmenta-
tion results in mIoU. Specifically, JS3C-Net achieves sig-
nificant improvements on small objects (e.g., motorcycle,
bicycle and etc), where these objects always lose geomet-
ric details during the LiDAR collection. Thanks to the con-
textual shape priors from SSC, our JS3C-Net can segment
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Figure 4: Qualitative results of JS3C-Net on the validation set of SemanticKITTI (Behley et al. 2019). Red circles show that our
method performs better in many details than recent state-of-the-art KPConv (Thomas et al. 2019). Results for SemanticPOSS
dataset are illustrated in supplementary material.

Method precision recall IoU mIoU
SSCNet 31.7 83.4 29.8 9.5
TS3D 31.6 84.2 29.8 9.5
TS3D2 25.9 88.3 25.0 10.2
EsscNet 62.6 55.6 41.8 17.5
TS3D3 80.5 57.7 50.6 17.7
JS3C-Net (Ours) 71.5 73.5 56.6 23.8

Table 3: Semantic scene completion results on the Se-
manticKITTI benchmark. Only the recent published ap-
proaches are compared.

them well. Meanwhile, Fig. 4 presents some visualization
results of JS3C-Net on the validation split, which demon-
strates great improvements on small objects, in particular.

Tab. 2 illustrates the semantic segmentation results on Se-
manticPOSS dataset, where we compare result state-of-the-
art methods. These results show that our proposed JS3C-Net
can achieve larger improvement compared with our baseline
on more challenging data with remarkable small objects.

Semantic Scene Completion
With the semantic guidance from segmentation network, our
JS3C-Net can also make significant breakthrough in seman-
tic scene completion (SSC) task. Tab. 3 illustrates the re-
sults of SSC on SemanticKITTI benchmark, where we com-
pare our JS3C-Net with recent state-of-the-art methods. All
methods are implemented with same settings and the de-
tailed implementation and concrete results will be further
elaborated in supplementary.

Since semantic scene completion requires to simultane-
ously predict the occupation status and the semantic la-
bel of a voxel, we follow the evaluation protocol of (Song
et al. 2017) to compute the precision, recall and IoU for

Model JL UMTL PVI SS SSC SC
A 63.1 19.4 51.1
B 3 66.1 22.6 55.0
C 3 3 66.4 23.0 56.1
D 3 3 3 67.5 24.0 57.0

Table 4: Ablation study on SemanticKITTI validation set
for semantic segmentation (SS), semantic scene completion
(SSC) and scene completion (SC).

the task of scene completion (SC) while ignoring the se-
mantic label. Meanwhile, the mIoU over the 19 classes is
also exploited for the evaluation of semantic scene com-
pletion (SSC). As shown in Tab. 3, our JS3C-Net achieves
state-of-the-art results on both SC and SSC tasks. Benefit
from semantic guidance, joint learning strategy and well-
designed interaction module, our SSC module can generate
more faithful geometric details. The results of our methods
are 6% higher than previous state-of-the-art TS3D3 (Gar-
bade et al. 2019b; Behley et al. 2019; Liu et al. 2018) for
scene completion, which uses segmentation results from
DarkNet53Seg (Behley et al. 2019) as inputs as well. Fig. 5
shows visualization results of semantic scene completion.

Design Analysis
Ablation Study. The ablation results are summarized in
Tab. 4. Since the limit of submission times, all ablated net-
works are tested on the validation set of SemanticKITTI
dataset (Behley et al. 2019).

The baseline (model A) is set to learn without joint learn-
ing, i.e., train two tasks separately. The baseline only gets
IoU of 63.1% on semantic segmentation (SS) and 51.1% on
scene completion (SC). This convincingly confirms the ef-
fectiveness of joint learning (JL) in model B (we manually
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Figure 5: Qualitative results of SSC task on the validation set of SemanticKITTI (Behley et al. 2019).

0

Im
pr

ov
em

en
t (

Io
U

, %
)

tru
ck
parki

ng
bicy

cle
pers

on

bicy
clis

t

sid
ew

alk

tra
ffic

 sig
n

fen
ce

road

other-
veh

icle

(a) 
14

7

4

parki
ng

road

sid
ew

alk
tru

ck

other-
veh

iclepole

motorcy
cle

ter
rain

pers
on

(b)

tra
ffic

 sig
n

10

Im
pr

ov
em

en
t (

Io
U

, %
)

7

Figure 6: Top-10 mIoU gains between JS3C-Net and split-
trained single task (SS or SSC) on the validation set of Se-
manticKITTI (Behley et al. 2019), where (a) and (b) illus-
trate SS and SSC respectively.

set weights of task losses as 1:0.8), which is significantly
improved to 66.1% for SS and 55.0% for SC by a large
margin. Correspondingly, in model C, uncertainty multi-task
loss (UMTL) is used to achieve the optimal trade-off be-
tween two tasks automatically. As a result, improvements of
0.4% and 1.1% on SS and SC are further obtained through
UMTL (model C). Then, with PVI module for knowledge
fusion, our JS3C-Net achieves the best results on both tasks.
Mutual Promotion. To further study the reciprocal effects
between two tasks, we conducted comparative experiments
between the single task (SS or SSC) and the multiple tasks
(JS3C-Net). As shown in Fig. 6, when the JS3C-Net is intro-
duced (i.e., SS and SSC learn jointly), the performances of
the two tasks are both largely enhanced, where we show the
top 10 mIoU gains in Fig. 6. It shows that the IoUs of all 19
classes have been improved, especially in the case of small
objects, such as trucks, bicycles and persons. The plausible
explanation is that, for small objects, their raw point clouds
are very sparse and usually lose local details. When SS and
SSC learn jointly, SS can take advantage of the contextual
shape prior of small objects from SSC, which benefits SS
to classify each point more precisely. Therefore, these two
tasks can benefit one from the other mutually.

Parameters Latency
(million) (ms)

PointNet++ 6.0 5900
TangentConv 0.4 3000
RandLA-Net 1.2 256+624
KPConv 18.3 1117+624
SparseConv 2.7 471
JS3C-Net (Ours) 2.7(+0.4) 471(+107)

Table 5: Complexity Analysis. Model size and latency for
different methods. Here underline correspond to the post-
processing time. Parameters and time in (·) represents the
extra operation of SSC and PVI modules, which can be ig-
nored during inference of SS.

Complexity Analysis. In this section, we evaluate the over-
all complexity of JS3C-Net. As shown in Tab. 5, our pro-
posed JS3C-Net is much more light-weighted and faster than
previous point-based methods (1/5 model size and 1/3 infer-
ence time of KPConv). More importantly, since the dispos-
able properties of our SSC module and PVI module, JS3C-
Net has the same speed with segmentation backbone, which
makes it more suitable for the real-time applications.

Conclusion
In this work, we propose an single sweep LiDAR point cloud
semantic segmentation framework via contextual shape pri-
ors from semantic scene completion network, named JS3C-
Net. By exploiting some sophisticated pipelines, interactive
modules, and reasonable loss function, our JS3C-Net model
achieves state-of-the-art results on both semantic segmen-
tation and scene completion tasks, outperforming previous
methods by a large margin. We believe that our work can
be applied to a wider range of other scenarios in the fu-
ture, such as indoor point cloud sequence. Meanwhile, our
method provides an alternative solution to the comprehen-
sion of large-scale LiDAR scenes with severe local details
missing. It can improve the performance through contextual
shape priors learning and interactive knowledge transferring.
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