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Abstract

We propose a knowledge-enhanced approach, ERNIE-ViL,
which incorporates structured knowledge obtained from
scene graphs to learn joint representations of vision-language.
ERNIE-ViL tries to build the detailed semantic connections
(objects, attributes of objects and relationships between ob-
jects) across vision and language, which are essential to
vision-language cross-modal tasks. Utilizing scene graphs of
visual scenes, ERNIE-ViL constructs Scene Graph Prediction
tasks, i.e., Object Prediction, Attribute Prediction and Rela-
tionship Prediction tasks in the pre-training phase. Specifi-
cally, these prediction tasks are implemented by predicting
nodes of different types in the scene graph parsed from the
sentence. Thus, ERNIE-ViL can learn the joint representa-
tions characterizing the alignments of the detailed semantics
across vision and language. After pre-training on large scale
image-text aligned datasets, we validate the effectiveness of
ERNIE-ViL on 5 cross-modal downstream tasks. ERNIE-ViL
achieves state-of-the-art performances on all these tasks and
ranks the first place on the VCR leaderboard with an absolute
improvement of 3.7%.

Introduction
Motivated by pre-trained models like BERT (Devlin et al.
2018) and GPT (Radford et al. 2018) which have signifi-
cantly improved the performance of many NLP tasks, re-
searchers (Lu et al. 2019; Li et al. 2019a; Su et al. 2019;
Li et al. 2019b; Chen et al. 2019) have noticed the impor-
tance of pre-training for vision-language tasks, e.g., Visual
Question Answering(VQA) (Antol et al. 2015) and Visual
Commonsense Reasoning (VCR) (Zellers et al. 2019).

Existing vision-language pre-training methods attempt to
learn joint representations through visual grounding tasks on
large image-text datasets, including Masked Language Mod-
elling based on randomly-masked sub-words, Masked Re-
gion Prediction and Image-Text Matching at the image/text-
level. However, based on randomly-masking and predicting
the sub-words, current models did not distinguish common
words and words describing the detailed semantics (Johnson
et al. 2015), e.g., objects(“man”, “boat”), attributes of ob-
jects(“boat is white”), relationships between objects(“man
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standing on boat”). These methods neglect the importance
of constructing detailed semantic alignments across vision
and language, therefore the trained models can not well rep-
resent fine-grained semantics required by some real scenes.
As shown in Figure 1, the detailed semantics are essential
to distinguish the listed scenes which mainly differ in ob-
jects, attributes and relationships. Hence, better joint vision-
language representations should characterize detailed se-
mantic alignments across the modalities.

Inspired by the knowledge masking strategy of ERNIE
(Sun et al. 2019), which aims at learning more struc-
tured knowledge by masking phrases and named entities
rather than individual sub-words, we propose ERNIE-ViL,
that incorporates knowledge obtained from scene graphs
(Johnson et al. 2015) to construct better representations
for vision-language joint modelling. Through constructing
Scene Graph Prediction tasks, ERNIE-ViL puts more em-
phasis on detailed semantic alignments across vision and
language. Concretely, we implement these pre-training tasks
by masking and predicting different types of nodes in the
scene graph parsed from the sentence. By concentrating
on understanding detailed semantic words rather than com-
mon words, these Scene Graph Prediction tasks force the
model to extract object/attribute/relationship information
from the visual modality, thus establish semantic connec-
tions between vision and language. Pre-training with the
Scene Graph Prediction tasks, ERNIE-ViL learns the vision-
language detailed semantic alignments.

We pre-train ERNIE-ViL on two large commonly-used
image-text out-of-domain datasets, namely Conceptual Cap-
tions (Sharma et al. 2018) and SBU Captions (Ordonez,
Kulkarni, and Berg 2011). To evaluate the performance of
ERNIE-ViL, we conduct experiments on various vision-
language tasks, (1) Visual Question Answering (VQA 2.0)
(Antol et al. 2015), (2) Visual Commonsense Reasoning
(VCR) (Zellers et al. 2019), (3) Region-to-Phrase Grounding
(RefCOCO+) (Kazemzadeh et al. 2014), (4, 5) Image-text
Retrieval / Text-image Retrieval (Flickr30K) (Young et al.
2014). On all these tasks, ERNIE-ViL obtains significant
improvements compared to those models pretrained on the
same datasets. Especially, on the Region-to-Phrase ground-
ing task that relies more heavily on detailed semantic align-
ments, we achieve an improvement of 2.4% on both test-
sets. To compare with the models pretrained on both out-
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(a) Objects (b) Attributes (c) Relationships

A tan dog and a little girl kiss. A black dog playing with a purple toy. A man in red plaid rides his bike in a park.

The little girl is kissing the brown cat. A black dog playing with a green toy. An older man repairing a bike tire in a park.

Figure 1: Similar scene pairs from the Flick30K datasets (Young et al. 2014). It is the detailed semantics that determine the
interpretation of the scenes, objects (dog, cat) in scene pair (a), attributes(purple, green) in scene pair (b) and relationships(rides,
repairing) in scene pair (c).

of-domain and in-domain datasets, we continually pre-train
ERNIE-ViL on MS-COCO (Lin et al. 2014) and Visual-
Genome (Krishna et al. 2017) (in-domain datasets for down-
stream tasks). ERNIE-ViL achieves the state-of-the-art per-
formances on all downstream tasks. Also ERNIE-ViL ob-
tains the best single model performance and ranks the first
place on the leaderboard with an absolute improvement
of 3.7% on the Q→AR task compared to the state-of-the-
art performance. And our code and pre-trained models are
scheduled to be public.

Overall, the contributions of our method are three-folds:

• To the best of our knowledge, ERNIE-ViL is the first
work that has introduced structured knowledge to enhance
vision-language pre-training.

• ERNIE-ViL constructs Scene Graph Prediction tasks dur-
ing the pre-training of vision-language joint representa-
tions, putting more emphasis on the cross-modal detailed
semantics alignments.

• ERNIE-ViL achieves state-of-the-art performances on 5
downstream cross-modal tasks and ranks the first place
on the VCR leaderboard.

Related Works
Cross-modal Pre-training
Inspired by text pre-training models (Devlin et al. 2018),
many cross-modal pre-training models for vision-language
have been proposed. These researchers put their efforts
mainly on three aspects, which are model architecture, pre-
training tasks and pre-training data.

• Model Architecture Current works are based on differ-
ent variables of Transformers (Vaswani et al. 2017). Most
of them (Li et al. 2019a; Su et al. 2019; Zhou et al. 2019;

Li et al. 2019b; Huang et al. 2020) used a uniform cross-
modal Transformer modelling both image and text rep-
resentations, while the others like ViLBERT (Lu et al.
2019) and LXMERT (Tan and Bansal 2019) were based
on two-stream cross-modal Transformers, which brings
more specific representations for images and texts.

• Pre-training Tasks Inspired by the pre-training tasks
in text models, Masked Language Model and similar
Masked Region Prediction tasks (Lu et al. 2019) are uti-
lized in cross-modal pre-training. And similar to Next-
Sentence Prediction, Image-Text Matching (Lu et al.
2019; Su et al. 2019; Chen et al. 2019) task is also widely
used. However, based on randomly masking and predict-
ing sub-words, these methods did not distinguish the com-
mon words and words describing the detailed semantics.
Hence, the cross-modal fine-grained semantic alignments
cannot be well characterized in those learned joint repre-
sentations.

• Pre-training Data Unlike text pre-training models that
can leverage tremendous natural language data, vision-
language tasks require high-quality aligned image-text
data that are hard to obtain. Conceptual Captions(Sharma
et al. 2018) and SBU Captions(Ordonez, Kulkarni, and
Berg 2011) are two widely-used datasets for image-text
pre-training, with 3.0M and 1.0M image-description pairs
respectively. These two datasets are out-of-domain for
vision-language downstream tasks, while some existing
works (Chen et al. 2019; Huang et al. 2020) incorpate in-
domain datasets, such as MS-COCO and Visual-Genome,
that are highly correlated with downstream tasks.

Scene Graph
Scene graphs contain structured knowledge of visual scenes,
including the present objects, attributes of objects, and rela-
tionships between objects. As a beneficial prior knowledge
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Figure 2: Illustration of Scene Graph Prediction tasks for ERNIE-ViL. Given detected regions of the image and token sequence
of the text, ERNIE-ViL uses a two-stream cross-modal Transformers network to model the joint vision-language represen-
tations. Based on the scene graph parsed from the text using Scene Graph Parser, we construct Object Prediction, Attribute
Prediction and Relationship Prediction tasks to learn cross-modal detailed semantics alignments.

describing the detailed semantics of images and captions,
scene graphs have led to many state-of-the-art models in im-
age captioning (Yang et al. 2019), image retrieval (Wu et al.
2019), VQA (Zhang, Chao, and Xuan 2019) and image gen-
eration (Johnson, Gupta, and Fei-Fei 2018).

Approach
In this section, we first introduce the architecture of ERNIE-
ViL. Then we illustrate our newly-proposed Scene Graph
Prediction tasks. Finally, pre-training with Scene Graph Pre-
diction tasks in ERINE-ViL is introduced.

Model Architecture
The vision-language model aims at learning the joint repre-
sentations that integrates information of both modalities and
the alignments across the modalities. The inputs of ERNIE-
ViL are a sentence and an image. Given a sequence of words
and an image, we introduce the methods to embed the inputs
to the feature space and the vision-language encoder.

Sentence Embedding We adopt the similar word pre-
prossessing method as BERT. The input sentence is tok-
enized into sub-word tokens using WordPiece approach.
Special tokens such as [CLS] and [SEP] are also added to
the tokenized text sequence to form the text sequence as
{[CLS], w1, . . . wT , [SEP]}. The final embedding for each
sub-word token is generated by combining its original word
embedding, segment embedding and sequence position em-
bedding.

Image Embedding For the image, we first use a pre-
trained object detector to detect the salient image regions

from the image. The pooling features before multi-class
classification layer are utilized as the region features. We
also encode the location features for each region via a 5-
dimensional vector (x1

W , y1

H ,
x2

W , y2

H ,
(y2−y1)(x2−x1)

WH ) for the
region position and the fraction of image area covered,
where (x1, y1) and (x2, y2) denote the coordinates of top-
left and bottom-right corner while W and H are the width
and height of the input image. The location vectors are pro-
jected to form the location features, which are then summed
with the region visual features. We also add a special fea-
ture [IMG] that denotes the representation of the entire im-
age (i.e. mean-pooled visual features with a spatial encoding
corresponding to the entire image) to form the final region
sequence {[IMG], v1, . . . , vI}.

Vision-Language Encoder Given the embedding
of image regions and the words for the sentence
{[IMG], v1, . . . , vI , [CLS], w1, . . . wT ; [SEP]}, we use
two-stream cross-modal Transformers to joint model the
intra-modal and inter-modal representations. Similar to
ViLBERT (Lu et al. 2019), ERNIE-ViL consists of two
parallel Transformer encoders for image and text segments,
which are cross-attended with cross-modal Transformer
blocks. The model outputs embeddings for each input of
both the image and text. We take h[IMG] and h[CLS] as
the holistic image and text representations.

Scene Graph Prediction
Detailed semantics, includes objects, attributes of objects,
and relationships between objects, are essential to the un-
derstanding of visual scenes (Johnson et al. 2015). As the
scene shown in Figure 2, detailed semantics describes the vi-
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sual scene from different aspects. The objects, such as “cat”,
“car”, “woman” are the fundamental elements in the scene.
And associated attributes, such as “little”, “brown”, “blue”
characterize shape and color of objects. Relationships such
as “on top of”, “putting” represent the spatial connections
and actions between objects. Therefore detailed semantics
are crucial in accurately understanding visual scenes. Since
the goal of vision-language joint representations is to en-
grave the semantic connections across modalities, detailed
semantic alignments are significantly important in cross-
modal learning.

Scene graphs encode various fine-grained semantic infor-
mation. Utilizing structured knowledge obtained from scene
graphs, ERNIE-ViL learns the cross-modal detailed seman-
tic alignments. As shown in Figure 2, according to the scene
graph parsed from the text, we construct the corresponding
Scene Graph Prediction tasks, including Object Prediction
task, Attribute Prediction task, and Relationship Prediction
task. These tasks force ERNIE-ViL to model the correla-
tions of detailed semantics across modalities. For example,
as the relationship words “on top of” is masked, based on
the language context, the model may predict that the miss-
ing word is “under” or “into”. These words are grammat-
ically fluent in the sentence, but are inconsistent with the
scene “the cat is on top of the car”. Through training the
Relationship Prediction task, the model obtains the spatial
relation of the corresponding objects(“car”, “cat”) from the
image, thus can accurately predict that the missing word
is “on top of”. Through constructing Scene Graph Predic-
tion tasks, ERNIE-ViL learns cross-modal detailed semantic
alignments.

Scene graph parsing Given the text sentence w, we parse
it into a scene graph(Johnson et al. 2015), which denotes as
G(w) =< O(w), E(w),K(w) >, where O(w) is the set
of objects mentioned in w, E(w) ⊆ O(w)×R(w)×O(w)
is the set of hyper-edges representing relationship triplets,
and R(w) is the set of relationship nodes between object
nodes. K(w) ⊆ O(w) × A(w) is the set of attribute pairs,
where A(w) is the set of attribute nodes associated with ob-
ject nodes. Scene graphs describe the objects in more details
with various associated attributes and relationships between
objects. Thus integrating the knowledge of scene graphs can
benefit learning more fine-grained joint representations for
the vision-language. In this paper, the Scene Graph Parser
provided by Anderson (Anderson et al. 2016) is adopted to
parse texts to scene graphs. For a more intuitive understand-
ing, we illustrate a specific case for the parsed scene graph
from the text in Table 1.

Object Prediction Objects are the dominant elements of
visual scenes, thus playing an important role in constructing
the representations of semantic information. Predicting the
objects forces the model to build the vision-language con-
nections at object level.

Firstly, for all the object nodes in the scene graph, we
randomly select 30% of them to mask. And for each se-
lected object node O(w), we replace it with the special to-
ken [MASK] in probability of 80%, another random token in

sentence: w
A woman in blue dress is putting

her little white cat on top of a
brown car in front of her house.

objects:O(w) dress, woman, cat, car, house
relationships:R(w) in, putting, on-top-of, in-front-of

attributes: A(w) blue, white, little, brown

Table 1: The scene graph parsed from the caption of the vi-
sual scene. For simplicity, we only list all the nodes leaving
out the connections between them.

probability of 10%, and keep it in probability of 10%. Note
that the objects actually correspond to the sub-sequences of
text in the sentence, therefore the object masking are imple-
mented by masking the corresponding sub-sequences in the
text.

For Object Prediction, ERNIE-ViL recover these masked
object tokens, denoted as woi , based on their surrounding
words w and all image regions v, by minimizing the nega-
tive log-likelihood:

Lobj(θ) = −E(w,v)∼D log(P (woi |w\woi
,v)) (1)

Attribute Prediction Attributes characterize the specific
information of the visual objects, such as color or shape of
the objects, therefore representing the detailed information
in the visual scenes in more fine-grained level.

Similarly, we randomly select 30% of the attribute pairs
in the scene graph, and the mask strategy here is the same
as that in Object Prediction. Since the attribute nodes in the
scene graph are attached to objects, we keep the associated
object while masking out the attribute node A(w) in each
selected K(w) ⊆ O(w)×A(w).

Given object words woi in attribute pair 〈woi , wai〉, At-
tribute Prediction is to recover the masked tokens wai of
attribute pairs. Based on the object tokens woi , other sur-
rounding words w and all image regions v, Attribute Predic-
tion minimizes the negative log-likelihood:

Lattr(θ) = −E(w,v)∼D log(P (wai
|woi ,w\wai

,v)) (2)

Relationship Prediction Relationships describe the ac-
tions (semantic) or relative position (geometry) between the
objects of the visual scenes, which contributes to distinguish
scenes with same objects but different relationships.

Thus, ERNIE-ViL constructs the Relationship Predic-
tion task to learn cross-modal relationships connections.
When performing the mask strategy of selected relation-
ship triplets E(w) ⊆ O(w) × R(w) × O(w), we keep the
objects and mask out the relationship node R(w). Specif-
ically, given object tokens woi1 ,woi2 in relationship triplet
〈woi1 ,wri ,woi2〉, this task recovers the masked relationship
tokens, predicting the probability for each masked relation
tokens wri . Thus the context for the prediction is the given
object tokens woi1 ,woi2 , other surrounding words from the
text and all image regions v. The loss for this task is:

Lrel(θ) = −E(w,v)∼D log(P (wri |woi1 ,woi2 ,w\wri
,v))

(3)
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Pre-training with Scene Graph Prediction
Simliar to ViLBERT(Lu et al. 2019), ERNIE-ViL also
adopts Masked Language Modelling(MLM) to capture the
syntactic and lexical information in the text. Moreover,
Masked Region Prediction and Image-text Matching are uti-
lized for visual modality and cross-modality respectively.
The losses for all these pre-training tasks are summed.

Experiments
Training ERNIE-ViL
Pre-training Data We use the Conceptual Captions (CC)
dataset (Sharma et al. 2018) and SBU Captions (SBU)
dataset (Ordonez, Kulkarni, and Berg 2011) as pre-training
data. CC is a collection of 3.3 million image-caption pairs
automatically scraped from alt-text enabled web images and
SBU is a similar vision-language dataset which has 1.0 mil-
lion image-caption pairs. Since some links have become bro-
ken, only about 3.0 million pairs for CC dataset and 0.8 mil-
lion pairs for SBU dataset are available and utilized in our
experiments. Note that CC and SBU are image-caption pairs
automatically collected from the web and have no intersec-
tions with the down-stream task datasets, thus act as out-of-
domain datasets for training vision-language models.

Implementation Details For each image-text pair in the
training, the pre-processing is performed as follows. For
the image, we adopt Faster R-CNN (Anderson et al. 2018)
to select salient image regions and extract region features.
Specifically, regions with class detection probability exceeds
a confidence threshold of 0.2 are selected and 10 to 36 boxes
are kept. And for each kept region, the mean-pooled convo-
lutional representation is used as the region feature. For the
text, we parse the scene graph from the sentence using the
Scene Graph Parser and adopt WordPieces to tokenize the
sentence similar to BERT.

For the masking strategies, we randomly mask 15% of to-
kens, 30% of scene graph nodes, and 15% of image regions.
For the Image-text Matching task, we randomly select a im-
age for each text to form the negative image-text pair. Note
that only items in the positive pairs will be considered for
token and region prediction tasks.

We train ERNIE-ViL on two scale settings: ERNIE-ViL-
base and ERNIE-ViL-large, which mainly differ in model
depth of the text stream. The detailed settings of text and
visual streams are shown in Table 2. And similar to Vil-
BERT(Lu et al. 2019), cross-transformers are used to co-at
tent the two streams. We initialize the text stream parameters
from ERNIE 2.0 (Sun et al. 2019), and implement ERNIE-
ViL via PaddlePaddle. After then, ERINE-ViL is pre-trained
on a total batch size of 512 for 700k steps on 8 V100 GPUs,
using adam optimizer with initial learning rates of 1e-4 and
Noam (Vaswani et al. 2017) as learning rate decay schedule.

Downstream Tasks
Visual Commonsense Reasoning (VCR) The Visual
Commonsense Reasoning (VCR) (Zellers et al. 2019) task
contains two sub-tasks: visual question answering (Q→A)

Base Large
L H A F L H A F

Text 12 768 12 3072 24 1024 16 4096
Visual 6 1024 8 1024 6 1024 16 4096

Table 2: Settings for ERNIE-ViL model. L: number of lay-
ers, H : hidden size, A : number of self-attention heads, F :
feed-forward/filter size.

and answer justification (QA→R), which are both multi-
ple choice problems. The holistic setting (Q→AR) requires
both the chosen answer and chosen rationale to be correct.
In visual question answering (Q→A) task, we concatenate
the question and each candidate answer for the language
modality. We take dot product of final hidden state h[CLS]

and h[IMG] to predict matching score with an additional FC
layer. For the answer justification (QA→R) task, we con-
catenate the question, the answer and each candidate ratio-
nale as the input of the text stream. Similar with UNITER
(Chen et al. 2019), a second-stage pre-training is adopted
on VCR dataset. And then we fine-tune the model over 6
epochs with a batch size of 64 and adopt Adam optimizer
with initial learning rate of 1e-4.

Visual Question Answering (VQA) The VQA task re-
quires answering natural language questions according to
images. VQA 2.0 dataset (Antol et al. 2015) contains 204k
images and 1.1M questions about these images. Also addi-
tional question-answer pairs from Visual Genome are used
for data augmentation as in UNITER (Chen et al. 2019). We
treat VQA as a multi-label classification task – assigning a
soft target score to each answer based on its relevancy to
the 10 human answer responses. We take dot product of fi-
nal hidden state h[CLS] and h[IMG] to map this represen-
tation into 3,129 possible answers with an additional two-
layer MLP. Fine-tuning of VQA model is performed over 12
epochs on batch size of 256 and using Adam optimizer with
initial learning rate of 1e-4.

Grounding Referring Expressions The referring expres-
sion task is to localize an image region given a natural lan-
guage reference. We evaluate the task on RefCOCO+ dataset
(Kazemzadeh et al. 2014). Bounding box proposals provided
by Mattnet (Yu et al. 2018) are utilized. The representation
for each region is denoted by its final hidden state hvi

with
an additional FC layer. Each region i is labelled as positive
only when the IoU between it and the ground truth box is
over 0.5. We fine-tune the model over 20 epochs with a batch
size of 256 and adopt Adam optimizer with initial learning
rate of 1e-4.

Image Retrieval & Text Retrieval Caption-based image
retrieval is a task of identifying an image from a pool based
on a caption describing its content. Flickr30K (Young et al.
2014) contains 31,000 images and 5 captions for each im-
age. Adopting the same split in ViLBERT (Lu et al. 2019),
we use each of 1,000 images for validation and for testing
and the rest for training. We take dot product of final hid-
den state of h[CLS] and h[IMG] to predict matching score
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Domains Models
VCR RefCOCO+

Q→A QA→R Q→AR val testA testB

Out-of-domain

UNITER-base - - - 72.78 - -
Unicoder-VL-base 72.6(73.4) 74.5(74.4) 54.4(54.9) - - -

ViLBERT-base 72.42(73.3) 74.47(74.6) 54.04(54.8) 72.34 78.52 62.61
VLBERT-base 73.8(-) 74.4(-) 55.2(-) 71.60 77.72 60.99

ERNIE-ViL-base 76.37(77.0) 79.65(80.3) 61.24(62.1) 74.02 80.33 64.74
VLBERT-Large 75.5(75.8) 77.9(78.4) 58.9(59.7) 72.59 78.57 62.30

ERNIE-ViL-Large 78.52(79.2) 83.37(83.5) 65.81(66.3) 74.24 80.97 64.70

Out-of-domain
+ in-domain

UNITER-large 77.22(77.3) 80.49(80.8) 62.59(62.8) 75.90 81.45 66.70
VILLA-large 78.45(78.9) 82.57(82.8) 65.18(65.7) 76.17 81.54 66.84

ERNIE-ViL-large 78.98(-) 83.70(-) 66.44(-) 75.89 82.37 66.91

Domains Models
VQA IR-Flickr30K TR-Flickr30K

test-dev test-std R@1 R@5 R@10 R@1 R@5 R@10

Out-of-domain

UNITER-base 71.56 - - - - - - -
Unicoder-VL-base - - 71.50 90.90 94.90 86.20 96.30 99.00

VLBERT-base 71.16 - - - - - - -
ViLBERT-base 70.55 70.92 58.20 84.90 91.52 - - -

ERNIE-ViL-base 73.18 73.36 74.44 92.72 95.94 86.70 97.80 99.00
VLBERT-large 71.79 72.22 - - - - - -

ERNIE-ViL-large 73.78 73.96 75.10 93.42 96.26 88.70 97.30 99.10

Out-of-domain
+ in-domain

UNITER-large 73.82 74.02 75.56 94.08 96.76 87.30 98.00 99.20
OSCAR-large 73.61 73.82 - - - - - -
VILLA-large 74.69 74.87 76.26 94.24 96.84 87.90 97.50 98.80

ERNIE-ViL-large 74.95 75.10 76.66 94.16 96.76 89.20 98.50 99.20

Table 3: Results of downstream vision-language tasks for ERNIE-ViL model, compared with previous state-of-the-art pre-
trained models. IR: Image Retrieval. TR: Text Retrieval. For VCR task which has private test set, we only report the test results
(in parentheses) for ERNIE-ViL models pre-trained on out-of-domain datasets.

s(w,v) for each image-text pair with an additional FC layer.
We utilize circle loss (Sun et al. 2020) with 20 random nega-
tive samples for each image-text pair. We trained 40 epochs
using Adam optimizer with a initial learning rate 1e-5.

Results
We compare ERNIE-ViL against other cross-modal pre-
training models and the results are illustrated in Table 3.

Among the methods pre-trained on the same out-of-
domain datasets (CC and SBU), ERNIE-ViL obtains the best
performances on all 5 downstream tasks. For the visual rea-
soning tasks, ERNIE-ViL-large achieves a significant im-
provement of 6.60% on VCR (Q→AR) task and 1.74% on
VQA (test-std) task compared with VLBERT-large. On vi-
sual grounding task, ERNIE-ViL-large obtains an improve-
ment of 2.40% for both testA split and testB split on Re-
fCOCO+ task compared to VLBERT-large. On the cross-
modal retrieval tasks, where no large models pre-trained
on out-of-domain datasets has released results, ERNIE-ViL-
base achieves an imporvement of 2.94% on R@1 for image
retrieval and 0.50% on R@1 for text retrieval compared with
Unicoder-VL-base.

For further comparison with those models pretrained with
both out-of-domain and in-domain datasets, we pre-train

ERINE-ViL with all these datasets. As illustrated in Table
3, ERINE-ViL-large acheives state-of-the-art performances
on these tasks compared to existing works, e.g., UNITER,
OSCAR(Li et al. 2020) and VILLA(Gan et al. 2020).

Analysis
Effectiveness of Scene Graph Prediction tasks To ver-
ify the effectiveness of Scene Graph Prediction (SGP) tasks,
we first conduct experiments with ERNIE-ViL-base settings
based on the text parameters initialized from BERT. As il-
lustrated in Table 4, pre-training with SGP tasks in ERNIE-
ViL brings significant improvements across all downstream
tasks. Especially on Grounding Referring Expressions and
Retrieval tasks, those require understanding detailed seman-
tics alignments, SGP tasks make an improvement of 0.69%
accuracy on RefCOCO+ and 2.22% of R@1 for image re-
trieval on Flickr30K.

Note that text parameter initialized from ERNIE 2.0 can
lead to further improvements on all tasks and a relatively
large improvement on VCR task. We considere that through
continually learning on various pre-training tasks, ERNIE
2.0 learned more common sense knowledge which benefits
the VCR task.

Overall, the SGP tasks significantly contribute to the
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initialized text
stream parameters pre-training tasks

VCR VQA RefCOCO+ IR TR
Q→AR(dev) dev val R@1(dev) R@1(dev)

BERT w/o SGP 59.06 72.38 72.81 70.74 85.00
BERT w/ SGP 59.92 73.04 73.50 72.96 87.40

ERNIE-2.0 w/ SGP 61.24 73.18 74.02 73.58 87.80

Table 4: Results of downstream vision-language tasks for ERNIE-ViL pre-trainging with/without Scene Graph Prediction
(SGP) tasks, and using different text stream parameters initialization. IR & TR: image retrieval & text retrieval on Flickr30K.

Image Text with SGP task without SGP task

1 a black dog about to catch a
flying disc .

2

two men wearing red jack-
ets are looking out over
some water and one man
has yellow earphones on his
ears .

3 a little boy in a green shirt
kicks a ball

Table 5: Examples of cloze test predictions for ERNIE-ViL pre-training with and without SGP tasks. Masked token are colored
in bold and red. The probabilities of the top 5 predictions, denoted as the light purple bars, are listed in the right columns.

Nodes
without SGP tasks with SGP tasks
ACC@1 ACC@5 ACC@1 ACC@5

objects 57.14 79.22 58.34 80.80
attributes 44.32 67.58 46.16 70.30
relationships 47.57 68.10 50.65 71.54
overall 49.75 71.75 51.75 74.31

Table 6: Cloze test results for ERNIE-ViL. An improvement
of 2.0% on overall ACC@1 between models with/without
SGP tasks.

state-of-the-art results of ERNIE-ViL.

Cloze Test To get a more intuitively understanding of the
improvements brought by SGP tasks, we conduct the lan-
guage cloze test conditioned on the visual modality. In the
cloze test, language tokens represent detailed semantics (ob-
jects, attributes and relationships) are masked from the text
and the model is required to infer them with the context from
both the text and the image. To construct the dataset, we
sampled 15,000 image-text pairs from Flickr30K dataset and
5,000 objects, attributes and relationships tokens each are
selected. For the prediction, the top one accuracy (ACC@1)
and top five accuracy (ACC@5) are adopted as the evalu-
ation metric. The comparison of prediction results between
two models, which are pre-trained models with SGP task

and without SGP task, are illustrated in Table 6. The text-
stream parameters of both models are initialized from BERT.
An absolute improvement of 1.20% for objects, 3.08% for
relationships and 1.84% for attributes on ACC@1 demon-
strates that ERNIE-ViL pre-trained with SGP tasks learns
better cross-modal detailed semantics alignments.

Moreover, we illustrate some cases in Table 5, and the
top 5 possible predictions are shown in the right columns.
As in case 1-2, model pre-trained without SGP tasks cannot
make the right predictions as it didn’t learn accurate align-
ments of detailed semantics, without distinguishing com-
mon words and detailed semantics words while pre-training.
While in case 3, the model can predict the reasonable tokens
but with lower confidence compared with model pre-trained
with SGP tasks.

Conclusion
We proposed ERNIE-ViL to learn the joint representations
of vision and language. In addition to conventional MLM for
cross-modal pre-training, we introduce Scene graph Predic-
tion tasks to characterize the cross-modal detailed semantic
alignments. Experiment results on various downstream tasks
demonstrate the improvements of incorporating structured
knowledge obtained from scene graphs during cross-modal
pre-training. For future work, scene graphs extracted from
images could also be incorporated into cross-modal pre-
training. Moreover, Graph Neural Networks that integrate
more structured knowledge could be considered as well.
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