
Fast and Compact Bilinear Pooling by Shifted Random Maclaurin

Tan Yu, Xiaoyun Li, Ping Li
Cognitive Computing Lab

Baidu Research
10900 NE 8th St. Bellevue, WA 98004, USA
{tanyuuynat,lixiaoyun996, pingli98}@gmail.com

Abstract

Bilinear pooling has achieved an excellent performance in
many computer vision tasks. However, the high-dimension
features from bilinear pooling can sometimes be inefficient
and prone to over-fitting. Random Maclaurin (RM) is a
widely used GPU-friendly approximation method to reduce
the dimensionality of bilinear features. However, to achieve
good performance, huge projection matrices are usually re-
quired in practice, making it extremely costly in computa-
tion and memory. In this paper, we propose a Shifted Ran-
dom Maclaurin (SRM) strategy for fast and compact bilinear
pooling. With merely negligible extra computational cost, the
proposed SRM provides an estimator with a provably smaller
variance than RM, which benefits accurate kernel approxima-
tion and thus the learning performance. Using a small projec-
tion matrix, the proposed SRM achieves a comparable esti-
mation performance as RM based on a large projection ma-
trix, and thus considerably boosts the efficiency. Furthermore,
we upgrade the proposed SRM to SRM+ to further improve
the efficiency and make the compact bilinear pooling com-
patible with fast matrix normalization. Fast and Compact Bi-
linear Network (FCBN) built upon the proposed SRM+ is de-
vised, achieving an end-to-end training. Systematic experi-
ments conducted on four public datasets demonstrate the ef-
fectiveness and efficiency of the proposed FCBN.

Introduction
Bilinear pooling has achieved excellent performance in
many computer vision tasks such as fine-grained classifica-
tion (Lin, RoyChowdhury, and Maji 2015; Gao et al. 2016;
Wang et al. 2016), generic image recognition (Li et al. 2018),
semantic segmentation (Ionescu, Vantzos, and Sminchisescu
2015) and video recognition (Wang, Li, and Zhang 2017;
Koniusz, Cherian, and Porikli 2016; Cherian, Koniusz, and
Gould 2017). Given N local features X = [x1, · · · ,xN ] ∈
Rd×N (e.g. local features from a convolution layer of a
CNN), bilinear pooling obtains the matrix

Bx = XX>,

where Bx ∈ Rd×d. The matrix Bx is reshaped into a vector
vec(Bx) ∈ Rd2 as the holistic image/video representation.

Since the bilinear feature vec(Bx) is typically high-
dimensional, it brings high memory and computation cost
in many practical applications. Another consequence is that,

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

it usually requires a large number of training samples to
suppress over-fitting. To tackle the existing limitations of
high-dimensional bilinear features, compact bilinear pooling
(CBP) (Gao et al. 2016) seeks to reduce the feature dimen-
sionality. It discovers the connection between bilinear pool-
ing and polynomial kernel, and exploits methods used for
polynomial kernel approximation (Kar and Karnick 2012;
Pham and Pagh 2013) to obtain low-dimension bilinear fea-
tures. More specifically, it re-formulates bilinear pooling as

Bx =
N∑
i=1

h(xi), (1)

where h(x) = xix
>
i ∈ Rd×d is the explicit feature map of

the second-order polynomial kernel. CBP finds an approxi-
mation function φw : Rd2 7→ RD with D � d2, such that

E〈φw(x), φw(y)〉 = 〈vec(h(x)), vec(h(y))〉, (2)

where w contains random variables and E(·) denotes the ex-
pectation with respect to w. Here, vec(·) denotes the op-
eration which unrolls a matrix into a vector by concate-
nating the columns. Given two images, CBP obtains their
compact bilinear features B̂x =

∑N
i=1 φw(xi) and B̂y =∑N

i=1 φw(yi). Based on Eq. (2), it is straightforward to get

E(〈B̂x, B̂y〉) =
N∑
i=1

N∑
j=1

E(〈φw(xi), φw(yj)〉) = 〈Bx,By〉.

That is, the inner product of CBP features 〈B̂x, B̂y〉 is an un-
biased estimator of that of bilinear features 〈Bx,By〉, which
is the pivotal quantity used in subsequent learning models.

Tensor Sketch (TS) (Pham and Pagh 2013) and Random
Maclaurin (RM) (Kar and Karnick 2012) are two popular
methods that admit Eq. (2). TS leverages sketching functions
and Fast Fourier Transform to improve the efficiency, while
RM relies on random projections. Importantly, although TS
has a lower computation cost than RM in theory, it requires
sparse matrix-vector product, which is not friendly for the
GPU. In fact, the GPU time cost of TS is larger than RM.
In contrast, RM relies on dense matrix-vector product and
element-wise product, which are very suited for the GPU.

Recall that the inner product between compact features
〈B̂x, B̂y〉 is an unbiased estimator of 〈Bx,By〉. For the un-
biased estimation, the variance controls the estimation accu-
racy. In general, we need a huge number of projections to

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3243



achieve a small variance, and thus a good learning perfor-
mance. Therefore, large-scale projection matrices are often
required for RM, making the projection expensive in both
memory and computation. This unsatisfactory fact motivates
us to propose a new strategy called Shifted Random Maclau-
rin (SRM) to improve the efficiency. The idea is to use small
projection matrices with shifting operation. We theoretically
prove that, using the same projection matrix, the variance
achieved by SRM is smaller than that of RM. To put it in
another way, to achieve the same variance, the size of the
projection matrix used in the proposed SRM is smaller than
that of RM, thus our SRM is more efficient than RM.

Recently, many works (Lin and Maji 2017; Li et al. 2018;
Yu, Cai, and Li 2020) discover that matrix square-root nor-
malization on the bilinear matrix B is vital for performance.
However, the aforementioned RM and SRM break the ma-
trix structure of the bilinear feature, and make the ma-
trix normalization unfeasible. To overcome the limitation,
MoNet (Gou et al. 2018) conducts singular value decom-
position (SVD) on local features X rather than the bilinear
matrix B. Nevertheless, SVD is not easily parallelizable,
and thus it is slow in the GPU. To boost the efficiency in
the matrix normalization, we upgrade the proposed SRM to
SRM+, which is compatible with the fast matrix normaliza-
tion based on Newton-Schulz iteration (Li et al. 2018; Lin
and Maji 2017). Besides, SRM+ is faster than SRM. Table 1
compares the proposed method with existing bilinear pool-
ing methods. In summary, our contributions are three-fold:

• We propose a Shifted Random Maclaurin (SRM) method.
Compared with existing RM method, our SRM method is
more efficient for generating compact bilinear features.

• We upgrade the proposed SRM to SRM+. SRM+ is more
efficient in generating compact features. More impor-
tantly, it is compatible with fast matrix normalization,
making it more efficient in feature normalization as well.

• We integrate our SRM+ as a layer and propose a Fast
and Compact Bilinear network (FCBN). Extensive exper-
iments conducted on four public datasets demonstrate the
efficiency and effectiveness of the proposed FCBN.

Related Work
Bilinear model was proposed by Tenenbaum and Freeman
(2000) to disentangle style from content. B-CNN (Lin, Roy-
Chowdhury, and Maji 2015) integrates bilinear pooling as a
layer of a CNN which supports an end-to-end training. The
following research on bilinear pooling proceeds along two
tracks. The first track focuses on improving the discriminat-
ing capability of the bilinear feature for a higher recognition
accuracy. G2DeNet (Wang, Li, and Zhang 2017) combines
the lower-order (first-order) pooling feature with second-
order bilinear feature, achieving a better performance than
the original bilinear feature. In another direction, KP (Cui
et al. 2017) and Higher-order Occurrence Pooling (Koniusz
et al. 2017) exploit higher-order pooling feature and also
achieve a better performance. HBP (Yu et al. 2018) con-
ducts the bilinear pooling on local features across different
layers and encodes richer visual information. α-CML (Zhou

Compact Fast in
Pooling

Support
Norm

Fast in
Norm

BCNN X
I-BCNN X X
iSQRT X X X
CBP X

MoNet X X
GN X X

FCBN (ours) X X X X

Table 1: Pooling method overview. BCNN (Lin, RoyChowd-
hury, and Maji 2015), I-BCNN (Lin and Maji 2017), and
iSQRT (Li et al. 2018) cannot support RM used in CBP (Gao
et al. 2016). CBP generates compact bilinear features, but
the pooling is slow and cannot support feature normaliza-
tion. MoNet (Gou et al. 2018) and GP (Wei et al. 2018) gen-
erate compact and normalized bilinear features, but they are
slow in pooling and feature normalization. In contrast, our
FCBN generates compact and normalized bilinear features,
and is fast in both pooling and feature normalization.

et al. 2017) exploits metric learning for improving the ef-
fectiveness of the bilinear feature. Wang et al. (2015); En-
gin et al. (2018) extend the bilinear matrix to kernel ma-
trix to model the nonlinearity in the local descriptor set. In
parallel, some work exploit matrix normalization to improve
the effectiveness of the bilinear feature. For instance, Deep
O2P (Ionescu, Vantzos, and Sminchisescu 2015) utilizes
matrix-logarithm normalization and some other works (Lin
and Maji 2017; Li et al. 2018; Koniusz, Zhang, and Porikli
2018; Yu, Meng, and Yuan 2018; Yu et al. 2021) to conduct
matrix power normalization, achieving a higher recognition
accuracy than that without normalization. Traditional ma-
trix normalization is based on SVD, which is not friendly to
GPU. To improve the efficiency, improved BCNN (Lin and
Maji 2017) approximates the matrix square-root normaliza-
tion through Newton-Schulz (NS) iteration (Higham 2008)
in the forward propagation. iSQRT (Li et al. 2018) supports
NS in the backward propagation besides forward propaga-
tion, making it efficient in the training phase as well. Re-
cently, RUN (Yu, Cai, and Li 2020) further speeds up the
matrix normalization through power method.

Since bilinear features are high-dimensional, directly uti-
lizing them is inefficient and prone to over-fitting. There-
fore, the second research track of bilinear neural network
focuses on reducing the dimension of bilinear features.
CBP (Gao et al. 2016) discovers the connection between the
bilinear pooling and polynomial kernel. It utilizes existing
kernel approximation approaches, Random Maclaurin and
Tensor Sketch, and achieves low-dimensional approxima-
tion of original high-dimensional bilinear features. The low-
dimensional CBP features achieve a comparable recognition
accuracy with that using original bilinear features. Similarly,
KP (Cui et al. 2017) applies tensor sketch to reduce dimen-
sionality of the high-order pooling features. Nevertheless,
the low-dimensional feature obtained from random Maclau-
rin and tensor sketch has broken the original matrix struc-
ture, making the following matrix normalization infeasible.

3244



Algorithm 1 Random Maclaurin (RM)
Input: Local features X = [x1, · · · ,xN ] ∈ Rd×N , D
Output: The compact bilinear feature ΦRM(X) ∈ RD
1: Generate random matrices W1,W2 ∈ RD×d, where

each item is either +1 or −1 with equal probability.
2: for i ∈ [1, N ] do
3: φ(xi) = 1√

D
(W1xi)� (W2xi) , where � denotes

element-wise multiplication.
4: ΦRM(X) =

∑N
i=1 φ(xi)

5: return ΦRM(X)

To overcome this obstacle, MoNet (Gou et al. 2018) con-
ducts SVD directly on local features before bilinear pool-
ing. But as we mentioned, SVD is not well supported in
the GPU. Parallel to reducing the dimension of bilinear fea-
tures, LRBP (Kong and Fowlkes 2017) and FBN (Li et al.
2017) impose low-rank constraints on the classifier param-
eters, which achieve the same goal of improving the effi-
ciency in training the classifier and suppressing over-fitting.

Tensor Sketch and Random Maclaurin

We briefly review Tensor Sketch (TS) and Random Maclau-
rin (RM) in Algorithm 1 and Algorithm 2, respectively. For
each local feature xi, RM only needs to compute twice
matrix-vector multiplications and a vector-vector element-
wise multiplication, resulting in a computational complex-
ity of O(dD), where d is the dimension of the original lo-
cal feature x and D is the dimension of the projected fea-
ture φRM(x). Since RM only involves matrix-vector and
element-wise multiplications, it is very suited for the GPU.

In theory, since each column of Q1/Q2 in step 3 of TS
has a single non-zero element, the computation complexity
of step 5 of TS is O(D). Nevertheless, the multiplication
between sparse-matrix and vector is not well supported in
the GPU. A common practice converts the sparse matrix to
a dense matrix. Thus, the computation complexity of the step
5 increases to O(dD), which is in a comparable scale with
that of RM. Additionally, in step 6 of TS, twice FFT and
once inverse FFT are conducted, making it slower.

In the sequel, we introduce the properties of the RM. For
simplicity, we first consider the case where D = 1 (one
projection direction). Let us consider two random projec-
tion vectors w1,w2 ∈ Rd. Each element of w1 and w2 is
randomly drawn from {+1,−1} with equal probability. We
define a function φ(x) = 〈x,w1〉〈x,w2〉. Given two con-
stant vectors x,y ∈ Rd, it is straightforward to obtain that

E(φ(x)φ(y)) = E(〈x,w1〉〈x,w2〉〈y,w1〉〈y,w2〉)
= E(〈x,w1〉〈y,w1〉)E(〈x,w2〉〈y,w2〉)
= 〈x,y〉2 = 〈vec(h(x)), vec(h(y))〉,

where h(x) = xx>. Thus, φ(x)φ(y) is an unbiased estima-
tion of 〈vec(h(x)), vec(h(y))〉, as required by Eq. (2).

Algorithm 2 Tensor Sketch (TS)
Input: Local features X = [x1, · · · ,xN ] ∈ Rd×N , D
Output: The compact bilinear feature ΦTS(X) ∈ RD
1: Generate random vectors h1,h2 ∈ Nd. Each entry in h1

and h2 is uniformly sampled from {1, 2, · · · , D}.
2: Generate random vectors s1, s2 ∈ {+1,−1}d. Each en-

try in s1 and s2 is uniformly sampled from {+1,−1}.
3: Generate vectors Q1 = [q1

1, · · · ,qD1 ] and Q2 =

[q1
2, · · · ,qD2 ], where qj1(t) = s1(t) if h1(t) = j oth-

erwise 0, and qj2(t) = s2(t) if h2(t) = j otherwise 0.
4: for i ∈ [1, N ] do
5: ψ1(xi) = Q>1 xi, ψ2(xi) = Q>2 xi
6: φ(xi) = FFT−1(FFT(ψ1(xi)� FFT(ψ2(xi)))

7: ΦTS(X) =
∑N
i=1 φ(xi)

8: return ΦTS(X)

We denote the variance of φ(x)φ(y) by σ2 and define

φRM(x) =
1√
D
W1x�W2x =

1√
D

[φ1(x), · · · , φD(x)],

where W1 = [w1
1, · · · ,wD

1 ] and W2 = [w1
2, · · · ,wD

2 ], and
φi(x) = 〈x,wi

1〉〈x,wi
2〉. It is straightforward to obtain

E(〈φRM(x), φRM(y)〉) =
1

D

D∑
i=1

E(〈φi(x), φi(y)〉)

= 〈vec(h(x)), vec(h(y))〉.

Given i 6= j, the projection vectors {wi
1,w

i
2} and {wj

1,w
j
2}

are independent. Therefore, when i 6= j, 〈φi(x), φi(y)〉 and
〈φj(x), φj(y)〉 are independent, which leads to

Var(〈φRM(x), φRM(y)〉) =
1

D2

D∑
i=1

Var(〈φi(x), φi(y)〉)

, σ2/D.

To achieve a small variance, D should be large. As the com-
plexity of RM is O(dD), a large D leads to a high compu-
tation cost. In this work, we seek to improve the efficiency.

Shifted Random Maclaurin (SRM)
Our goal is to design a strategy that reduces the estimation
variance of RM, with extra cost as small as possible. We
decompose the RM into two phases: 1) two matrix-vector
multiplications v1 = W1x and v2 = W2x, with a com-
plexity of O(dD); 2) a vector-vector element-wise multipli-
cation v1�v2, taking onlyO(D) complexity, which is basi-
cally negligible. In light of the complexity gap between these
two phases, we propose Shifted Random Maclaurin (SRM)
method, which takes the same phase 1 as RM but conducts
the second phase for K times with shifting. Algorithm 3 de-
scribes the proposed SRM. The complexity of our SRM is
O((d + K)D). Since K � d, the computation complexity
of SRM is comparable with RM with O(dD) complexity.
That is, by shifting v2 for K − 1 times with almost no ex-
tra cost, the proposed SRM is able to get (K − 1)D more

3245



Algorithm 3 Shifted Random Maclaurin (SRM)
Input: Local features X = [x1, · · · ,xN ] ∈ Rd×N , D,K
Output: ΦSRM(X) ∈ RD
1: Generate random matrices W1,W2 ∈ RD×d, where

each item is either +1 or −1 with equal probability.
2: for i ∈ [1, N ] do
3: v1 ←W1xi, v2 ←W2xi
4: φ

(0)
SRM(xi)← v1 � v2

5: for k ∈ [1,K − 1] do
6: Get v(k)

2 by circularly shifting v2 by k entries
7: φ

(k)
SRM(x)← v1 � v

(k)
2

φSRM(xi)← [φ
(0)
SRM(xi), · · · , φ(K−1)SRM (xi)]/

√
KD

8: ΦSRM(X) =
∑N
i=1 φSRM(xi)

9: return ΦSRM(X)

samples and thus encodes richer information than RM. It is
straightforward to see that SRM also provides an unbiased
estimator of the second-order polynomial kernel h(·), that is

E[〈φSRM(x), φSRM(y)〉] = E[〈φRM(x), φRM(y)〉]
= 〈vec(h(x)), vec(h(y))〉.

The merit of SRM is its smaller estimation variance com-
pared with RM, which benefits accurate kernel distance re-
covery among the learned representations. We summarize
the variance reduction of SRM in the following theorem.

Theorem 1 Let φRM and φSRM be defined in Algorithm 1
and Algorithm 3, respectively. We have

Var[〈φSRM(x), φSRM(y)〉] = εVar[〈φRM(x), φRM(y)〉),

where ε =
1

K
+
K − 1

K
· 2

t+ 2
≤ 1,

t =
‖x‖2‖y‖2 − 〈x� x,y � y〉

〈x,y〉2
≥ 0.

Since ε ≤ 1, the proposed SRM always improves the ap-
proximation accuracy over RM by reducing the variance. To
gain a rough knowledge about the magnitude of t, we notice
that the local features obtained from a ReLU layer are non-
negative and most values are around 0. If we assume that x,
y come from i.i.d. half-normal distribution, it is not hard to
show that 2

t+2 ≈
2

2+π2/4 ≈ 0.448. When K equals to 4 or
8, the variance can be reduced by 40% ∼ 50%. Again, we
would like to re-emphasize that we only need to pay very lit-
tle for this improvement in approximation. The complexity
is O((d+K)D) for our SRM, while O(dD) for the vanilla
RM. Since we setK � d, the extra cost becomes negligible.

Remark 1 Another useful comparison is when the length
of bilinear feature is fixed as D. In RM, the random pro-
jection matrices WRM

1 ,WRM
1 ∈ RD×d, while in SRM, the

random projection matrices WSRM
1 ,WSRM

2 ∈ R(D/K)×d,
saving the memory and computation cost by a factor ofK in
the random projection. That is, the SRM achieves a K times
speed-up ratio in random projection over RM when the di-
mension of the compact bilinear feature is identical.

From SRM to SRM+
Both RM and the proposed SRM are conducted on local
features X before bilinear pooling. Since the matrix struc-
ture has been broken after RM or SRM (by decomposition
Bx =

∑N
i=1 h(xi)), the normalization step is infeasible in

this case. In this section, we upgrade the SRM to SRM+ to
make it compatible with matrix square-root normalization.
Our goal is to find a function Φw(·) with randomness w,
which takes a matrix as input and achieves

E(〈Φw(A),Φw(B)〉) = 〈vec(A), vec(B)〉. (3)
Note here that A,B are arbitrary matrices, not restricted to
the form of xx> as in Eq. (1). Before we introduce SRM+,
we first introduce RM+ defined as

ΦRM+(A) =
1√
d2

((W1A)�W2)1, (4)

where A ∈ Rd1×d2 , and W1,W2 are random matrices with
each entry uniformly sampled from {−1, 1}, and 1 is a col-
umn vector with each entry set as 1. RM+ satisfies the prop-
erty in the following theorem:

Theorem 2 Let ΦRM be defined in Algorithm 1, ΦRM+ be
defined in Eq. (4), and Y ∈ Rd×N be any matrix, then

ΦRM+(YY>) = ΦRM(Y).

We can see that RM+ achieves the goal defined in Eq. (3).
Meanwhile, due to the equivalence, RM+ achieves the same
estimation variance as RM.

We first show the efficiency advantage of RM+ over RM
in the feature normalization. By setting Y =

√
X, RM+

takes as input the normalized matrix
√
X
√
X
>

=
√
XX>

directly and obtain the compact normalized bilinear fea-
ture ΦRM+[

√
XX>]. Using NS iteration (Li et al. 2018),√

XX> can be efficiently obtained. In contrast, RM is op-
erated on the local features X and is incompatible with nor-
malized bilinear features

√
XX> obtained from NS itera-

tion. MoNet (Gou et al. 2018) conducts SVD on X to obtain√
X and then conducts ΦRM(

√
X) to obtain the compact

and normalized bilinear feature. But SVD is difficult to be
parallelized and is not well supported in the GPU platform.

Besides the faster normalization, we gain an additional
reduction in computational cost from RM+. RM requires
two random projections W1

√
X and W2

√
X, while RM+

only needs one, namely W1C where C =
√
XX>. Then

an element-wise multiplication is applied to W1C and W2.
Later in the experiment section, we will show that, the time
cost of ΦRM+(

√
XX>) is less than that of ΦRM(

√
X) not

only in matrix normalization but also in other parts.
Analogously, for the shifted version, SRM+ can be ex-

tended from SRM in a similar manner by

ΦSRM+(A) =
1√
DK

[((W1A)�W
(0)
2 )1,

· · · , ((W1A)�W
(K−1)
2 )1],

(5)

where W1A is computed for only once and W
(k)
2 is ob-

tained by shifting the columns of W2 circularly by k.
ΦSRM+ satisfies the property in the following theorem:

3246



backbone
! = [$%, … , $(]
local features

bilinear 
matrix

normalized
bilinear matrix

!!* NS SRM+

compact
feature

class
scores

FC

Figure 1: The architecture of the proposed FCBN. Given an image, the backbone network extracts local features X =
[x1, · · · ,xN ]. The bilinear matrix is obtained by C = XX>. Through Newton-Schulz (NS) iteration, the normalized bi-
linear feature C̄ is generated. The proposed SRM+ maps the normalized bilinear feature C̄ into a compact vector b, followed
by an element-wise square root normalization layer (sgnsqrt) and an `2 normalization. The normalized feature vector is further
fed into a fully-connected (FC) layer and generates the class scores, which are used for computing cross-entropy loss.

Theorem 3 Let ΦSRM be defined in Algorithm 3, ΦSRM+

be defined in Eq. (5) and Y be any matrix, we have
ΦSRM+(YY>) = ΦSRM(Y).

Again, ΦSRM+(YY>) has same statistical properties as
ΦSRM(Y), with the same two-fold advantages: 1) SRM+ is
compatible with NS iteration, which achieves a faster feature
normalization; 2) SRM+ only needs once random projection
and thus is more efficient than SRM which takes twice ran-
dom projections in generating compact bilinear features.

Fast and Compact Bilinear Network
Figure 1 visualizes the architecture of the proposed Fast
and Compact Bilinear Network (FCBN). The image goes
through a backbone CNN to obtain a set of local features
X = [x1, · · · ,xN ] ∈ Rd×N from the last convolutional
layer. Then the bilinear pooling obtains the bilinear matrix:

C = XX>.

After that, the Newton-Schulz (NS) iteration (Li et al. 2018)
generates the normalized bilinear matrix. Specifically, NS
method conducts T times following iterations:

Yt =
1

2
Yt−1(3I− Zt−1Yt−1),

Zt =
1

2
(3I− Zt−1Yt−1)Zt−1,

where Y0 is initialized by the bilinear matrix C and Z0 is
initialized by the identity matrix I. Since Yt converges to
C1/2, we set the normalized bilinear matrix C̄ = YT . Fol-
lowing Li et al. (2018), we conduct pre-normalization and
post-normalization in NS iteration. The SRM+ layer takes
input the normalized bilinear matrix C̄ and generates the
compact and normalized bilinear feature b̄ by

b̄ =
1√
DK

[Φ
(0)
SRM+(C̄), · · · ,Φ(K−1)

SRM+(C̄)], (6)

where Φ
(k)
SRM+(C̄) = ((W1C̄) �W

(k)
2 )1. After that, fol-

lowing Lin and Maji (2017), an element-wise square-root
and an `2-normalization are conducted. Note that, all oper-
ations in Eq. (6) are differentiable, and thus it readily sup-
ports backward propagation. In practice, we can directly use
the autograd tool in existing deep learning frameworks to
back-propagate gradients based on the forward propagation.

Experiments
We evaluate the proposed methods based on VGG-16 net-
work (Simonyan and Zisserman 2015) pre-trained on Ima-
geNet dataset. On all experiments, we use 448 × 448 input
image size and obtain a 28 × 28 × 512 feature map. The
training is conducted through two stages. In the first stage,
all layers except the last fully-connected (FC) layer are fixed
and only weights of the last FC layer are updated. The batch
size is 32, the initial learning rate is set as 1. After 30 epochs,
we drop learning rate by 10 every 10 epochs until the 60-th
epoch. In the second stage, we update weights of all layers.
The batch size is set as 32, the initial learning rate is set as
1× 10−2. After 30 epochs, the learning rate is decreased to
1× 10−3 and the training process finishes in 40 epochs.

Experiments are conducted in fine-grained, scene and tex-
ture recognition. In fine-grained recognition task, we test on
Caltech-UCSD birds (CUB) dataset (Welinder et al. 2010)
and FGVC-Aircraft Benchmark (Aircraft) (). CUB con-
tains 5, 994 training images and 5, 794 testing images from
200 categories. Aircraft contains 6, 667 training images and
3, 333 testing images from 100 categories. In scene recogni-
tion task, we test on MIT-scene dataset (MIT) (Quattoni and
Torralba 2009), which contains 4, 014 training images and
1, 339 testing images from 67 classes. In texture recognition
task, we test on Describable Texture (DTD) (Cimpoi et al.
2014), containing 1, 880 training images and 3760 testing
images from 47 classes.

Ablation Study

Influence of D. We vary D among {250, 500, 750, 1000}
and fix K as 4. The accuracy is shown in Figure 2(a). As we
can see, the accuracy of the proposed SRM+ improves as D
increases. For instance, on CUB dataset, when D increases
from 250 to 1000, the accuracy increases from 85.0 to 85.8.

Influence of K. We set D = 500 on all testing datasets.
Notice that when K = 1, the proposed SRM+ degenerates
to RM+. As shown in Figure 2(b), on CUB, MIT and DTD
datasets, the accuracy improves as K increases. Meanwhile,
the proposed SRM+ (K > 1) consistently outperforms RM+
(K = 1). For instance, on CUB dataset, whenK = 1, it only
achieves a 83.5 accuracy whereas it achieves a 85.6 accuracy
when K = 8. On MIT dataset, RM+ (K = 1) only achieves

3247



300 400 500 600 700 800 900 1000
D

60

65

70

75

80

85

90

A
cc
u
ra
cy

CUB
MIT
DTD
Aircraft

(a) The influence of D.

1 2 3 4 5 6 7 8
K

60

65

70

75

80

85

90

A
cc
u
ra
cy

CUB
MIT
DTD
Aircraft

(b) The influence of K.

Figure 2: The influence ofD andK on the proposed SRM+.

Norm CUB MIT DTD Aircraft
No 83.7 78.1 66.1 87.7
Yes 85.6 80.2 66.8 90.5

Table 2: Influence of matrix normalization on the accuracy.

a 78.3 recognition accuracy whereas our SRM+ (K = 8)
achieves a 80.2 accuracy. Note that, on Aircraft dataset, the
best performance is achieved when K = 4. The worse per-
formance when K = 8 might be caused by over-fitting.

Influence of normalization. As previously discussed, we
implement the matrix normalization by Newton-Schulz iter-
ation as in Li et al. (2018). As shown in Table 2, the normal-
ization step improves the recognition accuracy.

Comparisons With Other Pooling Methods

We further compare with other pooling methods includ-
ing fully-connected (FC), sum-pooling (Sum), max-pooling
(Max), bilinear pooling (BP) and improved bilinear pool-
ing (IBP). We set K = 8 and D = 500 on four datasets
and thus the dimension of the proposed SRM+ feature is
D × K = 4000. As shown in Table 3, BP, IBP and ours
consistently outperform FC, Sum and Max on four testing
datasets, which validates the effectiveness of the bilinear
pooling on fine-grained image recognition, texture recog-
nition and scene recognition. Meanwhile, benefited from
matrix normalization, IBP consistently outperforms original
BP. Our method achieves a comparable accuracy with IBP
with the compact feature of a much smaller dimension.

Method Dimension CUB MIT DTD Aircraft
FC 4096 80.4 67.8 60.1 74.1

Sum 512 71.7 58.7 58.2 82.1
Max 512 69.6 50.4 51.1 78.9
BP 262K 84.0 77.5 67.5 86.9
IBP 262K 85.6 79.7 67.7 88.5
Ours 4000 85.6 80.2 66.8 90.5

Table 3: Comparisons with other pooling methods.

Dimension 2000 4000 8000 16000
RM 3.21G 6.42G 12.8G 25.7G

RM+ 1.46G 2.51G 4.61G 8.81G
SRM+ (K = 2) 937M 1.46G 2.51G 4.61G
SRM+ (K = 4) 675M 939M 1.46G 2.52G
SRM+ (K = 8) 544M 677M 943M 1.47G

Table 4: FLOPs comparisons among RM, RM+ and SRM+.

Dim Time Accuracy
CUB MIT DTD Air

RM+ 4K 29ms 85.2 80.5 67.0 90.5
SRM + 4K 7ms 85.6 80.2 66.8 90.5

RM+ 8K 53ms 85.5 80.7 67.5 90.2
SRM+ 8K 13ms 85.5 80.3 67.8 90.5

Table 5: Comparisons between RM+ and SRM+.

Efficiency Analysis
Advantage of RM+ over RM. Recall from Theorem 2 that
ΦRM+(C) = ΦRM(Y) when C = YY>. It is explicit that
RM+ can achieve a faster matrix normalization than RM
since it can be conducted on normalized matrix efficiently
obtained from iSQRT. In the following, we confirm our
statement that, besides faster matrix normalization, comput-
ing ΦRM+(C) is faster than ΦRM(Y) in other parts where
Y =

√
X and C =

√
XX>. First we rewrite ΦRM(Y) as

ΦRM(Y) = ((W1Y)� (W2Y))1. (7)

In contrast, to obtain ΦRM+(C), we need compute:

ΦRM+(C) = ((W1C)�W2)1.

Meanwhile, before computing ΦRM+(C), we need compute
an additional matrix-matrix multiplication XX>. Given
X,Y ∈ Rd×N , W1,W2 ∈ RD×d, the number of float op-
erations (FLOPs) of computing ΦRM(Y) in Eq. (7) is

FLOPs(RM) = 4DNd−D. (8)

In contrast, FLOPs of computing ΦRM+(C) and XX> is

FLOPs(RM+) = d2(2N + 2D − 1) +D(d− 1). (9)

Note that, the FLOPs in Eq. (9) and Eq. (8) do not take the
computational cost of matrix normalization into considera-
tion since here we show efficiency advantage of RM+ over
RM on other parts besides matrix normalization. In our case,
d = 512, N = 282 and D is defined by the user. We com-
pare the FLOPs of RM and RM+ when the dimension D
varies among {2K, 4K, 8K, 16K}. As shown in Table 4, the
FLOPs of RM+ is less than that of RM, validating the ef-
ficiency advantage of RM+ over RM in other parts besides
matrix normalization.

Advantage of SRM+ over RM+. ΦSRM+(XX>) computes

W̃1 = W1C, {(W̃1 �W
(k)
2 )1}K−1k=0 . (10)

When the feature dimension is D, in SRM+, W1,W2 ∈
RD

K×d. That is, when the feature dimension is fixed, a

3248



Method Dimension Pooling
Time

Norm
Time

Accuracy
CUB MIT DTD Aircraft

BCNN (Lin, RoyChowdhury, and Maji 2015) 262K 3.3ms − 84.0 77.5 67.5 84.0
I-BCNN (Lin and Maji 2017) 262K 3.3ms 6.3s 85.8 − − 88.5

G2DeNet (Wang, Li, and Zhang 2017) 263K 3.4ms 6.5s 87.1 − − 89.0
iSQRT (Li et al. 2018) 32K 0.9ms 0.1s 87.2 − − 90.0

CBP-TS (Gao et al. 2016) 8K 215.6ms − 84.0 76.2 67.8 −
CBP-RM (Gao et al. 2016) 8K 123.3ms − 83.9 73.9 66.7 −

LRBP (Kong and Fowlkes 2017) 10K 2.2ms − 84.2 − 65.8 87.3
HBP (Yu et al. 2018) 24K 352.1ms − 87.1 − − 90.3

MoNet-2 (Gou et al. 2018) 10K 131.6ms 13.6s 85.7 − − 88.1
GP (Wei et al. 2018) 4K 15.3s 85.8 − − 89.8

FCBN (ours) 4K 7.4ms 0.8s 85.6 80.2 66.8 90.5
FCBN (ours) 8K 12.8ms 0.8s 85.5 80.3 67.8 90.5

Table 6: Compare with state-of-the-art methods.

larger K leads to smaller projection matrices W1,W2. The
FLOPs used in computing 2 steps in Eq (10) and XX> is

FLOPs(SRM+) = d2(2N +
2D

K
− 1) +D(2d− 1− d

K
).

Note that, when K = 1, FLOPs(SRM+) = FLOPs(RM+).
This is in accord with the fact that, RM+ is a special case of
SRM+ when K = 1. We also show FLOPs of SRM+ when
K varies among {2, 4, 8} in Table 4. As shown in the table,
FLOPs of SRM+ is considerably less than that of RM+.

We further compare RM+ and SRM+ on the factual time
cost and the classification accuracies on benchmarks. We set
K = 8 and change the feature dimension between 4000 and
8000. Consequently, the size of projection matrices used in
RM+ is 512×4000(8000). In contrast, due toK times shift-
ing, the size of projection matrices used in SRM+ is only
512×500(1000). As shown in Table 5, SRM+ achieves com-
parable accuracies with RM+ on four datasets. Meanwhile,
the time cost of our SRM+ is considerably less than RM+.
For example, when the dimension is set as 4000, our SRM+
only takes 7ms whereas the RM+ takes 29ms.

Comparisons With State-of-the-art Methods
We compare the pooling time, normalization time, and accu-
racies on four datasets with existing state-of-the-art methods
in Table 6. We implement all methods in the same server.

We first compare with non-compact bilinear methods in-
cluding original B-CNN, I-BCNN, G2DeNet and iSQRT. As
shown in Table 6, BCNN, I-BCNN, G2DeNet and iSQRT
achieve comparable or even higher accuracies than ours.
The bilinear pooling used in BCNN, I-BCNN, G2DeNet and
iSQRT is faster than ours and other compact methods. But
they generate high-dimension features. Note that, despite we
use the same NS iteration as iSQRT, the normalization time
of ours is 8 times as that of iSQRT. This is due to the fact that
iSQRT reduces the dimension of local features from 512 to
256 though a convolution layer. Our FCBN will achieve the
same normalization time with iSQRT when reducing the di-
mension of local convolutional features to 256.

Secondly, we compare with methods based on compact
bilinear features. Due to lack of normalization, accuracies

of CBP and LRBP are not as high as ours. Note that LRBP
projects local features into low-dimension features and thus
it is faster than ours in pooling. In fact, we can also further
reduce the computation cost of our SRM+ by projecting the
local feature into low-dimension features. We also compare
with HBP which fuses features from three convolution lay-
ers. Benefited from the feature fusion, HBP achieves a bet-
ter performance than ours on CUB. We can also improve the
accuracy of our FCBN by fusing features of multiple layers,
but that is not the focus of this paper. We further compare
with MoNet-2. It achieves comparable accuracies with ours,
but their pooling time and normalization time are larger than
ours. To be specific, MoNet-2 takes 131.6ms in compact bi-
linear pooling through random Maclaurin and 13.6s for nor-
malization based on SVD. In contrast, our FCBN takes only
12.8ms in the proposed SRM+ and 0.8s in normalization
based on NS iteration. We then compare with Grassmann
Pooling (GP). GP conducts the feature pooling and normal-
ization simultaneously, therefore, we report the total time
used in the feature pooling normalization of GP. As shown
in Table 6, GP and ours achieve comparable accuracy. But
GP is much slower than ours in pooling and normalization.

Conclusion
In this paper, we propose a Shifted Random Maclaurin
(SRM) method to improve the efficiency of compact bilinear
pooling. Using the same projection matrix, SRM achieves
a better estimation performance than RM. Meanwhile, we
further upgrade SRM to SRM+ to further boost the effi-
ciency and make it compatible with fast matrix normaliza-
tion. Based on the proposed SRM+, we build a Fast and
Compact Bilinear Network (FCBN) for an effective and effi-
cient image recognition. Systematic experiments conducted
on four public benchmark datasets demonstrate the effec-
tiveness and the efficiency of the proposed method.

For future work, it is also possible to explore other tech-
niques developed for random projections such as “very
sparse random projections” (Li 2007) or “quantized random
projections” (Li, Mitzenmacher, and Shrivastava 2014; Li
and Li 2019), to improve SRM from different directions.

3249



References
Cherian, A.; Koniusz, P.; and Gould, S. 2017. Higher-Order
Pooling of CNN Features via Kernel Linearization for Ac-
tion Recognition. In Proceedings of the 2017 IEEE Win-
ter Conference on Applications of Computer Vision (WACV),
130–138. Santa Rosa, CA.
Cimpoi, M.; Maji, S.; Kokkinos, I.; Mohamed, S.; and
Vedaldi, A. 2014. Describing Textures in the Wild. In
Proceedings of the 2014 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 3606–3613. Colum-
bus, OH.
Cui, Y.; Zhou, F.; Wang, J.; Liu, X.; Lin, Y.; and Belongie,
S. J. 2017. Kernel Pooling for Convolutional Neural Net-
works. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 3049–
3058. Honolulu, HI.
Engin, M.; Wang, L.; Zhou, L.; and Liu, X. 2018.
DeepKSPD: Learning Kernel-Matrix-Based SPD Represen-
tation For Fine-Grained Image Recognition. In Proceed-
ings of the 15th European Conference on Computer Vision
(ECCV), Part II, 629–645. Munich, Germany.
Gao, Y.; Beijbom, O.; Zhang, N.; and Darrell, T. 2016. Com-
pact Bilinear Pooling. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 317–326. Las Vegas, NV.
Gou, M.; Xiong, F.; Camps, O. I.; and Sznaier, M. 2018.
MoNet: Moments Embedding Network. In Proceedings of
the 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 3175–3183. Salt Lake City, UT.
Higham, N. J. 2008. Functions of matrices-theory and com-
putation. SIAM.
Ionescu, C.; Vantzos, O.; and Sminchisescu, C. 2015. Matrix
Backpropagation for Deep Networks with Structured Lay-
ers. In Proceedings of the 2015 IEEE International Con-
ference on Computer Vision (ICCV), 2965–2973. Santiago,
Chile.
Kar, P.; and Karnick, H. 2012. Random Feature Maps for
Dot Product Kernels. In Proceedings of the Fifteenth Inter-
national Conference on Artificial Intelligence and Statistics
(AISTATS), 583–591. La Palma, Canary Islands, Spain.
Kong, S.; and Fowlkes, C. C. 2017. Low-Rank Bilinear
Pooling for Fine-Grained Classification. In Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 7025–7034. Honolulu, HI.
Koniusz, P.; Cherian, A.; and Porikli, F. 2016. Tensor Repre-
sentations via Kernel Linearization for Action Recognition
from 3D Skeletons. In Proceedings of the 14th European
Conference on Computer Vision (ECCV), Part IV, 37–53.
Amsterdam, The Netherlands.
Koniusz, P.; Yan, F.; Gosselin, P.; and Mikolajczyk, K. 2017.
Higher-Order Occurrence Pooling for Bags-of-Words: Vi-
sual Concept Detection. IEEE Trans. Pattern Anal. Mach.
Intell. 39(2): 313–326.
Koniusz, P.; Zhang, H.; and Porikli, F. 2018. A Deeper
Look at Power Normalizations. In Proceedings of the 2018

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 5774–5783. Salt Lake City, UT.
Li, P. 2007. Very sparse stable random projections for di-
mension reduction in lα(0 < α ≤ 2) norm. In Proceed-
ings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 440–449.
San Jose, CA.
Li, P.; Mitzenmacher, M.; and Shrivastava, A. 2014. Coding
for Random Projections. In Proceedings of the 31th Interna-
tional Conference on Machine Learning (ICML), 676–684.
Beijing, China.
Li, P.; Xie, J.; Wang, Q.; and Gao, Z. 2018. Towards Faster
Training of Global Covariance Pooling Networks by Itera-
tive Matrix Square Root Normalization. In Proceedings of
the 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 947–955. Salt Lake City, UT.
Li, X.; and Li, P. 2019. Random Projections with Asym-
metric Quantization. In Advances in Neural Information
Processing Systems (NeurIPS), 10857–10866. Vancouver,
Canada.
Li, Y.; Wang, N.; Liu, J.; and Hou, X. 2017. Factorized
Bilinear Models for Image Recognition. In Proceedings of
IEEE International Conference on Computer Vision (ICCV),
2098–2106. Venice, Italy.
Lin, T.; and Maji, S. 2017. Improved Bilinear Pooling with
CNNs. In Proceedings of British Machine Vision Confer-
ence (BMVC). London, UK.
Lin, T.; RoyChowdhury, A.; and Maji, S. 2015. Bilin-
ear CNN Models for Fine-Grained Visual Recognition. In
Proceedings of the 2015 IEEE International Conference on
Computer Vision (ICCV), 1449–1457. Santiago, Chile.
Pham, N.; and Pagh, R. 2013. Fast and scalable poly-
nomial kernels via explicit feature maps. In Proceedings
of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), 239–247.
Chicago, IL.
Quattoni, A.; and Torralba, A. 2009. Recognizing indoor
scenes. In Proceedings of the 2009 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR), 413–420. Miami, FL.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. In
Proceedings of the 3rd International Conference on Learn-
ing Representations (ICLR). San Diego, CA.
Tenenbaum, J. B.; and Freeman, W. T. 2000. Separating
Style and Content with Bilinear Models. Neural Comput.
12(6): 1247–1283.
Wang, L.; Zhang, J.; Zhou, L.; Tang, C.; and Li, W. 2015.
Beyond Covariance: Feature Representation with Nonlinear
Kernel Matrices. In Proceedings of the 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), 4570–4578.
Santiago, Chile.
Wang, Q.; Li, P.; and Zhang, L. 2017. G2DeNet: Global
Gaussian Distribution Embedding Network and Its Appli-
cation to Visual Recognition. In Proceedings of the 2017

3250



IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 6507–6516. Honolulu, HI.
Wang, Q.; Li, P.; Zuo, W.; and Zhang, L. 2016. RAID-G: Ro-
bust Estimation of Approximate Infinite Dimensional Gaus-
sian with Application to Material Recognition. In Proceed-
ings of the 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 4433–4441. Las Vegas, NV.
Wei, X.; Zhang, Y.; Gong, Y.; Zhang, J.; and Zheng, N.
2018. Grassmann Pooling as Compact Homogeneous Bi-
linear Pooling for Fine-Grained Visual Classification. In
Proceedings of the 15th European Conference on Computer
Vision (ECCV), Part III, 365–380. Munich, Germany.
Welinder, P.; Branson, S.; Mita, T.; Wah, C.; Schroff, F.; Be-
longie, S.; and Perona, P. 2010. Caltech-UCSD birds 200
.
Yu, C.; Zhao, X.; Zheng, Q.; Zhang, P.; and You, X.
2018. Hierarchical Bilinear Pooling for Fine-Grained Visual
Recognition. In Proceedings of the 15th European Confer-
ence on Computer Vision (ECCV), Part XVI, 595–610. Mu-
nich, Germany.
Yu, T.; Cai, Y.; and Li, P. 2020. Toward Faster and Simpler
Matrix Normalization via Rank-1 Update. In Proceedings of
the 16th European Conference on Computer Vision (ECCV),
Part XIX, 203–219. Glasgow, UK.
Yu, T.; Meng, J.; Yang, M.; and Yuan, J. 2021. 3D object
representation learning: A set-to-set matching perspective.
IEEE Transactions on Image Processing 30: 2168–2179.
Yu, T.; Meng, J.; and Yuan, J. 2018. Multi-view harmo-
nized bilinear network for 3d object recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 186–194. Salt Lake City, UT.
Zhou, L.; Wang, L.; Zhang, J.; Shi, Y.; and Gao, Y. 2017.
Revisiting Metric Learning for SPD Matrix Based Visual
Representation. In Proceedings of the 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
7111–7119. Honolulu, HI.

3251


