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Abstract

Using data generated by generative adversarial networks or
three-dimensional (3D) technology for face recognition train-
ing is a theoretically reasonable solution to the problems of
unbalanced data distributions and data scarcity. However, due
to the modal difference between synthetic data and real data,
the direct use of data for training often leads to a decrease in
the recognition performance, and the effect of synthetic data
on recognition remains ambiguous. In this paper, after ob-
serving in experiments that modality information has a fixed
form, we propose a demodalizing face recognition training
architecture for the first time and provide a feasible method
for recognition training using synthetic samples. Specifically,
three different demodalizing training methods, from implicit
to explicit, are proposed. These methods gradually reveal a
generated modality that is difficult to quantify or describe.
By removing the modalities of the synthetic data, the perfor-
mance degradation is greatly alleviated. We validate the ef-
fectiveness of our approach on various benchmarks of large-
scale face recognition and outperform the previous methods,
especially in the low FAR range.

Introduction
Deep face recognition aims to map an input image to a fea-
ture space with a small intraclass distance and a large in-
terclass distance. Previous work was implemented via loss
function design and datasets with rich intraclass differences
(Schroff, Kalenichenko, and Philbin 2015; Wen et al. 2016;
Liu et al. 2017; Wang et al. 2018; Deng et al. 2019). How-
ever, most of the face datasets that we have utilized are bi-
ased and long-tailed. Even very large public datasets mani-
fest strong biases in image characteristics, such as ethnicity
(Sohn et al. 2018), age (Wen, Li, and Qiao 2016; Zheng,
Deng, and Hu 2017) and head poses (Masi et al. 2016; Peng
et al. 2017). On the other hand, a few classes tend to have
rich in-class samples, while most classes have very few in-
class samples (Yin et al. 2019; Liu et al. 2019). These bi-
ased and long-tailed characteristics greatly affect the perfor-
mance of the recognition model, especially on difficult test
datasets.
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Figure 1: Due to changes in attributes (such as the head pose
and image quality), the distance between synthetic samples
and real samples in the same category may be relatively
large, and due to the existence of a fixed synthetic mode, the
distance between the synthetic samples of different people
will be close. After DMFR removes the synthetic modality,
the synthetic samples will be closer to the real samples in
their own category and farther from the generated samples
in other categories. This figure is best viewed in color.

With continuous improvement in the quality of synthetic
images, some researchers have begun to use generative ad-
versarial networks (GANs) (Goodfellow et al. 2014) and
three-dimensional (3D) methods (Feng et al. 2018; Masi
et al. 2016) to generate images to enrich classes with fewer
samples. This approach is applied in the fields of person re-
identification (re-ID) (Dai et al. 2018; Zheng et al. 2019)
and few-shot learning (Mishra et al. 2018; Mondal, Dolz,
and Desrosiers 2018). However, in face recognition tasks,
we discover that directly mixing real and synthetic samples
in training often yields negative effects (Shi et al. 2020) re-
gardless of how realistic the synthetic samples appear. After
experimentation, we discovered that the synthetic samples
often have unified modality information. As with adversar-
ial samples, this information often does not have obvious
visual characteristics, but it will create problems for training
the model.

For the first time, we propose demodalizing face recogni-
tion (DMFR) to remove fixed modalities in synthetic sam-
ples. As shown in Fig. 1, the distribution of the synthetic
samples after removing the modal information is similar
to that of the real samples, and the distances between the
synthetic samples increases. The classifier does not need
to make incorrect offsets to fit sample points that are out-
liers due to the modal information. Therefore, the synthetic
samples can be better utilized for face recognition and other
tasks.
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Specifically, we propose three learning methods, from
implicit to explicit. The first learning method is the meta-
learning-based method. Our model implicitly learns meth-
ods for removing modal information from the generation do-
main and can learn to generalize well to unseen attacks. The
second learning method is the disentangling-based method.
We disentangle the feature that contains only identity in-
formation from the other information, which contains the
modality, and then use the identity information feature for
identification. This process eliminates the influence of the
modal information of the synthetic sample on the recogni-
tion training. The third method is the filter-based method.
We propose a filter structure to explicitly remove the modal-
ities in the synthetic samples so that the synthetic features
can filter out the modal information after passing through
the filter structure without losing the other information. In
order to highlight our theme, we select three plain methods
as backbones and remove the more fancy techniques, such
as cross reconstruction and information loss in disentangle-
based method.

In Experiments Section, we discuss how synthetic
modalities affect the recognition model training on the
basis of feature differences and similarity distribution
changes. We provide the insightful analysis that removing
the synthetic modal information will improve the learn-
ing of the identity embeddings. Comprehensive experi-
ments demonstrate that the use of face recognition bench-
marks, such as Labeled Faces in the Wild(LFW)(Huang
et al. 2008), YouTube Faces(YTF)(Wolf, Hassner, and
Maoz 2011), CFP-FP (Sengupta et al. 2016) and MegaFace
(Kemelmacher-Shlizerman et al. 2016), substantially im-
prove our model performance compared to the direct addi-
tion of synthetic samples. In some challenging test datasets,
such as the IARPA Janus Benchmark-A(IJB-A) (Klare et al.
2015), IARPA Janus Benchmark-C(IJB-C) (Maze et al.
2018), CP-IJB-C and CQ-IJB-C, a new state-of-the-art
performance is achieved. After synthetic samples remove
modal information, the samples produce effects in the corre-
sponding domain (such as a large posture).

The main contributions of this paper are presented as fol-
lows:
• For the first time, we highlight the synthetic modal prob-

lem, which has a great influence on real samples.
• We propose a novel demodalizing face recognition

(DMFR) framework to solve the synthetic modal prob-
lem, which removes the modal information of synthetic
samples during training.

• We extract samples from IJB-C and build a cross-pose
dataset CP-IJB-C and a cross-quality dataset CQ-IJB-C.

• We achieve state-of-the-art results on several challenging
benchmarks, such as IJB-A, IJB-C, CP-IJB-C and CQ-
IJB-C.

Related Work
Deep Face Recognition
Deep neural networks have been extensively applied in face
recognition research. FaceNet (Schroff, Kalenichenko, and

Philbin 2015) proposes triplet loss to maximize the distance
between the anchor and negative samples while minimiz-
ing the distance between the anchor and positive samples.
Center loss (Wen et al. 2016) aims to minimize the dis-
tances between samples and their class centers. Marginal
loss (Deng, Zhou, and Zafeiriou 2017) introduces the con-
cept of the margin, which uses the margin value to limit the
distances between classes while minimizing the distances
within classes. SphereFace (Liu et al. 2017) proposed angu-
lar softmax loss (A-Softmax). CosFace (Wang et al. 2018)
adopted an additive cosine margin, and Arcface (Deng et al.
2019) adopted an additive angular margin.

Data Augmentation
Deep learning models often rely heavily on data. There-
fore, data augmentation is extensively applied to increase
the amount of training data. Data augmentation generally
includes flipping, rotating, and resizing. In addition to these
general data augmentation methods, 3D generative models
(Feng et al. 2018; Masi et al. 2016) and GANs (Goodfellow
et al. 2014) are employed in fields such as person re-ID (Dai
et al. 2018; Zheng et al. 2019) and few-shot learning (Mishra
et al. 2018; Mondal, Dolz, and Desrosiers 2018).

Meta Learning
The meta-learning method focuses on 1) learning a better
initialization weight to quickly adapt to new tasks, such as
model-agnostic meta-learning (MAML) (Finn, Abbeel, and
Levine 2017) and its variant Reptile (Nichol, Achiam, and
Schulman 2018), as well as meta transfer learning (Sun et al.
2019) and iMAML (Rajeswaran et al. 2019); 2) learning an
embedding space and a classifier, which can be employed to
directly classify samples in a new task without fast adapta-
tion (Vinyals et al. 2016; Snell, Swersky, and Zemel 2017;
Sung et al. 2018); and 3) after pretraining a feature extractor
on an entire training set, learning the parameters of the pre-
dictive classifier (Qiao et al. 2018; Gidaris and Komodakis
2018). Most of these works focus on few-shot learning with
a small number of categories, and the application of meta-
learning is very challenging for face recognition tasks that
involve thousands of people.

Disentangled Representations
Disentangling representation aims to learn how to separate
identity information from irrelevant information. In a real
scenario, the learned model is applied to extract identity in-
formation as the identification features. Early feature dis-
entangling is mostly based on artificially designed features
(Gong et al. 2013). With the development of neural net-
works, features extracted by convolutional neural networks
have begun to replace manually designed features, differ-
ent loss functions were designed, and end-to-end feature
disentangling was realized. With the development of GAN,
generation-based methods (Tran, Yin, and Liu 2017) and
feature disentangling methods begin to combine.

Modality-invariant Feature Learning
Modality-invariant feature learning aims to extract the
modality-invariant features. Since modal changes are re-
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moved when extracting or learning these features, these fea-
tures are only related to facial identity information and are
quite robust to changes in modality. Traditional methods of
modality-invariant feature learning are generally based on
manually extracted features. Among deep learning methods,
Wu et al. pro-posed a cross-modal ranking named coupled
deep learning (CDL) (Wu et al. 2017), which reduces the do-
main discrepancy. Huo et al. proposed a discriminative fea-
ture learning method (Huo et al. 2017). He et al. employed
the Wasserstein distance to reduce the gap between domains
to obtain domain-invariant features (He et al. 2018).

Proposed Approach
Modality of the Synthetic Data
In the deep learning era, each sample xi is represented as
an embedding zi in a latent space, that is, zi = H(xi). The
conditional synthetic sample feature has the form

x′i = xi ⊕∆xi = xi ⊕ g(xi,∆c)⊕ ε(xi)

where g represents the generation function, ∆c represents
the difference in the generation conditions, such as the pose
angle, age or clarity, and we assume that

∆c = 0⇔ g(xi,∆c) = 0

ε(xi) represents the fixed mode of the synthetic samples,
which we refer to as the modality of the synthetic samples,
and ⊕ represents a nonlinear relationship. Here, we assume
the simplest case that the synthetic modality is additive. In
the ideal generation situation, we hope that ε(xi) = 0, that
is, that the difference between the synthetic sample and the
real sample is related only to the term g(xi,∆c). With this
ideal assumption, when ∆c = 0, x′i = xi. In Experiments
Section, we show that the synthetic modality ε(xi) exists.
This modality explains why it is difficult for us to directly
use the synthetic samples for training.

Synthetic Sample Demodalization
We propose three demodalization methods, from implicit
to explicit. Meta-learning is a modality-invariant method.
When it is applied to the training of synthetic samples, we
treat the real samples and synthetic samples as different do-
mains and meta-learning as a non-explicit demodalization
method. In the disentangling method, we aim to disentangle
the ID information and non-ID information of the face and
ultimately use the ID information for face recognition. After
disentangling, demodalization is performed on the synthetic
sample, even if the modality is still coupled in the non-ID
information. In the filter method, we propose an end-to-end
method to directly remove the modal information from the
synthetic samples. Unlike the previous two methods, the de-
modalization in this method is not a black box but a module
that can be controlled manually. We can also obtain explicit
modality information by filters.

Meta-learning-based DMFR
Overview In the training phase, we have several do-
mains, the real domain Dtr and N generative domains
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Figure 2: Overview of the proposed meta-learning-based
DMFR model. The figure is best viewed in color.

Dg1 , Dg2 , . . . , DgN . Each domain contains a certain face la-
bel. In the testing phase, the trained model is evaluated on
several domains DT1 , DT2 , . . . , DTM

, which may not have
been previously observed. In addition, the labels of the test
domain and training domain are disjoint, so we are address-
ing an open set problem. We propose a meta-learning-based
DMFR to use the generalization ability of meta-learning to
implicitly eliminate the modal information in the generative
domains so that the model can achieve better performance
in the test domain.

Domain-based Sampling To remove the modal informa-
tion of the synthetic samples, we divide the training domain
into two parts in each training iteration: meta-training and
meta-testing. Specifically, we randomly select a generative
domain for the meta-test and use the remainder of the gen-
erative domain and real domain Dtr for the meta-training.
Therefore, the real domain and generative domain shift can
be simulated. Unlike the MAML (Finn, Abbeel, and Levine
2017) method, to remove the modal information of the gen-
erative domain, we add the real domain to the meta-training
in each training iteration instead of completely randomly se-
lecting the meta-training and meta-testing sets. In this way,
our model can autonomously learn a method for removing
the modal information from the generative domain and can
learn to generalize well to unseen attacks.

Meta-optimization A convolutional neural network that
is composed of a feature extractor and a meta-learner is
proposed in meta-learning-based DMFR. We investigate the
posterior of the probability being classified to identity j ∈
{1, 2, ..., I}, given the input sample xi. Denote the feature
embedding of sample i as fi and jth identity prototype vector
as wj . The whole meta-optimization procedure is illustrated
in Fig. 2; the details are presented as follows:

Based on domain-based sampling, during each batch
within a meta-batch, we sample N-1 source domains, which
are composed of one real domain and N-2 generative do-
mains. We calculate the classification loss in each batch as

Ltr =
1

I

I∑
1

− log
exp s(wTyi fi −m)

exp s(wTyi fi −m) +
∑
j 6=yi exp s(wTj fi)

where yi is the ground-truth label of xi. The prototype w is
next updated by gradients∇w as:

w′ = w− α∇wLtr
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Figure 3: Overview of the proposed disentangling-based
DMFR model. The figure is best viewed in color.

Moreover, we sample batches in the remaining generative
domain for the meta-test. We encourage our model trained
on the meta-train domain to perform well on the meta-test
domain by removing the modal information of the gener-
ative domains. The loss is then calculated on the updated
parameters w′ as follows:

Lte =
1

I

I∑
1

− log
exp s(w′Tyi fi −m)

exp s(w′Tyi fi −m) +
∑
j 6=yi exp s(w′Tj fi)

To simultaneously optimize the meta-training and meta-
testing, the final objective is

argminθλmetaLtr(θ,w)+(1−λmeta)Lte(θ,w−α∇wLtr)
where θ is the parameter of the feature extractor, α is the
learning rate of meta-train and λmeta is the hyperparame-
ter that balances the meta-training and meta-testing. In each
round of training, a gradient is back-propagated on the meta-
training, while a meta-gradient is back-propagated on the
meta-testing. Since the meta-training domain always con-
tains real samples, the modal information of the generative
domain in the process of gradient back-propagation is im-
plicitly filtered so that the model performs well in both the
meta-training domain and the meta-testing domain.

Disentangle-based DMFR
Overview The goal of disentangling is to split features
that contain identity information only from other informa-
tion that includes modalities and use the identity informa-
tion features for face recognition. For the synthetic sam-
ples x′i = xi ⊕ g(xi,∆c) ⊕ ε(xi), we propose a disentan-
gling method that can eliminate the influence of the modal
information on the recognition training. We divide the en-
tangled feature fentangle into two parts, fid and fnon−id,
where fid is the identity information used for identification,
fnon−id = H(g(xi,∆c) ⊕ ε(xi)), H is the feature extrac-
tor and ε(xi) is the modal information that needs to be re-
moved. The remaining issue is that the two parts g(xi,∆c)
and ε(xi) are still coupled. The whole disentangling proce-
dure is illustrated in Fig. 3. Specifically, we use the classifi-
cation loss to constrain fid only containing the information
needed to predict the class identity. In our experiment, we
additionally train a decoder that visualize the features, and
we find that fid abandon non-identity information, such as
posture, to achieve better recognition results. In this situa-
tion, to recover a reconstructed image with the same posture

as the input sample (we use a reconstruction loss to ensure
this process), fentangle has to contain rich information, such
as posture. Through a minus operation, we compress non-ID
information into fnon−id, which can be clearly seen from the
visualization image in Fig. 3.

Feature Map Reconstruction Disentangling-based
DMFR has an encoder-decoder structure. The encoder
structure is divided into two parts. The first part extracts
a relatively informative feature fentangle, followed by a
decoder to ensure that fentangle is capable of recovering the
original feature map. Note that our encoder-decoder struc-
ture does not recover the original input data but is designed
to recover a feature map M of appropriate depth. First,
lower-level neural network operations require more com-
puting resources, and second, a feature map of appropriate
depth already contains most of the information that we need
and is able to complete the work of the encoder-decoder
structure. Blindly seeking to restore the original image
would introduce too much averaging information because
of the reconstruction loss function. The loss function of
reconstruction is

Lrecons = ‖Mrecons −M‖2
where Mrecons is the reconstruction of the selected feature
map.

The other part of the encoder structure extracts the feature
fnon−id, which is unrelated to the target classification task;
it contains the synthetic modal information with which we
are most concerned, although this part of the information is
still coupled with other information, such as the pose, illumi-
nation and age. The remainder of our networks are designed
and trained to ensure that fid contains only identity infor-
mation and is thus separated from fnon−id, which contains
only domain and other information.

Classification Disentangling-based DMFR contains a
classifier to constrain fid to be maximally informative about
the identity information while eliminating the maximum
amount of other irrelevant information, that is, to maximize
the removal of synthetic modal information. We calculate
the classification loss in each batch as follows:

Lcls =
1

I

I∑
1

− log
exp s(wTyi fi −m)

exp s(wTyi fi −m) +
∑
j 6=yi exp s(wTj fi)

Optimization Disentangling-based DMFR is an end-to-
end framework, and the final objective is a linear combina-
tion of all loss functions:

L = Lcls + λdisenLrecons
where λdisen is a hyperparameter that is chosen experimen-
tally.

Filter-based DMFR
Filter We propose the filter structure F to explicitly re-
move the modality from the synthetic samples. The goal is
that the synthetic features will filter out the modal informa-
tion after passing through the filter structure without losing
other information. To achieve this goal, we generated a batch
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Figure 4: Overview of the proposed filter-based DMFR
model. The figure is best viewed in color.

of samples with ∆c = 0, where c represents the generation
conditions, such as the angle, age and clarity. When ∆c = 0,
the difference between the synthetic samples and the real
samples should originate from only the synthetic modality.

Specifically, we define the representation in the latent
space of each sample xi as H(xi; θh), where θh represents
the parameters of the feature extraction network H. The pair-
wise feature distance between H(xi; θh) and F (H(xi ⊕
g(xi,∆c)⊕ε(xi); θh)) is characterized by the Euclidean dis-
tance and can be formulated as follows:

Lflt = ‖F (H(xi ⊕ g(xi,∆c)⊕ ε(xi); θh))−H(xi; θh)‖2
Classification Loss Synthetic features will be filtered by
Filter F and then fed into a classifier with the real features
to minimize the following classification loss:

Lcls =
1

I

I∑
1

− log
exp s(wTyi fi −m)

exp s(wTyi fi −m) +
∑
j 6=yi exp s(wTj fi)

In practice, we use different classifiers for real data and
synthetic data. The experimental results show that this ex-
perimental setting is helpful for improving the recognition
performance.

Optimization Last, we use

L = Lcls + λfltLflt

as the total loss function, where λflt is a trade-off hyperpa-
rameter.

Experiments
Datasets and Implementation Details
In this section, we describe the public datasets that we em-
ployed and provide some implementation details.

Training Datasets We use a cleaned version of the MS-
Celeb-1M datasets (Guo et al. 2016) with 2,251,420 images
of 58,982 subjects as our training set. Note that we follow
the lists (Wang et al. 2019a,b) to remove the overlapped
identities between the employed training datasets and the
test datasets.

Synthetic Datasets Our model for generating samples of
different poses is based on PRNet (Feng et al. 2018), which
according to the two-dimensional planar structure of a Basel
face model (BFM) (Paysan et al. 2009) parameterized on
the plane, directly selects a UV map that contains 53,215
points and establishes a new 3D-to-2D mapping matrix. The
modeling accuracy exceeds that of the original PRNet.

To evaluate the influence of synthetic data generated by
other methods, we use cycle-GAN (Zhu et al. 2017) to
generate blurred synthetic samples and use them in meta-
learning based and disentangling-based DMFR along with
the synthetic samples generated by PRNet.

Architecture We construct a face image(137 × 169) by
warping a face region using three facial points: the two eyes
and the midpoint of the two corners of the mouth. We em-
ploy the modified 100-layer ResNet (He et al. 2016) as the
backbone network.

In disentangling-based DMFR, the encoder produces fea-
ture maps with the spatial size 13 × 13 and a depth of 1024
channels. The feature maps are then divided in depth into
two trunks, which are dedicated to rich information and non-
ID information. The two trunks are then passed to fully con-
nected layers to generate the final representations fentangle
and fnon−ID, with both cardinalities set to d = 512. The
decoder is a deconvolution network.

Training We train the model with 8 synchronized graphic
processing units (GPUs) and a mini-batch, including 128 im-
ages per GPU. To make the training more stable, all DMFR
networks are based on a network that is pretrained by only
softmax loss. We use an initial learning rate of 0.01 and
reduce the learning rate by 0.1 at 50k, 70k and 80k with
a weight decay of 0.0005 and a momentum of 0.9 using
stochastic gradient descent (SGD).

Hyperparameters We empirically set λmeta = 0.5,
λdisen = 1.0 and λflt = 1.0, respectively. The margin m
is empirically set to 0.4.

Analysis
Synthesis Sample Modal Visualization To verify that a
synthetic sample has a fixed mode, we use the optimized PR-
Net (Feng et al. 2018) to generate artificial samples, whose
attitude angle changes to ∆c, where c ∈ {0, 0.1, 1, 10}, as
shown in Figure 5. The real sample and the synthetic sam-
ples are visualized at the image and feature levels. When ∆c
is very small, it is difficult to observe changes that are visible
to the naked eye at the image level. However, from the visu-
alized image of the feature, we observe that in some feature
dimensions, there is a natural discriminability between the
real sample and the synthetic sample, which is the modality
of the generated samples.

Similarity of Synthesis Samples We extract the features
from the last layer of the baseline model and compute the co-
sine similarity as the similarity metric. Table 1 presents the
results of these experiments. We observe that after adding
synthetic samples to the training set, the intraclass similarity
decreases. This is reasonable because we increase the rich-
ness of the intraclass information by introducing changes in
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ori 0                 0.1                  1                   10

Figure 5: When ∆c < 1, it is difficult to see the difference
in the picture, but in terms of the features, there are obvious
differences between the original features and the synthesized
features in some dimensions. The figure is best viewed in
color.

Similarity Intraclass Interclass
Baseline 0.809 0.022

Add synthetic samples 0.788 0.216
After filtering 0.782 0.028

Table 1: Fixed modality leads directly to the higher similar-
ity between classes. After the filter, there is no significant
change in the similarity within the feature class while the
interclass similarity is obviously reduced.

the face pose or image quality. On the other hand, the simi-
larity between classes increases because of the similar fixed
modality between the generated samples. This fixed modal-
ity leads directly to the model’s poor performance after the
synthetic samples are added. We also analyze the changes
in the similarity of the features after the filter. There is no
significant change in the similarity within the feature class
after the filter. This proves that the filter retains the richness
of the generated samples. On the other hand, the interclass
similarity is obviously reduced because the filter has a role
in filtering the generated modal information.

Loss Values Analysis We observe that the loss of training
with the generated data in a mini-batch at a ratio of 1 : 1
(orange curve) decreases more slowly than that of training
with the real data (blue curve) and suffers from oscillation.
Training with the generated data added to the mini-batch in
a ratio of 1 : 2 (green curve) cannot converge normally. The
loss curves of our proposed method decrease steadily, which
indicates the convergence of each DMFR net, as shown in
Fig. 6.

Figure 6: The loss of training with the generated data in a
mini-batch at a ratio of 1 : 1 (orange curve) decreases more
slowly than that of training with the real data (blue curve)
and suffers from oscillation. Training with the generated
data added to the mini-batch in a ratio of 1 : 2 (green curve)
cannot converge normally. The loss curves of DMFR meth-
ods decrease steadily, indicating the convergence of each
DMFR net. The figure is best viewed in color.

Method LFW YTF CFP-FP MegaFace
w/o synthetic samples 0.9975 0.9490 0.9623 0.7893

CosFace 0.9968 0.9578 0.9737 0.7563
ArcFace 0.9925 0.9650 0.9589 0.6392

DUL(Chang et al. 2020) 0.9973 0.9622 0.9713 0.7804
Shi et al. 0.9962 0.9620 0.9721 0.7810

DMFR(meta) 0.9947 0.9588 0.9640 0.7525
DMFR(filter) 0.9972 0.9542 0.9699 0.7792

DMFR(disentangle) 0.9960 0.9616 0.9633 0.7660

Table 2: In LFW, YTF, CFP-FP and MegaFace, there is
no obvious difference between the performance of directly
adding the synthetic samples into training and the univer-
sal representation or DMFR methods. Only the model of the
first row is training without synthetic samples.

Evaluations
Compared Methods The original CosFace (Wang et al.
2018) is employed as the baseline. The classification loss
counterparts include CosFace and ArcFace (Deng et al.
2019). In addition, we compare some recent universal repre-
sentation methods, such as confidence-aware identification
loss (Shi et al. 2020) and DUL (Chang et al. 2020), as univer-
sal representation counterparts. We reimplement these meth-
ods following every detail in their original literature and con-
duct a fair comparison with the same experimental settings.

Evaluation on General Datasets We compared our
method with the baseline and the performance after directly
adding generated data on the general face recognition test
set, that is, the test set with limited intraclass changes and
high quality. Table 2 summarizes the results for these eval-
uations. Because the quality of most of the test images is
satisfactory and our method is mainly applied to large poses
and low-quality situations, our method has no advantage in
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Method IJB-A(TAR@FAR) IJB-C(TAR@FAR)
FAR=1e-4 FAR=1e-3 FAR=1e-2 FAR=1e-5 FAR=1e-4 FAR=1e-3 FAR=1e-2

w/o synthetic samples 0.61718 0.85133 0.95418 0.55689 0.76622 0.88966 0.95357
CosFace 0.49875 0.88105 0.96231 0.00803 0.25316 0.80283 0.96344
ArcFace 0.56647 0.76712 0.89080 0.53546 0.72710 0.86511 0.94396

DUL(Chang et al. 2020) 0.65190 0.88329 0.96758 0.06984 0.40860 0.82456 0.95378
Shi et al. 0.76512 0.92686 0.96661 0.48443 0.76822 0.92453 0.97009

DMFR(meta) 0.78969 0.91923 0.95402 0.42921 0.80478 0.92795 0.96385
DMFR(filter) 0.65124 0.86516 0.95434 0.64453 0.81659 0.91001 0.95597

DMFR(disentangle) 0.86662 0.91275 0.94297 0.84819 0.90852 0.94396 0.96569

Table 3: The proposed DMFR models achieve consistently better results, especially at a low false acceptance rate, than the
other methods when evaluating on challenging datasets IJB-A and IJB-C. When FAR=1e-5 in IJB-C, the performance of many
methods(CosFace, DUL) crashes directly. Only the model of the first row is training without synthetic samples.

Method CQ-IJB-C(TAR@FAR) CP-IJB-C(TAR@FAR)
FAR=1e-5 FAR=1e-4 FAR=1e-3 FAR=1e-2 FAR=1e-5 FAR=1e-4 FAR=1e-3 FAR=1e-2

w/o synthetic samples 0.26264 0.4221 0.60965 0.76148 0.10385 0.31806 0.56268 0.76309
CosFace 0.00033 0.00215 0.28013 0.81419 0.00051 0.00161 0.23115 0.81272
ArcFace 0.212 0.39756 0.60327 0.77532 0.19592 0.39463 0.60647 0.76749

DUL(Chang et al. 2020) 0.02660 0.30234 0.64827 0.84643 0.02118 0.25089 0.6456 0.83237
Shi et al. 0.14744 0.34038 0.65863 0.84693 0.02922 0.27164 0.65416 0.83297

DMFR(meta) 0.31954 0.42309 0.6844 0.81966 0.157767 0.27901 0.67932 0.80468
DMFR(filter) 0.37303 0.5266 0.65805 0.77358 0.17101 0.37938 0.62697 0.78198

DMFR(disentangle) 0.59166 0.67777 0.77341 0.84767 0.5393 0.65975 0.74699 0.81924

Table 4: Meta-learning-based DMFR implicitly removes the modal information and loses its competitiveness on the more diffi-
cult test set. Filter-based and disentangle-based DMFR are methods explicitly removing modal information, which performance
are much better than other methods. Only the model of the first row is training without synthetic samples.

these test sets. This finding confirms that there is no obvi-
ous domain gap between a test set and a training set of this
type. Even without adding generated samples or additional
strategies, direct training can achieve excellent performance.

Evaluation on Mixed-Quality Datasets When evaluating
challenging datasets, which have a large domain gap with
high-quality training datasets, the model that directly adds a
generated sample in training and other general state-of-the-
art models undergo severe performance degradation. The
results in Table 3 indicate that the proposed DMFR mod-
els achieve consistently better results, especially at a low
false acceptance rate, than the other methods. Comparing
to methods of directly using generated samples for train-
ing, methods trying to use synthetic samples better, such as
confidence-aware identification loss (Shi et al. 2020) and our
method, are more competitive.

The CP-IJB-C and CQ-IJB-C Datasets To further verify
the effectiveness of the synthetic data and the demodaliza-
tion method, we classify the samples in IJB-C according to
the posture information and construct a new test set CP-IJB-
C1. We make some modifications to the original test proto-
col. Only the front image is retained in the gallery set, and
only the profile image is retained in the probe set. This test
protocol can fully verify the robustness of the model to pose
changes. Similar to CP-IJB-C, we construct a test set CQ-
IJB-C based on the image quality. This test dataset can fully

1https://github.com/lingjiantian/IJBC-attribute

verify the robustness of the model to image quality changes.
Since meta-learning-based DMFR implicitly removes the

modal information, it loses its competitiveness on the more
difficult test set, although it still performs better than
DUL and Confidence-aware Loss. Since filter-based and
disentangle-based DMFR are methods for explicitly remov-
ing modal information, their performance on CQ-IJB-C and
CP-IJB-C are substantially better than other methods, as
shown in Table 4.

Conclusion
In this work, we propose three general learning methods of
demodalizing face recognition (DMFR) with synthetic sam-
ples; they are based on meta-learning, disentangling and fil-
tering. These three methods provide ways for removing fixed
modal information from synthetic samples and use different
perspectives, from implicit to explicit. Comprehensive ex-
periments demonstrate that our methods perform better than
the compared methods on the most challenging benchmarks.
We extract samples from IJB-C and build the cross-pose
dataset CP-IJB-C and cross-quality dataset CQ-IJB-C.

References
Chang, J.; Lan, Z.; Cheng, C.; and Wei, Y. 2020. Data Un-
certainty Learning in Face Recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 5710–5719.

3284



Dai, P.; Ji, R.; Wang, H.; Wu, Q.; and Huang, Y. 2018. Cross-
modality person re-identification with generative adversarial
training. In IJCAI, volume 1, 2.

Deng, J.; Guo, J.; Xue, N.; and Zafeiriou, S. 2019. Arcface:
Additive angular margin loss for deep face recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 4690–4699.

Deng, J.; Zhou, Y.; and Zafeiriou, S. 2017. Marginal loss
for deep face recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Work-
shops, 60–68.

Feng, Y.; Wu, F.; Shao, X.; Wang, Y.; and Zhou, X. 2018.
Joint 3D Face Reconstruction and Dense Alignment with
Position Map Regression Network. In European Conference
on Computer Vision.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. arXiv
preprint arXiv:1703.03400 .

Gidaris, S.; and Komodakis, N. 2018. Dynamic few-shot vi-
sual learning without forgetting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
4367–4375.

Gong, D.; Li, Z.; Lin, D.; Liu, J.; and Tang, X. 2013. Hidden
factor analysis for age invariant face recognition. In Pro-
ceedings of the IEEE international conference on computer
vision, 2872–2879.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.

Guo, Y.; Zhang, L.; Hu, Y.; He, X.; and Gao, J. 2016. Ms-
celeb-1m: A dataset and benchmark for large-scale face
recognition. In European conference on computer vision,
87–102. Springer.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

He, R.; Wu, X.; Sun, Z.; and Tan, T. 2018. Wasserstein
cnn: Learning invariant features for nir-vis face recognition.
IEEE transactions on pattern analysis and machine intelli-
gence 41(7): 1761–1773.

Huang, G. B.; Mattar, M.; Berg, T.; and Learned-Miller, E.
2008. Labeled faces in the wild: A database forstudying face
recognition in unconstrained environments.

Huo, J.; Gao, Y.; Shi, Y.; Yang, W.; and Yin, H. 2017.
Heterogeneous face recognition by margin-based cross-
modality metric learning. IEEE transactions on cybernetics
48(6): 1814–1826.

Kemelmacher-Shlizerman, I.; Seitz, S. M.; Miller, D.; and
Brossard, E. 2016. The megaface benchmark: 1 million
faces for recognition at scale. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
4873–4882.

Klare, B. F.; Klein, B.; Taborsky, E.; Blanton, A.; Cheney,
J.; Allen, K.; Grother, P.; Mah, A.; and Jain, A. K. 2015.
Pushing the frontiers of unconstrained face detection and
recognition: Iarpa janus benchmark a. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, 1931–1939.
Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; and Song, L. 2017.
Sphereface: Deep hypersphere embedding for face recogni-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 212–220.
Liu, Z.; Miao, Z.; Zhan, X.; Wang, J.; Gong, B.; and Yu,
S. X. 2019. Large-scale long-tailed recognition in an open
world. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2537–2546.
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