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Abstract

Visual tracking has achieved great progress due to numerous
different algorithms. However, deep trackers based on clas-
sification or Siamese network still have their specific limita-
tions. In this work, we show how to teach machines to track
a generic object in videos like humans, who can use a few
search steps to perform tracking. By constructing a Markov
decision process in Deep Reinforcement Learning (DRL), our
agents can learn to determine hierarchical decisions on track-
ing mode and motion estimation. To be specific, our Hierar-
chical DRL framework is composed of a Siamese-based ob-
servation network which models the motion information of
an arbitrary target, a policy network for mode switch and an
actor-critic network for box regression. This tracking strategy
is more in line with human behavior paradigm, and is effec-
tive and efficient to cope with fast motion, background clutter
and large deformations. Extensive experiments on the GOT-
10k, OTB-100, UAV-123, VOT and LaSOT tracking bench-
marks, demonstrate that the proposed tracker achieves state-
of-the-art performance while running in real-time.

Introduction
Object tracking is one of the fundamental vision tasks in
the artificial intelligence field. Generally speaking, a model-
free tracker is aimed to localize an arbitrary object in a
video sequence, given its initial annotation in the first frame.
Even though much effort has been made recently, there are
still many challenges including illumination variations, de-
formation, motion blur, occlusions, and abrupt motion, to
name a few. Meanwhile, many practical applications of vi-
sual tracking, such as video surveillance, autonomous driv-
ing, robotics and human-computer interaction, require a high
performance tracker with a real-time constraint.

Recently, tracking algorithms (Nam and Han 2016;
Danelljan et al. 2017; Li et al. 2019) base on deep learning
have obviously improved the tracking performance. Gener-
ally, the pre-trained Convolutional Neural Networks (CNNs)
are capable to extract rich deep features. Thus numerous
deep trackers utilize the CNNs pre-trained on ImageNet
(Russakovsky et al. 2015) to perform robust online tracking.
Through top-ranked performance achieved by MDNet (Nam
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(a) MDNet (b) ADNet (c) Ours

Figure 1: The different strategies of three tracking algo-
rithms. (a) MDNet (Nam and Han 2016): classify with ran-
dom sampling; (b) ADNet (Yun et al. 2017): iterative search
with a series of discrete actions; and (c) our tracker: DRL-
based hierarchical search with less continuous actions.

and Han 2016), it only runs 1 fps due to an inefficient search
strategy that samples 256 candidates randomly like particle
filter framework, and selects the best candidate by verifying
each sample with the binary classification model. To alle-
viate this issue, an novel action-decision network (ADNet)
(Yun et al. 2017) based on DRL is proposed to generate a
series of discrete actions to adjust the aspect ratio and cen-
ter position of the target in each frame. The searching steps
of this scheme are much fewer than sliding window (Tao,
Gavves, and Smeulders 2016) and random sampling (Nam
and Han 2016) approaches. ADNet obtains slightly worse
but three times faster performance than MDNet. Further-
more, Actor-Critic tracking framework (Chen et al. 2018)
is developed to predict only one continuous action to locate
the tracked object. However, these tracking methods (Chen
et al. 2018; Dunnhofer et al. 2019) with one search step can
not effectively capture all possible motion variations of the
target of interest in some complex scenes.

Similar to the discussion in (Ren et al. 2018), an intelli-
gent tracking algorithm is required to understand the motion
information of the target and quality of the current obser-
vation state, and make optimal decisions online at the right
moments, i.e., whether to continue or stop searching or even
reinitialize tracking if necessary. To this end, a straightfor-
ward approach is to learn a policy network that can select
the optimal action during tracking by deep reinforcement
learning. Besides, another overlooked point for visual ob-
ject tracking is the limited use of the temporal information in
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videos, which provides an important clue to make the tracker
resistant to changes in target appearances.

To address these issues mentioned above, we regard the
tracking problem as a hierarchical decision-making process,
and introduce a Hierarchical DRL (HDRL) framework con-
sisting of a Siamese-based observation network, a policy
agent to decide the tracking pattern of the current state and
an actor-critic agent to conduct searching procedure in a
continuous action space. Compared with existing trackers
which employed RL to either estimate motion or make deci-
sion on tracking status separately, we take both into account.
To the best of our knowledge, this work is the first attempt
to exploit multi-agent system for visual tracking. As shown
in Figure 1, our approach makes hierarchical decisions and
searches the tracked object with few steps (e.g., 2 steps for
the face and 1 step for the box). Thus the resulting tracking
process tends to be more efficient and effective.

In general, complex tracking procedures with multiple it-
erations and online update are time-consuming. Recently,
behavior demonstrations of an expert tracker (Dunnhofer
et al. 2019) can be used to guide the tracking agent, which
obtains better and faster performance. Based on this, we fur-
ther take advantage of the expert tracker to simplify and
guide the procedures of update and re-initialization during
online tracking. Benefiting from this scheme, our HDRL
framework avoids online fine-tuning or updating of the net-
work’s weights, and ensures tracking efficiency.

The main contributions of this paper are summarized as:

• This work is the first attempt to exploit hierarchical deep
reinforcement learning framework for visual tracking,
which is modeled as a dynamic iterative search process
where is performed by a Policy agent and an Actor-Critic
Network in collaboration. So we named it PACNet.

• We propose a novel policy network to make decisions on
the tracking status, where the rewards for different actions
are dedicatedly designed according to the current target’s
motion information impacted by the Actor-Critic agent.

• To ensure tracking efficiency, we introduce an expert sys-
tem to guide the online update and re-initialization of our
model, which improves the robustness of PACNet.

• The proposed tracking method is compared with state-of-
the-art trackers on five popular tracking benchmarks, and
experimental results show that PACNet achieves compa-
rable performance with a real-time speed.

Related Work
Visual Tracking
Visual tracking has continuously attracted extensive atten-
tion owing to the development of new benchmarks (Kristan
et al. 2018, 2019; Fan et al. 2019; Huang, Zhao, and Huang
2019) and various improved methodologies (Li et al. 2019;
Bhat et al. 2019). Generally, trackers can be classified into
Correlation Filters (CF) and Convolutional Neural Networks
(CNN). Both of them have shown their superior performance
on various tracking benchmarks.

CF-based tracking approaches aim to learn a correlation
filter in a Fourier domain with low computational load. A

pioneering work is Minimum Output Sum of Squared Error
(MOSSE) filter (Bolme et al. 2010), achieving a very fast
tracking speed. A follow-up work, Henriques et al. (Hen-
riques et al. 2015) proposed Kernelized Correlation Filter
(KCF) tracker based on multi-channel HOG features, which
provides an elegant closed-form solution to compute kernels
at all cyclic shifts. Furthermore, to obtain state-of-the-art
performance, (Danelljan et al. 2017) exploited deep features
for correlation filters. However, they are much slower than
the traditional CF-based methods.

Recently, CNN-based methods (Nam and Han 2016; Li
et al. 2018) have shown outstanding performance owing to
the superior representation ability. Two early attempts (Nam
and Han 2016; Tao, Gavves, and Smeulders 2016) perform
tracking-by-detection by binary classification and similar-
ity measurement respectively. Through outstanding results
achieved, these methodologies run at just 1 fps due to inef-
ficient search strategies (sliding window and candidate sam-
pling) and expensive computation. Meanwhile, (Bertinetto
et al. 2016) is aimed to learn a generic similarity function
by Siamese network and perform fast matching by cross-
correlation. Owing to the high-speed tracking efficiency,
there are many follow-up work (Li et al. 2019; Wang et al.
2019; Zhang et al. 2020). Nevertheless, since there is no con-
sidering of temporal information and online updating, these
methods are insensitive to background distractors and lim-
ited to specific scenarios. Moreover, Siamese-based trackers
formulated visual tracking as a cross-correlation problem are
not in line with human behavior. In contrast, we utilize Long
Short Temporal Memory (LSTM) to encode target’s tempo-
ral relationship between adjacent frames, and offer a novel
tracking paradigm to teach machines to track a generic ob-
ject in videos like humans with hierarchical decisions.

In addition to the above methods, visual tracking also can
be considered as a regression problem, which is also suit-
able for tracking. To be specific, Held et al. (Held, Thrun,
and Savarese 2016) developed deep regression networks to
predict the target’s location. Furthermore, a recurrent regres-
sion network (Gordon, Farhadi, and Fox 2018) is proposed
to incorporate temporal information into its model for ro-
bust tracking. However, these methods have difficulties to
track the target in complex scenarios since no online learn-
ing procedure. What’s more, these models are trained us-
ing supervised learning which optimizes parameters for just
local prediction. Conversely to this, we adopt DRL-based
training strategy which optimizes the model for the maxi-
mization of expected reward in future prediction.

Deep Reinforcement Learning
Reinforcement learning is one of effective machine learning
paradigms, aiming to learn how to make decisions for max-
imizing the cumulative future rewards. Recent trends in RL
field is to combine the CNNs with RL algorithms for solving
high-dimensional complex problems, such as Atari games
(Mnih et al. 2015), robotics (Zhu et al. 2017) and Go (Silver
et al. 2016). At the same time, DRL has also been exploited
in various computer vision tasks, such as object localization
(Caicedo and Lazebnik 2015) and object detection (Pirinen
and Sminchisescu 2018).
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Figure 2: The overview of the proposed tracking framework.
PACNet is constituted by a shared feature extractor for ob-
servation, a policy network for mode switch and an actor-
critic network with an LSTM layer to perform searching.

In recent years, visual tracking also unveils the power of
RL. In (Yun et al. 2017), Yun et al. proposed an action-
decision network to learn a good policy for seeking the lo-
cations and size of the target. In (Huang, Lucey, and Ra-
manan 2017), Huang et al. exploit RL to learn an early
decision policy for selecting features adaptively. Benefit-
ing from this scheme, EAST effectively speeds up the deep
tracker without losing accuracy. Furthermore, ACT (Chen
et al. 2018) is aimed to predict only one continuous ac-
tion to locate the tracked object in each frame, while DRL-
IS (Ren et al. 2018) introduced DRL technique to learn
how to make decisions (shift the current bounding box, stop
the shift process, update, and re-initialize the tracker) dur-
ing tracking process. Recent work (Zhang and Zheng 2020)
performs two-stage tracking to pursue higher performance,
while (Dunnhofer et al. 2019) claims that the value func-
tion learned offline training, can be directly used to ex-
ploit the expert demonstrations to adjust wrong tracking re-
sults. Different from above-mentioned methods, we propose
a novel HDRL-based tracking framework, which can effec-
tively make hierarchical decisions by a Policy agent and an
Actor-Critic framework in collaboration.

Methodology
We formulate visual tracking as an iterative search problem.
In this work, we attempt to perform robust deep tracking
with the HDRL framework, which consists of three sub-
networks (the policy network, the actor network and the
critic network) with a shared generic Siamese observation
network. As illustrated in Figure 2, given the previous track-
ing results, we can crop and resize the image patches of ad-
jacent frames, and take them as the inputs. Then, the pol-
icy agent needs to decide the tracking status (whether or
not to continue search or stop search or update or even
restart tracking) according to the current observation state,
while the actor agent aims to output one continuous action
to search the object’s location. Both can be effectively of-
fline trained by DRL algorithm. The details of our tracking
framework are presented in the following subsections.

Problem Definition
Our tracking algorithm follows the definition of a Markov
Decision Process (MDP), which includes state s ∈ S, action
a ∈ A, a state transition function s′ = f(s, a), and a reward
function r(s, a). In our definition, the tracker is viewed as
two agents to make decisions on the tracking mode and mo-
tion estimation in collaboration. The actions are defined in
two different spaces and are used to iteratively infer the ac-
curate bounding box location and size in each frame.

Both agents are interacted with the environment through
a temporal sequence of observations s1, s2, ..., st, actions
a1, a2, ..., at and rewards r1, r2, ..., rt. In the t-th frame,
the actor agent provides a continuous action at according
to the current observation st. Similar to (Chen et al. 2018;
Dunnhofer et al. 2019), the actor’s action at represents the
relative motion of the tracked object, i.e. indicating how its
bounding box should adjust at frame t. Besides, our tracker
introduces an additional policy agent to decide the current
tracking mode, which makes the tracker more robust.

State. Given the bounding box b = [x, y, w, h] (denote the
center coordinates, width and height respectively), we can
define the state s as a pair of image patches. To be specific,
st = φ(bt−1, µ, Ft−1, Ft), where µ denotes a scaling factor
and φ(.) is aimed to crop the image patch within the scaled
box [xt−1, yt−1, µ · ht−1, µ · wt−1] at consecutive frames
(Ft−1 and Ft), and resize them to a fixed size.

Actions and State Transition. For the actor agent, sim-
ilar to (Dunnhofer et al. 2019), we use the action at =
[∆xt,∆yt,∆wt,∆ht] to depict the relative motion of the
tracked object. ∆x and ∆y define the relative horizontal and
vertical translations, while ∆w and ∆h denotes the relative
scale change of width and height. Therefore, bt can be ob-
tained by applying the action at to the current bt−1:

xt = xt−1 + ∆xt · wt−1
yt = yt−1 + ∆yt · ht−1
wt = wt−1 + ∆wt · wt−1
ht = ht−1 + ∆ht · ht−1

(1)

Then, the state st will be transited into st+1 by performing
the pre-processing function φ(bt, µ, Ft, Ft+1).

With the state st+1, the policy network θp is required to
generate the action p to decide the current tracking status.

P (p | st+1) = π (st+1 | θp) ,
∑
i

P (pi | st+1) = 1 (2)

where p ∈ {search, stop, update, reinit}. Action search
means to continue searching and predict the relative motion
of the target again, while action stop denotes to stop search-
ing and go to the next frame. For the action update and
reinit, the current observation is not well or the target may
be lost, so the demonstration of an expert be = [x, y, w, h] is
required to guide the search of the current frame.

Rewards. The reward function r(s, a) denotes the quality
of the action a taken at state s. Like (Dunnhofer et al. 2019),
the reward of actor agent is based on the Intersection-over-
Union (IoU) between the box b and the ground-truth g.

r(s, a) =

{
ω (IoU (b, g)) if IoU (b, g) ≥ 0.5
−1 otherwise (3)
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where ω(z) = 2 ∗ z − 1, controlling the range to [0, 1].
For the policy agent, we define different rewards for dif-

ferent actions according to their impacts. Firstly, the re-
ward function of the action search is defined based on the
∆IoU = IoU (bt,k+1, gt)− IoU (bt,k, gt)

r(s, p) =

{
1 ∆IoU ≥ ε
0 0 ≤ ∆IoU < ε
−1 ∆IoU < 0

(4)

For the action stop, to stop with less iterations, the re-
wards are defined by the IoU and the iteration times k.

r(s, p) =

{
1/k IoU (bt,k, gt) ≥ 0.7
0 0.5 ≤ IoU (bt,k, gt) ≤ 0.7
−1 IoU (bt,k, gt) ≤ 0.5

(5)

For the action update and reinit, the reward is positive
when the IoU is less than δ (0.5 and 0, respectively).

r(s, p) =

{ −1 IoU (bt,k, gt) ≥ 0.7
0 δ ≤ IoU (bt,k, gt) ≤ 0.7
1 IoU (bt,k, gt) ≤ δ

(6)

Network Architecture
The backbone network is initialized by the ResNet-18 (He
et al. 2016) pretrained for image classification on ImageNet.
With the inputs, deep features extracted by the ResNet-18
are first linearized, then concatenated and fed into two sub-
networks with similar structures for hierarchical decisions.
The policy network consists of two consecutive fully con-
nected layers with ReLU and outputs the discrete action
p = π(s|θp). For the Actor-Critic network, we introduce an
additional LSTM layer with 512 neurons. The output is the
action a = π(s|θa) and the value of the state, i.e. v(s|θv).

Offline Training
In this work, we train the Actor-Critic network using the
on-policy A3C (Mnih et al. 2016) RL algorithm, which ex-
ploits M parallel and independent agents that interact with
their environments and update asynchronously the weights
θa with training sample pairs collected based on the RL rule.
It is fast and stable. AC algorithm take the advantageA(s, a)
and jointly models the policy function π(a|s) and the value
function V π(s). Thus, a relative measure of the importance
of each action can be represented as:

A(s, a) = Qπ(a|s)− V π(s) = r + γV π(s′)− V π(s) (7)

For the loss function of the actor network and critic net-
work can be formulated as L(A) and L(V):

L(A) = − 1

n

n∑
i=1

Aπ (si, ai) · log π (ai | si) (8)

L(V) =
1

n

n∑
i=1

i−1∑
j=0

γjrj + γiV (s′i)− V π(s)

2

(9)

Due to discrete space, we can train the policy network
with PG algorithm (Sutton et al. 2000), which optimizes the
action p with respect to the expected future reward J .

Jπ(θp) = E [R1:∞;π(p | s; θp)] (10)

Algorithm 1: Hierarchical Decision Tracking

Input: Frame {It}T1 , initial bounding box b1
Output: Optimal target location {bt}T2

1 for t = 2 : T do
2 Obatin initial state st−1 according to bt−1 ;
3 Actor agent selects the action a ;
4 Obtain the state st−1,k ;
5 Policy agent selects the action p ;
6 while p == search do
7 Actor agent selects the action a ;
8 k ← k + 1 ;
9 Obtain the state st−1,k+1 ;

10 Policy agent selects action p ;
11 end
12 if p ∈ {update, reinit} then
13 Conduct expert demonstration be ;
14 end
15 Obtain the optimal bounding box bt.
16 end

By the PG theorem, it aims to update the parameter θp
with the gradient E [∇θp log π(p | s)R(s)]. Given N trajec-
tory τ , to be an unbiased approximation, the learning process
can be achieved by minimizing the following loss function:

L(P) = − 1

N

N∑
n=1

Tn∑
t=1

R (τn) log (π (pnt | snt )) (11)

The proposed HDRL-based framework can be effectively
trained offline by the above methods. Therefore, the param-
eters of our network can be updated with the learning rate α
by stochastic policy gradient or value function regression.

θa ← θa + α∇θa log π (a | s)A (s, a) (12)

θv ← θv − α∇θv
1

2
(R(n)− V π (s))

2 (13)

θp ← θp + α∇θp log π (p | s)R (τ) (14)

Hierarchical Decision in Tracking
To ensure tracking efficiency, no online updating of network
is performed. Benefiting from the HDRL framework, the
online tracking strategy of hierarchical decision can itera-
tively search the tracked object and adaptively exploit the
expert tracker as the demonstrator to adjust the bounding
box. Therefore, our tracker effectively guarantees the per-
formance in terms of accuracy and robustness.

For online tracking, the actor agent firstly generates a
continuous action for searching the target according to the
current state. After happening the state transition process,
the new observation is obtained. The policy agent then de-
cides the next tracking status until stopping. Algorithm 1
shows the tracking procedure in detail. Furthermore, Figure
3 presents an example of sampling action sequence during
inference. The policy and actor agents formulate the motion
estimation and tracking mode change in a unified way as
taking actions in hierarchical reinforcement learning.
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Figure 3: An illustrative example of the tracking mode switch controlled by the policy agent: 1) at frame t, the object is readily
located by one search step; 2) at frame t + 1, firstly, a search step tends to a distractor nearby, than the policy agent realizes
this and takes an update action to conduct expert demonstration; 3) the current tracking result is updated by the expert tracker.

Experiments
In this section, we present the results of our tracker on five
tracking benchmarks, with comparisons to the state-of-the-
art algorithms. Experimental analysis is also provided to
evaluate the effect of each component in our approach.

Implementation Details
Training. We initialize our backbone network with the
parameters pre-trained on ImageNet (Russakovsky et al.
2015). The proposed tracker is trained on the training set
of the GOT-10k (Huang, Zhao, and Huang 2019), which
is a large-scale dataset including 9335 training sequences,
180 validation and other 180 testing videos for evaluation.
We crop the image patch within the bounding box scaled
by µ = 1.5 and resize it to (128 × 128 × 3) for fitting
the input size of the network. During training, four GPUs
are used, and a total number of M = 12 training agents
is set. The discount factor γ is set to 1. In each iteration of
the reinforcement learning, we randomly select the sequence
of length L = 5 for the tracking simulation. We apply the
Adam optimizer to train the model for 40000 episodes until
convergence. The learning rate of both agents is set to 10−6,
while the weight decay coefficient is set to 10−4.

Tracking. For inference, our model can directly perform
robust tracking without any online updating of the network.
To ensure tracking efficiency, the maximal number k of pol-
icy’s actions is set to 3 for each frame. For the action update
and reinit, we select the demonstration of an expert tracker
as the tracking result. To this end, the role of expert tracker is
assigned to SiamRPN++ (Li et al. 2019) or DiMP-50 (Bhat
et al. 2019). This choice is motivated by the fact that both
trackers have achieved significant performance and shown
great balance between the accuracy and speed.

Our tracker is implemented in Python with the Pytorch 1.2
framework, which runs about at 40 fps on a PC with Intel(R)
Xeon(R) CPU E5-2683 @2.10 GHz with 64G RAM and a
NVIDIA GeForce GTX 2080 Ti GPU.

Evaluation Datasets and Metrics. We use five track-
ing benchmarks including VOT-2019, OTB-100, UAV123,
GOT-10k and LaSOT for tracking performance evaluation.
For VOT-2019, we take the accuracy (A), robustness (R) and
Expected Average Overlap (EAO) into account to evaluate

trackers. For OTB-100, UAV123 and LaSOT, we adopt one-
pass evaluation (OPE) with distance precision and overlap
metrics. The center location error threshold is set to 20 pix-
els, and the area-under-curve (AUC) score of overlap suc-
cess plots is computed to evaluate the overall performance.
The trackers are also evaluated using an online server on
a test set of GOT-10k, which employs the average overlap
(AO) and success rate (SR) as performance indicators.

Ablation Analysis
Self-comparison. To verify the effectiveness of each com-
ponent in our algorithm, we conduct several variants of our
tracker and evaluate them using OTB-100. These variants
include: 1) A3CT: a baseline tracker which only adopts the
actor agent to perform tracking; 2) ’PACNet-search’ is a hi-
erarchical decision-based model which guided with only two
action types: search and stop; 3) ’PACNet-expert’ is a hier-
archical decision-based model without the action search; 4)
PACNet is our final model which is guided with full action
types: search, stop, update and reinit.

Table 1 reports the distance precision and overlap suc-
cess rates of these variations. Obviously, A3CT performs
not well since the model can only search by one-step and do
not take expert tracker into account. By conducting the pol-
icy agent with the action search, ’PACNet-search’ achieves
18.4% and 14.8% improvement in terms of precision and
overlap metrics, compared to the baseline. When conducting
the policy agent without the action search, ’PACNet-expert’
further gained 9.3% and 7.5% additional improvements to
’PACNet-search’. This result shows that the tracking perfor-
mance can be guaranteed by exploiting the expert tracker
to guide the actor agent by behavior demonstrations. More-
over, PACNet incorporates all actions into the policy agent,
and achieves 3.1% and 2.8% performance gains. These self-
comparison results strongly demonstrate that the proposed
hierarchical decision framework could effectively learn a
good policy in collaboration for robust tracking.

Variants A3CT P-search P-expert PACNet
Prec.(20px) 0.568 0.752 0.845 0.876
IOU(AUC) 0.419 0.567 0.642 0.670

Table 1: The self-comparison results on OTB-100 dataset.
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Tracker OTB-100 UAV-123 LaSOT
Pre. AUC Pre. AUC Pre. AUC

GOTURN 0.534 0.395 0.548 0.389 0.175 0.214
Re3 0.582 0.464 0.667 0.514 0.301 0.325

ADNet 0.880 0.646 0.724 0.483 - -
ACT 0.859 0.625 0.636 0.415 - -

DRL-IS 0.909 0.671 - - - -
A3CT 0.568 0.419 0.622 0.471 0.246 0.306

A3CTD 0.717 0.535 0.754 0.565 0.368 0.415
PACNet 0.876 0.670 0.827 0.620 0.546 0.553

Table 2: The comparisons of relevant tracking methods of
PACNet on the OTB-100, UAV-123 and LaSOT datasets.
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Figure 4: Precision and success plots of OPE on OTB-100.

Comparison with the Relevant Trackers. We note that
the most relevant trackers of PACNet are GOTURN, RE3,
ADNet, ACT, DRL-IS and A3CTD. Both of them consider
tracking as a search process but with different strategies.

The detailed comparisons are reported in Table 2. GO-
TURN and RE3 exploit regression networks to conduct
search but with not well performance. ADNet exploits few
discrete actions to conduct iterative searching, and achieves
good performance but with 3 fps. ACT further speeds up it
with slightly worse accuracy. DRL-IS runs about 10 fps due
to time-consuming model update and a complicated restart
process. We note that A3CTD runs about 50 fps but with
not good performance, which means searching by one step
cannot output an accurate bounding box and online update
is required to adjust domain-specific objects. In contrast, we
take the iterative search and Expert-based guidance into ac-
count. PACNet achieves a comparable accuracy on OTB and
performs the best on UAV-123 and LaSOT. Nevertheless, our
tracker can run at 40 fps. This indicates our method achieves
a good trade-off between the accuracy and speed.

Comparison with State-of-the-arts
OTB-100 Dataset. OTB-100 (Wu, Lim, and Yang 2015)
is a widely used classical benchmark in visual tracking with
100 videos. The results are reported within Figure 4. We can
observe that our PACNet surpasses most trackers, such as
DiMP-18 (Bhat et al. 2019), ACT (Chen et al. 2018), ECO-
HC (Danelljan et al. 2017) and SiamRPN (Li et al. 2018).
MDNet (Nam and Han 2016) performs the best in terms of
accuracy but runs only 1 fps. Compared to ADNet (3 fps),
we achieves a comparable precision score and a distinct im-
provement in AUC with 2.4%. Nevertheless, the proposed
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Figure 5: Precision and success plots of OPE on UAV-123.
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Figure 6: Normalized precision and success plots of OPE on
LaSOT testing set for twelve recent tracking methods.

tracker is superior in terms of accuracy and speed.

UAV-123 Dataset. UAV-123 dataset includes 123 videos
captured from a UAV with average sequence length of
915 frames. Besides SRDCF (Danelljan et al. 2015), ECO
(Danelljan et al. 2017), SiamRPN (Li et al. 2018) and DaSi-
amRPN (Zhu et al. 2018), recent DiMP (Bhat et al. 2019)
and SiamRPN++ (Li et al. 2019) are also added for com-
parisons. Figure 5 illustrates the precision and success plots
of the compared trackers. Specifically, our tracker achieves
an AUC score of 0.620, which outperforms DaSiamRPN
(0.569), SiamRPN (0.557) and ECO (0.525) with a large
margin. Compared to SiamRPN++, PACNet still obtains
slight gains with 1.8% and 0.5% in precision and AUC.

LaSOT Dataset. We further evaluate PACNet on LaSOT
test set consisting of 280 sequences. Compared to other
datasets, LaSOT (Fan et al. 2019) has longer sequences with
average 2500 frames, which is the largest benchmark in vi-
sual tracking. Following one-pass evaluation, 12 different
trackers are evaluated based on normalized precision and
success plots. The comparison results are shown in Figure
6. We observe that our tracker ranks second on LaSOT, sec-
ond only to DiMP-50. Benefiting from hierarchical decision
strategy, PACNet exceeds other 10 state-of-the-arts.

The performance of PACNet can be attributed to the ex-
pert tracker (i.e., DiMP-50) to some extent. We improve
the original A3CT tracker using the policy agent which can
adaptively switch the tracking status according to the obser-
vation state. When the action update or reinit is selected,
we exploit the tracking result of the expert tracker to ad-
just the current bounding box. Therefore, we can claim that
behavior demonstration of a more strong expert tracker can
further improve the performance of our algorithm.
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A3CTD TADT MemDTC SPM SiamRPN++ SiamMask ATOM SiamDW DiMP PACNet
EAO ↑ 0.165 0.207 0.228 0.275 0.285 0.287 0.292 0.299 0.321 0.300

A ↑ 0.451 0.516 0.485 0.577 0.599 0.594 0.603 0.600 0.582 0.573
R ↓ 0.933 0.677 0.587 0.507 0.482 0.461 0.411 0.467 0.371 0.401

Table 3: Comparison with ten state-of-the-art methods on the VOT-2019 in terms of EAO, Accuracy and Robustness.

MDNet ECO GOTURN SiamFC A3CTD SiamRPN++ ATOM SiamCAR DiMP PACNet
AO 0.299 0.316 0.347 0.348 0.425 0.518 0.556 0.569 0.611 0.582

SR0.5 0.303 0.309 0.375 0.353 0.495 0.618 0.634 0.670 0.717 0.685
SR0.75 0.099 0.111 0.124 0.098 0.205 0.325 0.405 0.415 0.492 0.443

Table 4: Comparison with state-of-the-arts on the GOT-10K test set in terms of AO and SR at thresholds 0.5 and 0.75.

159131721252933374145

0.05

0.1

0.15

0.2

0.25

0.3

0.35
EAO Scores Rank on VOT-2019

Figure 7: EAO score performance on the VOT-2019 dataset.

VOT-2019 Dataset. Table 3 reports the evaluation results
with the comparisons to recent prevailing trackers on VOT-
2019 which provides 60 auto-annotated challenging videos.
We can observe that the recent DiMP tracker achieves the
best performance (0.321), while our PACNet ranks second
(0.300) in terms of EAO. Our method surpasses SiamDW
(Zhang and Peng 2019), ATOM (Danelljan et al. 2019),
SiamRPN++ (Li et al. 2019) and SiamMask (Wang et al.
2019) by a light margin on EAO, which utilize larger train-
ing datasets than ours and perform better in terms of accu-
racy metric. Moreover, Figure 7 shows the comparison re-
sults of EAO in detail. For the robustness, PACNet obtains a
score of 0.401 and ranks second, achieving an absolute ad-
vantage compared to Siamese based tracking methods.

GOT-10K Dataset. GOT-10k (Huang, Zhao, and Huang
2019) is a large-scale dataset containing over 10 thousand
videos. To ensure a fair comparison, all trackers should use
the GOT-10K training set, and be evaluated by an online
server. After submitting the tracking results, the analysis can
be obtained automatically by the official website. The eval-
uation protocol is the one-pass evaluation (OPE) using three
metrics including average overlap (AO) and the success rates
(SR) with overlap thresholds 0.5 and 0.75.

As shown in Table 4, we report the results of PAC-
Net against the state-of-the-art including DiMP (Bhat et al.
2019), SiamCAR (Guo et al. 2020), ATOM (Danelljan et al.
2019), SiamRPN++ (Li et al. 2019) and other 5 track-
ing methods. PACNet outperforms all trackers reported on
the GOT-10k. In particular, compared with A3CTD and
SiamRPN++, our tracker obtains significant improvements
of 15.7% and 6.4% in AO, 19% and 6.7% in SR0.50 as well
as 23.8% and 11.8% in SR0.75. We perform worse than the

PACNet MDNet ADNet ACT CREST

Figure 8: Qualitative results of state-of-the-art trackers.

expert tracker DiMP, however these results are obtained con-
sidering just part of demonstrations of the expert.

Qualitative Results
Figure 8 shows qualitative comparisons with five tracking
methods including MDNet (Nam and Han 2016), ADNet
(Yun et al. 2017), ACT (Chen et al. 2018), CREST (Song
et al. 2017) and PACNet on four challenging sequences
((Skating2, DragonBaby, Biker and Matrix) of OTB dataset.
We observe that our tracker can robustly locate the targets
under severe appearance changes such as scale variation, de-
formation and fast motion, which confirms its effectiveness.
In contrast, other tracking methods have failure cases.

Conclusion
In this paper, we present a hierarchical deep reinforcement
learning (HDRL) framework with Policy and Actor-Critic
Networks (PACNet) for robust visual tracking. We show that
the tracking problem can be effectively solved by dynamic
iterative search process and behavior guidance of an expert
tracker. Our proposed PACNet is simple in structure but can
track generic objects in line with human thinking paradigm.
Benefiting from the hierarchical decision tracking strategy,
our method achieves state-of-the-art results on five challeng-
ing tracking benchmarks. This demonstrates the generaliza-
tion performance. In the future work, we will study the fast
update of the parameters using meta reinforcement learning
to perform domain adaptation for tracking.
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