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Abstract

In recent years, visual recognition on challenging long-tailed
distributions, where classes often exhibit extremely imbal-
anced frequencies, has made great progress mostly based on
various complex paradigms (e.g., meta learning). Apart from
these complex methods, simple refinements on training proce-
dure also make contributions. These refinements, also called
tricks, are minor but effective, such as adjustments in the
data distribution or loss functions. However, different tricks
might conflict with each other. If users apply these long-tail
related tricks inappropriately, it could cause worse recognition
accuracy than expected. Unfortunately, there has not been a
scientific guideline of these tricks in the literature. In this
paper, we first collect existing tricks in long-tailed visual
recognition and then perform extensive and systematic ex-
periments, in order to give a detailed experimental guideline
and obtain an effective combination of these tricks. Further-
more, we also propose a novel data augmentation approach
based on class activation maps for long-tailed recognition,
which can be friendly combined with re-sampling methods
and shows excellent results. By assembling these tricks scien-
tifically, we can outperform state-of-the-art methods on four
long-tailed benchmark datasets, including ImageNet-LT and
iNaturalist 2018. Our code is open-source and available at
https://github.com/zhangyongshun/BagofTricks-LT.

Introduction
Computer vision has achieved great progress with the devel-
opment of convolutional neural networks (CNNs) trained on
balanced distributed datasets (Deng et al. 2009; Krizhevsky
and Hinton 2009). But in real-world scenarios, large scale
datasets (Zhou et al. 2017; Van Horn et al. 2018; Lin et al.
2014) naturally exhibit the imbalanced and long-tailed distri-
butions, where a few categories (majority categories) occupy
most of the data while most categories (minority categories)
are under-represented. CNNs trained on these long-tailed
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datasets deliver poor recognition accuracy, especially for
under-represented minority categories. Dealing with such
long-tailed distributions is indispensable in real-world appli-
cations, such as object detection (Lin et al. 2017; Ouyang
et al. 2016), instance segmentation (Wang et al. 2019; Gupta,
Dollar, and Girshick 2019), visual recognition (Zhang et al.
2017; Cui et al. 2019), etc. In this paper, we focus on the
fundamental long-tailed visual recognition problem.

Recently, long-tailed visual recognition has attracted in-
creasing attentions. Various methods belonging to different
paradigms, e.g., metric learning (Wang et al. 2018; Cao et al.
2019), meta learning (Liu et al. 2019; Peng et al. 2019; Ja-
mal et al. 2020) and knowledge transfer (Wang, Ramanan,
and Hebert 2017), have been successfully explored. Although
these methods bring a steady trend of accuracy improvements
on long-tailed datasets, they often suffer from high sensitivity
to hyper-parameters (Cao et al. 2019; Yan et al. 2019) or high
complexity in the training procedures (Wang, Ramanan, and
Hebert 2017; Liu et al. 2019; Xiang, Ding, and Han 2020). Be-
sides, it causes difficulties to efficiently apply these methods
in various real-world scenarios. Apart from these methods,
existing training tricks in long-tailed visual recognition also
play a major role, which just make simple refinements to
the vanilla training procedure, such as adjustments in loss
functions or data sampling strategies. These tricks are simple
but make big differences. However, different tricks might
hurt each other during training when they were employed
inappropriately. For instance, re-sampling (Buda, Maki, and
Mazurowski 2018; Japkowicz and Stephen 2002) and re-
weighting (Mikolov et al. 2013; Cui et al. 2019) are two com-
monly used tricks to alleviate the imbalance of long-tailed
distributions. Re-sampling tries to get balanced datasets, and
re-weighting assigns weights to categories determined by
inversion of class frequencies. Since both re-sampling and re-
weighting try to enlarge the influence of minority categories,
applying re-weighting and re-sampling simultaneously will
obtain similar or even worse accuracy than using them alone.
Similar to re-weighting and re-sampling, when we apply two
or more long-tail related tricks, it would be great to know
which of them can be combined synergistically and also
which of them might conflict with others. Yet, no guideline
is available in the literature. Although there are several good
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Datasets
CIFAR-10-LT CIFAR-100-LT

iNaturalist 2018 ImageNet-LTImbalance factor
100 50 100 50

Backbones ResNet-32 ResNet-32 ResNet-50 ResNet-10
Baseline (Vanilla ResNet) 30.18 24.78 61.73 57.90 39.89 65.99
Focal loss (Lin et al. 2017) 29.62 24.75 61.90 57.56 39.70 67.36
CB Focal (Cui et al. 2019) 25.43 20.73 60.40 53.79 38.88 –

Feature space augmentation (Chu et al. 2020) – – – – 34.09 64.80
Meta-learning (Jamal et al. 2020)† 20.00 17.77 55.92 50.84 32.45 70.10

LDAM with DRW (Cao et al. 2019) 22.97 20.70 57.96 54.92 32.00 63.97
Decoupling learning (Kang et al. 2020) – – – – 30.70 58.20

Multi-experts (Xiang, Ding, and Han 2020)†‡ – – 57.70 – – 61.20
BBN (Zhou et al. 2020) 20.18 17.82 57.44 52.98 30.38 –
Baseline + tricks (Ours) 19.97 16.41 52.17 48.31 29.13 56.87

† : Results on CIFAR-10-LT and CIFAR-100-LT are obtained by incorporating LDAM (Cao et al. 2019).
‡ : Results on ImageNet-LT are obtained by incorporating OLTR (Liu et al. 2019).

Table 1: Top-1 error rates on long-tailed benchmark datasets. Our bag of tricks obtains significant accuracy gains compared with
state-of-the-art methods. (Best results are marked in bold.)

surveys about class imbalance learning (More 2016; Buda,
Maki, and Mazurowski 2018; Japkowicz and Stephen 2002),
they could be further comprised of effective tricks in the deep
learning era. More importantly, they lack the comprehen-
sive empirical studies of combining and evaluating a set of
long-tail related tricks quantitatively.

In this paper, we focus on exploring commonly used, eas-
ily equipped, and hyper-parameters insensitive tricks in long-
tailed visual recognition. Also, we conduct extensive exper-
iments to provide valuable practical guidelines for future
researches. These long-tail related tricks are separated into
four families, i.e., re-weighting, re-sampling, mixup train-
ing, and two-stage training. Particularly, we add mixup train-
ing (Zhang et al. 2018; Verma et al. 2019) into long-tail re-
lated tricks because we find that mixup training delivers good
results in long-tailed visual recognition, especially when com-
bined with re-sampling. In each trick family, we introduce
commonly used tricks and compare the results on long-tailed
benchmark datasets. Furthermore, to overcome the lack of
discriminative information in existing re-sampling methods,
we propose a novel data augmentation approach based on
class activation maps (CAM) (Zhou et al. 2016), which is tai-
lored for two-stage training and generates discriminative im-
ages by transferring foregrounds while keeping backgrounds
unchanged. It can be friendly combined with existing re-
sampling methods and exhibits excellent results, which is
termed as “CAM-based sampling”. Also, we explore the
conflicts between tricks of different families to find the opti-
mal combination of tricks, named bag of tricks. Top-1 error
rates on long-tailed CIFAR and two large scale datasets (e.g.,
ImageNet-LT and iNaturalist 2018) are shown in Table 1,
which shows significant accuracy gains of our bag of tricks
compared with state-of-the-art methods.

The major contributions of our work can be summarized:

• We comprehensively explore existing simple, hyper-
parameters insensitive, long-tail related tricks and provide
a valuable practical guideline for future researches.

• We propose a novel CAM-based sampling approach tai-
lored for two-stage training, which is simple but effective
for long-tailed visual recognition.

• We conduct extensive experiments and find the optimal
combination of tricks. Our bag of tricks achieves outper-
forming recognition results compared with state-of-the-art
methods on four long-tailed benchmark datasets without
introducing extra FLOPs.

Datasets and Baseline Settings
In this section, we describe the long-tailed datasets used in
experiments as well as baseline training settings, e.g., back-
bone network, data augmentation, etc. For fair comparisons,
we keep our experimental settings consistent with previous
works (Cao et al. 2019; Cui et al. 2019; Zhou et al. 2020).

Datasets
Long-Tailed CIFAR The long-tailed versions of CIFAR-
10 and CIFAR-100 datasets (CIFAR-10-LT and CIFAR-100-
LT) (Cui et al. 2019) are benchmark datasets for long-tailed
recognition. As the original CIFAR datasets (Krizhevsky
and Hinton 2009), the long-tailed versions contain the same
categories. However, they are created by reducing the number
of training samples per class according to an exponential
function n = nt × µt, where t is the class index (0-indexed)
and nt is the original number of training images with µ ∈
(0, 1). The test set remains unchanged. The imbalance factor
of a long-tailed CIFAR dataset is defined as the number of
training samples in the largest class divided by that of the
smallest, which ranges from 10 to 200. In the literature, the
imbalance factor of 50 and 100 are widely used, with around
12,000 training images under each imbalance factor.

iNaturalist 2018 The iNaturalist species classification
datasets (Van Horn et al. 2018) are large-scale real-world
datasets that suffer from extremely imbalanced label distri-
butions. The most challenging dataset of iNaturalist is the
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Datasets
CIFAR-10-LT CIFAR-100-LT

iNaturalist 2018 ImageNet-LTImbalance factor
100 50 100 50

Backbones ResNet-32 ResNet-32 ResNet-50 ResNet-10
Baseline (Vanilla ResNet) 30.18 24.78 61.73 57.90 39.89 65.99

Reference (Cui et al. 2019; Liu et al. 2019) 29.64 25.19 61.68 56.15 42.86 64.40

Table 2: Top-1 error rates of reference implementations and our baseline.

2018 version, which contains 437,513 images from 8,142
categories. Besides the extreme imbalance, the iNaturalist
datasets also face the fine-grained problem (Wei, Wu, and Cui
2019). We follow the official training and validation splits of
iNaturalist 2018 in our experiments.

Long-Tailed ImageNet The long-tailed ImageNet
(ImageNet-LT) is derived from the original ImageNet-
2012 (Deng et al. 2009) by sampling a subset following the
Pareto distribution from 1,000 categories, with maximally
1,280 images per class and minimally 5 images per class.
The test set is balanced by following (Liu et al. 2019).

Baseline Settings

Backbones We adopt deep residual networks (He et al.
2016) as backbones. Specifically, we follow (Cui et al.
2019) to use the residual network with 32 layers (ResNet-
32) and the residual network with 50 layers (ResNet-50)
for long-tailed CIFAR and iNaturalist datasets, respectively.
For ImageNet-LT, according to (Liu et al. 2019), we adopt
ResNets with 10 layers (ResNet-10) for fair comparisons.

Training Details All backbones are trained from scratch.
We adopt the initialization method in (He et al. 2015). We
train ResNet-32 on long-tailed CIFAR datasets by stochastic
gradient descent (SGD) with momentum of 0.9 and weight
decay of 2 × 10−4. We follow the data augmentation in
(He et al. 2016). The number of training epochs is 200 and
the batch size is 128. Learning rate is initialized to 0.1 and
divided by 100 at the 160th and 180th epoch, respectively. We
use warm-up (Goyal et al. 2017) for the first five epochs.

For iNaturalist 2018 and ImageNet-LT, we follow the same
training strategy with Goyal et al. (2017). We follow the data
augmentation in (Goyal et al. 2017). Backbones are trained
with batch size of 512. The number of training epochs is 90,
and the learning rate is initialized to 0.2 and divided by 10
at the 30th, 60th and 80th epoch without warm-up. SGD is
adopted with momentum of 0.9 and weight decay of 1×10−4.

Top-1 error rates of baseline training are shown in Table 2,
and our results are mostly consistent with references (Cui
et al. 2019; Liu et al. 2019). For slightly inconsistent ones,
such as iNaturalist 2018 and ImageNet-LT, they might be
caused by running environment (e.g., the version of CUDA
and deep learning frameworks), because we keep training
and validation settings consistent with references.

Trick Gallery
We divide the long-tail related tricks into four families: re-
weighting, re-sampling, mixup training, and two-stage train-
ing. We take mixup training as a long-tail related trick, be-
cause we find that mixup training (Zhang et al. 2018; Verma
et al. 2019) delivers good recognition accuracy in long-
tailed visual recognition, especially when combined with
re-sampling. In each trick family, we introduce commonly
used tricks and compare their accuracy.

In addition, we propose a simple yet effective data aug-
mentation approach tailored for two-stage training. The
proposed approach is based on the class activation maps
(CAM) (Zhou et al. 2016), which can be friendly combined
with re-sampling and termed as “CAM-based sampling”.

Re-Weighting Methods
Cost-sensitive re-weighting methods are commonly adopted
methods in the long-tailed literature. These methods guide
the network to pay more attention on minority categories by
assigning different weights to different classes.

Formally, for each image with label c ∈ {1, 2, . . . , C}, we
set the predicted outputs as z = [z1, z2, . . . , zC ]

>, where C
is the total number of classes. We define nc as the number of
training images in class c and nmin as the number of training
images in the smallest class. Softmax cross-entropy loss (CE)
is used as the baseline, which is defined as

LCE(z, c)=− log

(
exp (zc)∑C
i=1 exp (zi)

)
. (1)

Existing Re-Weighting Methods We review commonly
used re-weighting methods, including cost-sensitive soft-
max cross-entropy loss (Japkowicz and Stephen 2002), fo-
cal loss (Lin et al. 2017), and the recently proposed class-
balanced loss (Cui et al. 2019).
• Cost-sensitive softmax cross-entropy loss (CS CE) (Jap-

kowicz and Stephen 2002) is defined as

LCS CE(z, c)=−nmin
nc

log

(
exp (zc)∑C
i=1 exp (zi)

)
. (2)

• Focal loss (Lin et al. 2017) adds an adjusting factor to
the sigmoid cross-entropy loss to focus training on difficult
samples. We denote pi = sigmoid(zi) = 1

1+exp(−zi) and
define pti as

pti=

{
pi, i = c

1− pi, i 6= c
, (3)
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Datasets CIFAR-10-LT CIFAR-100-LT
Imbalance factor 100 50 100 50

CE 30.18 24.78 61.73 57.90
CB CE 28.26 22.76 66.40 63.48
CS CE 29.07 23.74 70.92 63.78

Focal loss 29.62 24.75 61.90 57.56
CB Focal 27.02 22.03 62.36 57.24

Table 3: Top-1 error rates of re-weighting methods. It shows
directly applying re-weighting is inappropriate, especially
when the number of classes increases.

and then the focal loss can be written as

LFocal(z, c)=−
C∑
i=1

(
1−pti

)γ
log
(
pti
)
, (4)

where γ is a hyper-parameter to control the importances of
different samples.
• Class-balanced loss (Cui et al. 2019) considers the real

volumes of different classes, named effective numbers, rather
than the nominal numbers of images provided by datasets.
With the theory of effective numbers, the class-balanced focal
loss (CB Focal) and class-balanced softmax cross-entropy
loss (CB CE) are defined as

LCB Focal(z, c)=− 1−β
1−βnc

C∑
i=1

(
1−pti

)γ
log
(
pti
)
, (5)

LCB CE(z, c)=− 1−β
1−βnc

log

(
exp (zc)∑C
i=1 exp (zi)

)
, (6)

where γ and β are two hyper-parameters. We set γ and β on
different long-tailed datasets according to (Cui et al. 2019).

Experimental Results We evaluate re-weighting methods
on long-tailed CIFAR datasets. As shown in Table 3, we dis-
cover that re-weighting delivers lower error rates on CIFAR-
10-LT, but obtains worse results on CIFAR-100-LT com-
pared with vanilla ResNet-32. This indicates that applying
re-weighting directly in the training procedure is not a proper
choice, especially when the number of categories increases
and data becomes more imbalanced.

In the later section of “Two-stage training procedures”, we
will describe the two-stage training strategy for long-tailed
visual recognition, which demonstrates an effective strategy
to apply re-weighting.

Re-Sampling Methods
Re-sampling is popular used for dealing with long-tailed
problems, which attempts to sample the data to get an evenly-
distributed dataset.

Existing Re-Sampling Methods We review existing sim-
ple and commonly used re-sampling methods as follows.
• Random over-sampling (Buda, Maki, and Mazurowski

2018) is one of the representative re-sampling methods,
which replicates randomly sampled training images from mi-
nority classes. Random over-sampling is effective, but might
lead to overfitting (Sarafianos, Xu, and Kakadiaris 2018).

Datasets CIFAR-10-LT CIFAR-100-LT
Imbalance factor 100 50 100 50

Baseline (Vanilla ResNet) 30.18 24.78 61.73 57.90
Random under-sampling 34.14 26.91 67.23 60.98
Random over-sampling 33.24 26.53 67.00 61.11

Class-balanced sampling 30.44 23.97 67.34 61.48
Square-root sampling 31.36 24.84 64.47 59.82

P-B sampling 32.91 25.03 61.41 57.09

Table 4: Top-1 error rates of re-sampling methods. It demon-
strates directly applying re-sampling methods brings slight
improvements. “P-B” represents “progressively-balanced”.

• Random under-sampling (More 2016) randomly removes
training images of majority classes until all classes become
balanced. Drummond and Holte (2003) show that under-
sampling can be preferable to over-sampling in some situa-
tions.
• Class-balanced sampling (Kang et al. 2020) makes each

class to have an equal probability of being selected. The
probability pCBj of each class j is given by the following
Eq. (7) with q = 0. Specifically, class-balance sampling
firstly samples a class uniformly and then an instance from
the chosen class is uniformly sampled:

pj =
nqj

ΣCi=1n
q
i

, (7)

where j is the current class, and ni is the number of samples
in class i with q ∈ [0, 1]. C is the number of total classes.
• Square-root sampling (Kang et al. 2020) sets q to 1

2 in
Eq. (7), which aims to return a lighter imbalanced dataset.
• Progressively-balanced sampling (Kang et al. 2020) pro-

gressively changes the sampling probabilities of classes from
vanilla imbalanced sampling to class-balanced sampling. The
corresponding sampling probability pj of class j can be cal-
culated by Eq. (8) for the current epoch t:

pPBj = (1− t

T
)

nj
ΣCi=1ni

+
t

T

1

C
, (8)

where T is the total epochs.
Furthermore, there are also other sampling methods that

create artificial samples or sample based on gradients and
features (Yan et al. 2019; Chawla et al. 2002; Shen, Lin, and
Huang 2018; Han, Wang, and Mao 2005; Perez-Ortiz et al.
2019; Yu and Lam 2019). However, these methods are usually
complicated and likely to introduce noisy data (Yu and Lam
2019). Therefore, we have not considered these methods in
this paper which targets on simple tricks.

Experimental Results Table 4 shows the error rates of
different re-sampling methods on long-tailed CIFAR datasets.
It can be observed that directly applying re-sampling to the
training procedure gets slight improvements.

Also, we will show in the section of “Two-stage training
procedures” that combining re-sampling methods with two-
stage training obtains significant improvements.
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Datasets CIFAR-10-LT CIFAR-100-LT
Imbalance factor 100 50 100 50

Baseline (Vanilla ResNet) 30.18 24.78 61.73 57.90
Input mixup (α=2) 28.65 24.90 60.38 56.39
Input mixup (α=1) 26.99 22.91 59.66 55.75

MM on layer3 (α=2) 27.14 22.31 60.73 56.52
MM on layer3 (α=1) 27.30 22.41 60.81 56.68

MM on FC layer (α=2) 27.79 21.87 60.21 57.09
MM on FC layer (α=1) 26.64 22.55 60.20 56.72

MM on pooling layer (α=2) 27.67 22.02 60.45 56.45
MM on pooling layer (α=1) 26.61 21.50 60.14 56.44

Table 5: Top-1 error rates of mixup methods. α is the hyper-
parameter of the Beta distribution. “FC” represents “fully-
connected”. “MM” represents “Manifold mixup”. We can
see that input mixup and manifold mixup are comparable.

Mixup Training
Mixup training can be viewed as a data augmentation trick,
which aims to regularize CNNs. We find mixup training deliv-
ers good accuracy in long-tailed visual recognition, especially
when combined with re-sampling.

Existing Mixup Methods We introduce two mixup meth-
ods in this section: input mixup (Zhang et al. 2018) and
manifold mixup (Verma et al. 2019).
• Input mixup has been proved effective to alleviate adver-

sarial perturbations in CNNs (He et al. 2019a; Zhang et al.
2019). In details, each new example is formed with two ran-
domly sampled examples (xi, yi) and (xj , yj), by a weighted
linear interpolation as follows

x̂ = λxi + (1− λ)xj , (9)
ŷ = λyi + (1− λ)yj , (10)

where λ is randomly sampled from a Beta distribution. We
only use (x̂, ŷ) when training with input mixup.
•Manifold mixup encourages neural networks to predict

less confidently on interpolations of hidden representations,
which leverages semantic interpolations as additional training
signals. The mixed example is produced by

ĝk = λgk(xi) + (1− λ)gk(xj) , (11)
ŷ = λyi + (1− λ)yj , (12)

where (gk(xi), yi) and (gk(xj), yj) are intermediate outputs
of two randomly sampled examples (xi, yi) and (xj , yj) after
layer k, and λ is the mixing coefficient sampled from a Beta
distribution. We apply manifold mixup on only one layer in
our experiments.

Fine-Tuning after Mixup Training He et al. (2019b)
show that the results of models trained by mixup can be
further improved if we remove the mixup in last several
epochs. In our experiments, we use the mixup training firstly,
and then fine-tune the models trained by mixup for several
epochs in order to obtain further improvements, which is
named “fine-tuning after mixup training”.

Datasets CIFAR-10-LT CIFAR-100-LT
Imbalance factor 100 50 100 50

Baseline (Vanilla ResNet) 30.18 24.78 61.73 57.90
Input mixup (α=1) 26.99 22.91 59.66 55.75
Input mixup (α=1)

+ ft. after mixup training
26.27 20.32 58.21 53.97

MM on pooling layer (α=1) 26.61 21.50 60.14 56.44
MM on pooling layer (α=1)

+ ft. after mixup training
28.88 22.59 61.16 57.43

Table 6: Top-1 error rates of fine-tuning after mixup training.
Fine-tuning the models trained with input mixup obtains
further improvements. “ft.” represents “fine-tuning”. “MM”
represents “Manifold mixup”.
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Figure 1: Overview of our proposed CAM-based sampling.
For each image sampled by re-sampling, CAM is firstly gen-
erated based on feature maps and FC weights of ground truth
label c. We separate the foreground and background based on
the average of its CAM values, and subsequently we trans-
form foreground while keeping background unchanged to get
the generated informative sampled dataset.

Experimental Results Experiments of mixup methods are
shown in Table 5. Especially, we do not try all possible values
of hyper-parameter α for the Beta distribution, which is not
the main purpose of our work. We can discover from Table 5
that 1) both input mixup and manifold mixup deliver better
results over baseline, and 2) when α is 1 and mixing up
location is set to the pooling layer, input mixup and manifold
mixup achieve comparable results, which need to conduct
more experiments with other tricks.

The results of fine-tuning after mixup training are shown
in Table 6. We can find that fine-tuning after input mixup
training can obtain further improvements, but fine-tuning
after manifold mixup gets worse results.

Two-Stage Training Procedures
Two-stage training consists of imbalanced training and bal-
anced fine-tuning. In this section, we focus on exploring
different methods of balanced fine-tuning. We firstly describe
existing fine-tuning methods and then present our CAM-
based sampling approach.

Balanced Fine-Tuning after Imbalanced Training
CNNs trained on imbalanced datasets without any re-
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First
stage

Second stage
of DRS

CIFAR-10-LT CIFAR-100-LT
Imbalance factor

100 50 100 50

CE

Baseline
without re-sampling

30.18 24.78 61.73 57.90

Random
under-sampling

28.18 21.33 60.21 55.97

Random
over-sampling

28.88 21.52 59.76 55.90

Class-balanced
sampling

29.04 21.34 59.56 55.67

Square-root
sampling

31.31 22.21 61.02 57.05

P-B
sampling

33.48 24.58 61.35 56.93

CAM-based
under-sampling

24.98 19.15 58.99 54.17

CAM-based
over-sampling

24.87 18.82 58.45 54.36

CAM-based
balance-sampling

24.63 18.60 58.27 54.05

CAM-based
square-sampling

28.14 20.69 60.07 55.61

CAM-based
progressive-sampling

27.39 19.46 59.67 55.28

ImageTrans
balance-sampling

28.10 21.60 59.28 55.05

Table 7: Top-1 error rates of different re-sampling methods
used in DRS. The proposed CAM-based sampling delivers
better results. In particular, CAM-based balance-sampling
obtains the best results. “P-B” represents “Progressively-
balanced”.

First
stage

Second stage
of DRW

CIFAR-10-LT CIFAR-100-LT
Imbalance factor

100 50 100 50

CE

CE 30.18 24.78 61.73 57.90
Focal loss 29.71 23.77 61.74 57.32
CB Focal 25.62 21.25 61.99 55.54

CS CE 25.31 20.81 58.92 54.57

Table 8: Top-1 error rates of different re-weighting methods
used in DRW. CS CE obtains the best results in DRW training
schedule.

weighting or re-sampling method learn good feature
representations but suffer poor recognition accuracy
on under-represented tail categories. Cui et al. (2018)
fine-tune these networks on balanced subsets to make the
learned features from imbalanced datasets be transferred
and re-balanced among all categories. These fine-tuning
methods (Cao et al. 2019) can be divided into two sections:
deferred re-balancing by re-sampling (DRS) and by
re-weighting (DRW).
• DRS uses the vanilla training schedule firstly, and then

applies re-sampling for balanced fine-tuning. In order to get
a balanced subset for fine-tuning, re-sampling methods in-

First
stage

Second
stage

CIFAR-10-LT CIFAR-100-LT
Imbalance factor

100 50 100 50

CE

CE 30.18 24.78 61.73 57.90
CS CE 25.31 20.81 58.92 54.57

CAM-BS 24.63 18.60 58.27 54.05
CS CE + CAM-BS 24.82 18.96 58.36 54.09

Table 9: Top-1 error rates of different strategies to apply DRW
and DRS. Applying DRS (CAM-based balance-sampling)
only shows the best result. “CAM-BS” represents “CAM-
based balance-sampling”.

Training
scheduler

Mixup
training

CIFAR-10-LT CIFAR-100-LT
Imbalance factor

100 50 100 50
DRS with
CAM-BS

Manifold mixup 22.65 19.17 57.20 56.94
Input mixup 21.88 17.94 53.94 50.04

Table 10: Top-1 error rates of combining mixup methods
with other best tricks. We can easily find that input mixup
obtains larger gains over manifold mixup. “CAM-BS” repre-
sents “CAM-based balance-sampling”. In mixup, α is 1 and
mainifold mixup’s location is set to the pooling layer.

troduced in the section of “Re-sampling methods” will be
applied. Furthermore, we propose a sample yet effective gen-
erative sampling method termed “CAM-based sampling”.
• DRW uses the vanilla training schedule in the first stage,

and then applies re-weighting methods in the second stage.
Re-weighting methods introduced in the section of “Re-
weighting methods” will be applied in the second stage.

The Proposed CAM-Based Sampling for DRS Existing
re-sampling methods used in DRS only replicate or remove
randomly selected samples from the original dataset to gener-
ate balanced subsets, which deliver limited improvements dur-
ing balanced fine-tuning. In order to generate discriminative
information, inspired by class activation maps (CAM) (Zhou
et al. 2016), we propose CAM-based sampling, which shows
a significant accuracy improvement over existing methods
with a marginal extra cost.

As illustrated in Figure 1, we firstly apply re-sampling to
get balanced sampled images. For each sampled image, we
use the parameterized model trained in the first training stage
to generate CAM based on its ground truth label and corre-
sponding fully-connected layer’s weights. The foreground
and background are separated based on the average value
of its CAM, where the foreground contains pixels larger
than the average and the background contains the rest (Wei
et al. 2017). Finally, we apply transformations to the fore-
ground while keeping the background unchanged. The trans-
formation (implemented by Huawei MindSpore) includes
horizontal flipping, translation, rotating and scaling, and we
randomly choose only one transformation for each image.

In concretely, we combine CAM with random over-
sampling, random under-sampling, class-balanced sampling,
square-root sampling, and progressively-balanced sampling,
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Datasets
CIFAR-10 CIFAR-100

iNat 18 ImageNet-LTImbalance factor
100 50 100 50

Baseline (Vanilla ResNet) 30.18 24.78 61.73 57.90 39.89 65.99
+ IM & DRS with CAM-BS 21.88 17.94 53.94 50.04 29.72 58.13

+ ft. after mixup training 19.97 16.41 52.17 48.31 29.13 56.87

Table 11: Reductions of top-1 error rates with incremental tricks. Our bag of tricks shows a steady trend of accuracy improvement,
which proves the effectiveness of our tricks on both small and large scale real-world datasets. “iNat 18” represents “iNaturalist
2018” and “IM” represents “input mixup”. α is 1 in input mixup. “CAM-BS” represents “CAM-based balance-sampling”

which are named “CAM-based over-sampling”, “CAM-based
under-sampling”, “CAM-based balance-sampling”, “CAM-
based square-sampling”, and “CAM-based progressive-
sampling”, respectively.

Experimental Results The results of re-sampling methods
in DRS are shown in Table 7. We add a sampling method
named image transferring balance-sampling (ImageTrans
balance-sampling) to prove the effectiveness of our CAM-
based balance-sampling. Its pipeline is the same as CAM-
based balance-sampling, but without using CAM to separate
the foreground and background.

From the results in Table 7, we have the following obser-
vations: 1) Compared with applying re-sampling directly in
Table 4, applying re-sampling in DRS delivers better results.
2) Our proposed CAM-based sampling obtains substantially
large gains. 3) In CAM-based sampling, CAM-based balance-
sampling delivers the best results. 4) The results of Image-
Trans balance-sampling prove the effectiveness of CAM used
in our CAM-based balance-sampling.

Table 8 shows the results of different re-weighting methods
in DRW. From the results, we observe that: 1) compared
with apply re-weighting directly in Table 3, combining re-
weighting with DRW delivers better results, and 2) DRW
with CS CE obtains the best results.

Trick Combinations
In this section, we first review the conflictual tricks in each
trick family, which obtain comparable results. We combine
these conflictual tricks with other best tricks across trick fam-
ilies, in order to find the best trick combination. Furthermore,
we apply the best trick combination incrementally to show
the negligible conflicts between these tricks.

Removing Conflictual Tricks in Each Trick Family
Experiments in the section of “Two stage training procedures”
have shown the best training schedule of two-stage training
is DRS with CAM-based balance-sampling and DRW with
CS CE, but DRS and DRW are both two-stage training tricks,
we need more experiments to explore the best strategy to
apply them. Moreover, in mixup training, input mixup and
manifold mixup achieve comparable results, as shown in
Table 5. Thus, we conduct more experiments to compare
their results when they are combined with other tricks.

Results in Table 9 show that the best strategy of apply-
ing two-stage training is DRS with CAM-based balance-
sampling. We can also find that combining CS CE and CAM-

based balance-sampling together cannot further improve the
accuracy, since both of them try to enlarge the influence of
tail classes and the joint use of the two could cause an accu-
racy drop due to the overfitting problem. Furthermore, from
Table 10, we observe that input mixup obtains substantially
larger gains over manifold mixup when combined with other
best tricks.

From experiments in each trick family and trick combina-
tions, we find the optimal trick combination is input mixup,
DRS with CAM-based balance-sampling, and fine-tuning
after mixup training, which we name as bag of tricks.

Applying the Best Tricks Incrementally
In order to demonstrate the performances and negligible con-
flicts of our bag of tricks, we apply these tricks incremen-
tally on long-tailed datasets, including large scale real-world
datasets iNaturalist 2018 and ImageNet-LT. By considering
that we use CAM-based balance-sampling in DRS with input
mixup, in fine-tuning after mixup training, we also adopt
class-balanced sampling to maintain the learned features.

The results are shown in Table 11. From the results, we
find that 1) by stacking input mixup, DRS with CAM-based
balance-sampling, fine-tuning after mixup training, the re-
sults are steadily improved, 2) the results on iNaturalist 2018
and ImageNet-LT demonstrate the effectiveness of our bag of
tricks on real-world large scale datasets clearly, and 3) with
all of our tricks, we reduce about 10% error rates on all long-
tailed datasets, which demonstrates significant improvements
compared with existing state-of-the-art methods.

Conclusions
In this paper, we systematically explored existing simple
yet effective long-tail related tricks and provided a scientific
experimental guideline for long-tailed visual recognition. Fur-
thermore, we found that existing simple sampling methods
are lack of discriminative information. Motivated by this,
we proposed a novel data augmentation approach based on
the class activation maps and combined it with existing re-
sampling methods. By conducting extensive experiments,
we obtain the optimal trick combination, i.e., bag of tricks,
contained negligible conflicts and achieved the best results
on long-tailed benchmarks without introducing extra FLOPs.
We also release our source codes as a scientific and practical
toolbox, which could benefit future researches of long-tailed
visual recognition. In the future, we attempt to explore bag
of tricks in other challenging long-tailed tasks, e.g., detection
and segmentation.
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