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Abstract

Visible-infrared cross modality person re-identification (VI-
ReID) is a core but challenging technology in the 24-hours
intelligent surveillance system. How to eliminate the large
modality gap lies in the heart of VI-ReID. Conventional
methods mainly focus on directly aligning the heterogeneous
modalities into the same space. However, due to the unbal-
anced color information between the visible and infrared im-
ages, the features of visible images tend to overfit the cloth-
ing color information, which would be harmful to the modal-
ity alignment. Besides, these methods mainly align the het-
erogeneous feature distributions in dataset-level while ig-
noring the valuable identity information, which may cause
the feature misalignment of some identities and weaken the
discrimination of features. To tackle above problems, we
propose a novel approach for VI-ReID. It learns the color-
irrelevant features through the color-irrelevant consistency
learning (CICL) and aligns the identity-level feature distribu-
tions by the identity-aware modality adaptation (IAMA). The
CICL and IAMA are integrated into a joint learning frame-
work and can promote each other. Extensive experiments on
two popular datasets SYSU-MM01 and RegDB demonstrate
the superiority and effectiveness of our approach against the
state-of-the-art methods.

Introduction
Person re-identification (ReID) aims to match the images
of a given person across multiple non-overlapping cameras
(Zheng, Yang, and Hauptmann 2016). It is a core technology
in large-scale intelligent video surveillance analysis. Many
works focus on addressing the problem of person ReID un-
der a single RGB modality, i.e., the visible-visible person
images matching. In order to alleviate the difficulties caused
by viewpoint changes, pose variations and occlusion, these
methods mainly focus on robust feature learning (Liu and
Zhang 2019; Qian et al. 2018; Zheng et al. 2019a; Wei et al.
2017; Sun et al. 2018) and effective metric learning (Varior,
Haloi, and Wang 2016; Hermans, Beyer, and Leibe 2017;
Chen et al. 2017), which have achieved excellent perfor-
mance in public academic datasets. However, the assump-
tion of the single RGB modality inevitably weakens the ap-
plication scope of the person ReID. In a practical 24-hour
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Figure 1: Top: Conventional methods directly align the RGB
modality and IR modality in dataset-level. Bottom: Our pro-
posed method incorporates the color-irrelevant feature learn-
ing and identity-level modality adaptation together to effec-
tively bridge the modality gap.

video surveillance system, the visible cameras are hard to
be deployed in night time or dark environment. In contrast,
the infrared (IR) cameras using the infrared light to capture
persons work well and play a complementary role with the
visible cameras. Thus, it is necessary to study the visible-
infrared cross modality person re-identification (VI-ReID)
task. Given a visible (or infrared) image of a specific person,
VI-ReID aims to retrieve all the infrared (or visible) images
belonging to the same identity.

Compared with the traditional person ReID that only ex-
isting intra-modality discrepancy, VI-ReID encounters the
additional large modality gap originating from the hetero-
geneous imaging processes of different cameras. For visible
images in RGB modality, the rich clothing colors are very
discriminative cues to distinguish different identities (Zheng
et al. 2019b; Yang, Wu, and Zheng 2020), while the color
cues are unavailable for infrared images in IR modality. To
decrease the large modality gap, conventional methods fo-
cus on aligning RGB and IR modality in image space or
feature space. Some GAN-based works (Wang et al. 2019b;
Kniaz et al. 2018; Wang et al. 2020) attempt to leverage im-
age translation to overcome pixel-wise discrepancy. How-
ever, recovering corresponding visible images from infrared
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images is an ill-posed problem, since a person in IR modality
may wear diverse color clothes in RGB modality. Other typi-
cal methods (Wu et al. 2017; Ye et al. 2018a; Dai et al. 2018;
Lu et al. 2020) leverage adversarial learning or metric learn-
ing to directly align the cross modality features into a same
space. However, it is hard to directly align RGB modality
and IR modality, because the features of RGB modalitiy
tend to overfit the clothing color information, which would
be harmful to the modality alignment. Besides, as shown in
the top of Fig. 1, these methods mainly focus on aligning the
feature distributions of entire RGB and IR images in dataset-
level, while ignoring the valuable built-in identity informa-
tion, which may result in the features of some identities are
misaligned and harm the discrimination of the features.

To address the aforementioned problems, we propose a
novel approach (termed CIMA) for VI-ReID. As shown in
the bottom of Figure 1, the proposed method integrates the
color-irrelevant feature learning and identity-level modality
adaptation into a unified learning framework to effectively
decrease the modality gap.

Specifically, our approach involves two novel compo-
nents, i.e., the color-irrelevant consistency learning (CICL)
and the identity-aware modality adaptation (IAMA). We
propose the CICL to facilitate the color-irrelevant feature
learning and minimize the negative effect of the cloth-
ing color overfitting to modality alignment. It applies the
random clothing color transformation to visible images
and further imposes both the intra and inter modality
color-irrelevant consistency constraints to the visible im-
ages which share the same identity but with different color
clothes. With the color-irrelevant consistency learning, the
color-irrelevant features with high discriminability could be
learned and the modality gap can be preliminarily decreased.
Concurrently, the IAMA is proposed to adapt the identity-
level features distributions into a same space. It fully ex-
ploits the built-in valuable identity information and performs
modality adaptation within every identity, which effectively
tackles the problem of feature misalignment of some identi-
ties and retains the discriminability of the learned features.
The CICL and IAMA are integrated into a joint learning
framework and can promote each other. We conduct exten-
sive experiments on two popular datasets SYSU-MM01 (Wu
et al. 2017) and RegDB (Nguyen et al. 2017) to demonstrate
the superiority and effectiveness of our proposed approach.
Our contributions are summarized as follows:

• We propose a novel color-irrelevant consistency learn-
ing method for VI-ReID task, which aims to learn color-
irrelevant features with high discriminability by imposing
color-irrelevant consistency constraints to random cloth-
ing color transformation.

• We present to adapt the feature distributions of RGB and
IR modality with an identity-aware manner, which could
retain the discriminability of features and tackle the prob-
lem of feature misalignment of some identities.

• We combine the color-irrelevant consistency learning and
identity-aware modality adaptation in a unified frame-
work, which significantly surpasses the state-of-the-art
methods on VI-ReID datasets: SYSU-MM01 and RegDB.

Related Works
Visible-infrared Person Re-identification
The previous works in VI-ReID focused on directly aligning
the RGB and IR modality in feature-space or image-space.
Wu et al. (Wu et al. 2017) were the first to investigate VI-
ReID and contributed a large-scale dataset SYSU-MM01.
Ye et al. (Ye et al. 2018a,b) presented dual-constrained top-
ranking loss to decrease the cross-modality variations. Dai et
al. (Dai et al. 2018) proposed cross-modality generative ad-
versarial network (cmGAN) to align the feature distributions
of heterogeneous modalities into a same space by adversar-
ial learning. Wang et al. (Wang et al. 2019a) introduced an
alignment Adversarial Network (AlignGAN) by exploiting
pixel alignment and feature alignment jointly. In (Wang et al.
2020), they further proposed to generate cross-modality
paired-images and perform both set-level and instance-level
alignments. Li et al. (Li et al. 2020) proposed to learn
an auxiliary X modality and performed the X-Infrared-
Visible (XIV) learning, while Ye et al. (Ye, Shen, and Shao
2020) presented the grayscale augmented Tri-Modal learn-
ing method (HAT) to better decrease the modality gap. How-
ever, few above works have attempted to explicitly minimize
negative effect of the clothing color overfitting to modality
alignment. Some recent works attempt to explore the in-
fluence of both modality-shared and modality-specific fea-
tures. Choi et al. (Choi et al. 2020) (Hi-CMD) presented
to disentangle the modality-shared and specific features and
only used modality-shared features for retrieval. Lu et al.
(Lu et al. 2020) proposed a cross-modality shared-specific
feature transfer algorithm (cm-SSFT) to utilize both the
modality shared and specific information, which achieves
the state-of-the art performance. However, the Hi-CMD did
not involve explicit modality adaptation, while cm-SSFT
performed dataset-level modality adaptation.

Consistency Learning
Consistency learning has been widely exploited in semi-
supervised learning (Sajjadi, Javanmardi, and Tasdizen
2016; Xie et al. 2019; Laine and Aila 2017; Berthelot et al.
2019), which leverages the idea that model should make
consistent prediction for the inputs that undergoing data
transformations but leave class semantics unaffected. Sajjadi
et al. (Sajjadi, Javanmardi, and Tasdizen 2016) proposed to
apply the consistency regularizatons by introducing the in-
variance to stochastic transformations and perturbations. Xie
et al. (Xie et al. 2019) investigated the noise injection by
quality data augmentation methods to improve consistency
training. Our approach also shares the analogous idea by en-
forcing the color-irrelevant consistency constraints to the in-
troduced random clothing color transformation.

Methodology
The overview of the proposed method is illustrated in Fig-
ure 2. The input images including the original visible im-
ages, the clothing color transformed visible images and in-
frared images are first fed into the two-stream network to
extract the features. Then the color-irrelevant consistency

3521



T
RGB

 branch

IR
 branch

GAP

GAP

2048-dim 512-dim

triplet 
loss

RGB modality

    IR modality

identity
loss

KL
loss

GAP

-dim

Two-stream feature extractor Color-irrelevant consistency learning

shared 
bottleneck

shared 
classifier

Identity-aware modality adaptationInputs

 Clothing Color 
Transformation

features probabilities

identity-level: MMD

1
11 2

3

2 2
3

      

4
4 4

1 N2

3

masks

Figure 2: The framework of our proposed approach. The entire framework involves novel key components: the color-irrelevant
consistency learning (CICL) and the identity-aware modality adaptation (IAMA). The CICL aims to facilitate the discriminative
color-irrelevant feature learning, while the IAMA is presented to adapt the identity-level cross modality feature distributions
simultaneously. The two components are jointly optimized in an end-to-end manner and can benefit each other.

learning (CICL) imposes both the intra-modality and inter-
modality color-irrelevant consistency constraints to visible
images which share the same identity but with different color
clothes, which aims to facilitate the discriminative color-
irrelevant feature learning. Concurrently, the identity-aware
modality adaptation (IAMA) is presented to adapt the cross
modality feature distributions into a modality-shared space
in identity-level. The two components are integrated into a
unified framework and can facilitate each other.

Two-stream Baseline
In this section, we introduce the adopted two-stream base-
line. As shown in Fig. 2, given input original visible im-
age set V = {Vi}Ni=1 and infrared image set I = {Ii}Ni=1,
where Vi ∈ R3×H×W , Ii ∈ R3×H×W denote the ith cor-
responding image of V and I , respectively. N is the num-
ber of visible or infrared images in a batch, 3 is the number
of image channel. H and W are image height and width,
respectively. We sample V and I from training set to en-
sure that the corresponding image pair, i.e., Vi and Ii for
each i ∈ {1, · · · , N}, belongs to the same identity. Then
we utilize two-stream network (Ye et al. 2018b) consisting
of modality-specific RGB and IR branches to extract 2048-
dimensional features, and the backbone parameters of RGB
and IR branch are not shared. GAP denotes global average
pooling layer. The 2048-dimensional feature vectors are fur-
ther fed into a modality-shared bottleneck consisting of se-
quential fully-connected (FC) layer, batchNorm (BN) layer
to obtain the 512-dimensional feature vectors. We denote the
extracted feature vector set of V and I as F V and F I ,
respectively, where F V = [fV

1 ,f
V
2 , · · · ,fV

i , · · · ,fV
N ],

F I = [fI
1 ,f

I
2 , · · · ,fI

i · · · ,fI
N ]. fV

i and fI
i denote the

512-dimensional feature vector of Vi and Ii, respectively. To
make sure the extracted features for both modalities are dis-
criminative, we append a LeakyReLU layer and a modality-

shared C-dimensional FC layer as classifier and employ the
identity loss for identity-discriminative feature learning.

LVI
identity = Ei,M [−log(p(yMi |fM

i )] (1)

where p(yMi |fM
i ) is the predicted probability of belonging

to the ground-truth class yMi for the ith input image of M ,
and M ∈ {V , I}. Besides, we also add the hard triplet loss
(Wang et al. 2019b) to enhance the discriminative feature
learning, which aims to decrease the intra-identity distance
and enlarge the inter-identity distance. The hard triplet loss
applied on the visible image set V and infrared image set I
can be formulated as follows:

LVI
triplet=

∑
fa,fp,fn∈FVI

[d (fa,fp)− d (fa,fn) +m]+ (2)

where F VI = [F V ||F I ] = [fV
1 , · · · ,fV

N ,f
I
1 , · · · ,fI

N ], ||
denotes the feature vector sets union operation. d(·, ·) cal-
culates the euclidean distance. m is the margin parameter.
Following (Hermans, Beyer, and Leibe 2017), for each an-
chor fa in F VI , we select the hardest positive sample fp

(furthest distance with anchor) and the hardest negative sam-
ple fn (nearest distance with anchor) within F VI . In addi-
tion, we also impose the Kullback-Leibler (KL) divergence
constraint to encourage the similarity of the predicted prob-
ability distribution for the same identity from two modali-
ties (Hao et al. 2019), and apply a bi-directional KL loss to
achieve such constraint.

LVI
KL = Ei

C−1∑
c=0

[p(c|fV
i )log

p(c|fV
i )

p(c|fI
i )

+ p(c|fI
i )log

p(c|fI
i )

p(c|fV
i )

]

(3)

Color-irrelevant Consistency Learning
Since the features of visible images tend to overfit the cloth-
ing color information (Zheng et al. 2019b), which becomes
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an obstacle to effective modality alignment in VI-ReID task.
In light of this, we present the color-irrelevant consistency
learning (CICL) to learn the color-irrelevant features so that
the heterogeneous feature distributions can be better adapted
and modality gap could be decreased.

To learn color-irrelevant features, a naive idea is to con-
vert RGB images to grayscale images to eliminate the color
cues. However, image graying may lose discriminative in-
formation. Meanwhile, simple image graying is a relatively
weak constraint to learn color-irrelevant features. Instead of
eliminating the color cues, the CICL attempts to introduce
random clothing color transformation to visible images and
further imposes much stronger color-irrelevant consistency
constraints to learn color-irrelevant features.
Clothing Color Transformation. To generate RGB im-
ages which share the same identity but with different col-
ored clothes, we introduce our clothing color transformation
method. As shown in Figure 2, for each input visible im-
age in V , we first adopt the human semantic parser SCHP
model (Li et al. 2019) to obtain the corresponding human
parsing mask. Then, we selectively divide the mask into
two major categories: clothing region (upper cloth, pants,
shoes, etc) and non-clothing region (face, arm, leg, and
background). Next we utilize the color jitter operation to
randomly adjust the hue, saturation, contrast and bright-
ness of clothing region and maintain non-clothing region
unchanged. Thus in each mini-batch or different training
iterations, an identity will wear diverse color clothes. Fi-
nally, the corresponding clothing color transformed image
set T = {Ti}Ni=1 is derived and the identity label set of T is
naturally the same as V . Similar to V , T is also fed into the
RGB branch to extract the corresponding feature vector set
F T = [fT

1 ,f
T
2 , · · · ,fT

i , · · · ,fT
N ].

Intra-modality Color-irrelevant Consistency Learning.
To enhance the discriminative color-irrelevant feature learn-
ing, we first impose the intra-modality color-irrelevant con-
sistency constraint on visible image set V and the corre-
sponding clothing color transformed image set T .

The first is the intra-modality color-irrelevant identity pre-
diction consistency, which requires that even if a person
changes the clothing color, the model should make con-
sistent identity prediction. It enforces model not to focus
too much on specific clothes colors and pay more atten-
tion to learn the body shape, clothing style and other color-
irrelevant features to distinguish identities. We apply iden-
tity loss on T to achieve above constraint, where yTi = yVi .

LT
identity = Ei,T [−log(p(yTi |fT

i ))] (4)

The second is the intra-modality color-irrelevant feature
embedding consistency. It encourages that for the same iden-
tity within RGB modality, no matter what color clothing
he/she wears, the feature distances between them should be
as small as possible. It also enforces that for different iden-
tities, even if they are wearing clothes of similar colors, the
feature distances between them should be as large as pos-
sible. We impose the hard triplet loss on F VT to achieve
above constraint, where the F VT = [F V ||F T ].

LVT
triplet =

∑
fa,fp,fn∈FVT

[d (fa,fp)− d (fa,fn) +m]+ (5)

The third is intra-modality color-irrelevant probability
distribution consistency. It imposes the similarity constraint
to the predicted probability distributions of visible image
pair composed of the RGB images before and after transfor-
mation, which further strengthens the color-irrelevant con-
straint and facilitates the color-irrelevant feature learning.
We apply the bi-directional KL divergence loss between V
and T to impose above constraint.

LVT
KL = Ei

C−1∑
c=0

[p(c|fV
i )log

p(c|fV
i )

p(c|fT
i )

+ p(c|fT
i )log

p(c|fT
i )

p(c|fV
i )

]

(6)

Inter-modality Color-irrelevant Consistency Learning.
Although the intra-modality CICL effectively facilitates the
color-irrelevant feature learning, it is not sufficient to only
impose the consistency constraint within RGB modality. To
this end, we also introduce complementary inter-modality
color-irrelevant consistency learning, which encourages to
learn complementary cross modality color-irrelevant fea-
tures and enhance discrimination.

We first impose the inter-modality color-irrelevant feature
embedding consistency constraint. It encourages that for the
visible images which share the same identity but with differ-
ent clothing colors, they should close to the infrared images
that with the same identity. We apply the hard triplet loss on
F TI to achieve above constraint, where F TI = [F T ||F I ].

LTI
triplet =

∑
fa,fp,fn∈FTI

[d (fa,fp)− d (fa,fn) +m]+ (7)

We further apply the inter-modality color-irrelevant prob-
ability distribution consistency constraint. It demands that
for the visible images with the same identity, no matter what
color clothes they wear, the predicted probability distribu-
tions of them should be as similar as possible to that of the
same identity in IR modality. We apply the bi-directional KL
divergence loss between T and I to impose above constraint
as follows:

LTI
KL = Ei

C−1∑
c=0

[p(c|fT
i )log

p(c|fT
i )

p(c|fI
i )

+p(c|fI
i )log

p(c|fI
i )

p(c|fT
i )

] (8)

Identity-aware Modality Adaptation
Learning color-irrelevant features could decrease the modal-
ity gap and promote modality alignment. On top of this, we
propose the identity-aware modality adaptation (IAMA) to
further align the identity-level feature distributions of RGB
and IR modality into a same space, which aims to tackle
the problem of feature misalignment of some identities re-
sulting from dataset-level modality alignment and retain the
discriminative ability of the learned features. By embedding
cross modality features into a fine-grained modality-shared
space, the IAMA in turn promotes the two-stream feature
extractor to learn discriminative color-irrelevant features. In
this paper, we adpot the widely-used domain discrepancy
metric Maximum Mean Discrepancy (MMD) (Gretton et al.
2012a) to adapt the heterogeneous feature distributions, be-
low we first briefly revisit the MMD loss.
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Suppose there are two sample sets A = {ai}nA
i=1 and

B = {bj}nB
j=1, where ai and bj are feature vectors sam-

pled from two different distributions. Specifically, the MMD
loss calculates the kernel mean embedding distance of two
distributions in Reproducing Kernel Hilbert Space (RKHS)
Hk associated with the kernel function k(·, ·). Formally, the
squared MMD loss can be formulated as follows:

LMMD2(A,B) , ‖Ea [φ (a)]−Eb [φ (b)]‖2Hk
(9)

where φ(·) is an implicit feature mapping function. By ap-
plying the kernel trick k(ai, bj) = φ(ai)

Tφ(bj), the Eq. (9)
can be simplified and calculated. In our paper, we adopt
the Multi-Kernel MMD (Gretton et al. 2012b) with gaussian
kernel.

In VI-ReID task, some works (Dai et al. 2018; Lu et al.
2020) leverage adversarial learning to align the feature dis-
tributions of RGB and IR modality in dataset-level while ig-
noring the valuable identity information, which may cause
the features of some identities are misaligned. In contrast,
the proposed IAMA fully exploits the built-in identity labels
and thus align the identity-level cross modality distributions.
To implement identity-level adaptation, we introduce batch
sampling strategy. Specially, in a training batch, P person
identities are randomly selected, and then we randomly se-
lect K visible images and K infrared images for each se-
lected identity. We further group the images within a batch
by identity label and calculate the identity-level MMD loss
rather than dataset-level MMD loss. Hence, the IAMA im-
posed between V and I could be formulated as follows:

LIAMA(V , I) =
1

P

P∑
p=1

∥∥∥E [φ(F V
p

)]
−E

[
φ
(
F I

p

)]∥∥∥2
Hk

(10)
where F V

p and F I
p indicate the feature vector sets belonging

to the pth identity in F V and F I , respectively. E in Eq. (10)
is to calculate the kernel mean embedding of features in F V

p

and F I
p , i.e, E

[
φ
(
F V
p

)]
= 1

K

∑K
k=1 φ(fk),fk ∈ F V

p ,
φ(·) is an implicit function to map features to RKHS space
Hk. Meanwhile, since both T and V belong to the RGB
modality, we also impose the identity-aware modality adap-
tation between T and I . The entire IAMA loss is formulated
as follows:

LVTI
IAMA = LIAMA(V , I) + LIAMA(T , I) (11)

Optimization
We mix the loss functions into the following form according
to the type of loss functions.
LVTI
identity = Ei,M [−log(p(yMi |fM

i )],M ∈ {V ,T , I}
(12)

LVTI
triplet = LVI

triplet + LVT
triplet + LTI

triplet (13)
LVTI
KL = LVI

KL + LVT
KL + LTI

KL (14)
We assign equal importance to identity loss and triplet loss
and use λ1 and λ2 to control the weights of KL loss and
IAMA loss. When calculating the triplet loss and IAMA loss
in this paper, we use l2-normalized feature vectors. In sum-
mary, the overall loss is as follows:
L = LVTI

identity + LVTI
triplet + λ1LVTI

KL + λ2LVTI
IAMA (15)

We optimize the entire network in an end-to-end manner by
minimizing the overall loss function.

Experiments
Experimental Settings
Datasets SYSU-MM01 (Wu et al. 2017) is a large-scale
VI-ReID dataset captured by 6 cameras, including 4 visi-
ble and 2 near-infrared cameras. The training set contains
22,258 RGB images and 11,909 infrared images of 395 per-
sons. The testing set includes 96 persons with 3,803 infrared
images as query and 301/3010 (single shot/multi-shot ) ran-
domly selected RGB images as gallery. There are two test-
ing mode: all-search and indoor-search mode. For all-search
mode, the gallery consists of the RGB images captured in
both indoor and outdoor environments, while the gallery set
in indoor-search mode is only composed of the RGB images
captured by indoor cameras. The experiments would run 10
times to get average performance following (Wu et al. 2017).

RegDB (Nguyen et al. 2017) is constructed by dual cam-
era and includes 412 persons. For each person, 10 visible
images are captured by a visible camera, and 10 infrared
images are obtained by a far-infrared camera. We follow the
evaluation protocol in (Ye et al. 2018a,b) , where the dataset
is randomly split into two halves, one for training and the
other for testing. The procedure is repeated for 10 trials to
obtain the average performance. For both datasets, the Rank-
k accuracy and mean Average Precision (mAP) are adopted
to evaluate the performance following (Wu et al. 2017).
Implementation Details. Our approach is implemented
with PyTorch framework on one NVIDIA Titan Xp GPU.
We adopt the ResNet50 (He et al. 2016)model pretrained on
ImageNet as the backbone network. Following (Luo et al.
2019), we remove the last stride of ResNet50. The visible
and infrared images are resized to 3 × 288×144. For in-
frared images, the three channels are the same. During train-
ing, we adopt the random horizontal flip and random eras-
ing (Zhong et al. 2020) for data augmentation follows (Luo
et al. 2019). For each mini-batch, 4 identities are randomly
selected and we randomly sample 8 visible images and 8 in-
frared images for each selected identity. We use the SGD
algorithm as the optimizer, then we train the model for 90
epochs with base learning rate initialized at 0.03 and decay-
ing 10 times at 45, 70 epoch. The learning rate for all pre-
trained layers is set to 0.1 times of the base learning rate. The
λ1 is set to 0.5 for both datasets, the λ2 is empirically set to
0.3 and 0.7 for SYSU-MM01 and RegDB respectively, since
there is a larger modality gap in RegDB (far-infrared) com-
pared with SYSU-MM01 (near-infrared). When performing
clothing color transformation of visible images, the input
4 configuration arguments of color jitter are all set to 0.3
for SYSU-MM01, set to 0.5 for RegDB. During testing, for
images in query and gallery, we extract the l2-normalized
512-dimensional feature vectors from corresponding modal-
ity branch and use euclidean distance to rank.

Comparison with State-of-the-art Methods
We compare our approach with the state-of-the-art meth-
ods in VI-ReID. The comparison results on SYSU-MM01
dataset are shown in Table 1. In the most challenging single-
shot all search mode, our approach achieves 59.3% mAP
and 57.2% Rank-1 on SYSU-MM01 dataset, which signif-
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Methods
All-search Indoor-search

Single-shot Multi-shot Single-shot Multi-shot
R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

Zero-Padding (Wu et al. 2017) 14.8 54.1 71.3 15.9 19.1 61.4 78.4 10.9 20.6 68.4 85.8 26.9 24.4 75.9 91.3 18.6
TONE (Ye et al. 2018a) 12.5 50.7 68.6 14.4 - - - - - - - - - - - -
BCTR (Ye et al. 2018b) 16.1 54.9 71.5 19.1 - - - - - - - - - - - -
BDTR (Ye et al. 2018b) 17.0 55.4 72.0 19.7 - - - - - - - - - - - -

D-HSME (Hao et al. 2019) 20.7 62.8 78.0 23.2 - - - - - - - - - - - -
cmGAN (Dai et al. 2018) 27.0 67.5 80.6 27.8 31.5 72.7 85.0 22.3 31.6 77.2 89.2 42.2 37.0 80.9 92.1 32.8
D2RL (Wang et al. 2019b) 28.9 70.6 82.4 29.2 - - - - - - - - - - - -

MAC (Ye, Lan, and Leng 2019) 33.2 79.0 90.0 36.2 - - - - 33.3 82.4 93.6 44.9 - - - -
Hi-CMD (Choi et al. 2020) 34.9 - 77.5 35.9 - - - - - - - - - - - -

JSIA-ReID (Wang et al. 2020) 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7
AlignGAN (Wang et al. 2019a) 42.4 85.0 93.7 40.7 51.5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3

FMSP (Wu et al. 2020) 43.6 74.6 86.2 44.9 - - - - 48.7 79.0 89.5 57.5 - - - -
DFE (Hao et al. 2019) 48.7 88.8 95.2 48.5 54.6 91.6 96.8 42.1 52.2 89.8 95.8 59.6 59.6 94.4 98.0 50.6

XIV-ReID (Li et al. 2020) 49.9 89.7 95.9 50.7 - - - - - - - - - - - -
DDAG (Ye et al. 2020) 54.7 90.3 95.8 53.0 - - - - 61.0 94.6 98.4 67.9 - - - -

HAT (Ye, Shen, and Shao 2020) 55.2 92.4 97.3 53.8 - - - - 62.1 95.7 99.2 69.3 - - - -

cm-SSFT (Lu et al. 2020) Single query 47.7 - - 54.1 57.4 - - 59.1 - - - - - - - -
All queries 61.6 89.2 93.9 63.2 63.4 91.2 95.7 62.0 70.5 94.9 97.7 72.6 73.0 96.3 99.1 72.4

Ours 57.2 94.3 98.4 59.3 60.7 95.2 98.6 52.6 66.6 98.8 99.7 74.7 73.8 99.4 99.9 68.3

Table 1: Comparison with the state-of-the-arts on SYSU-MM01 dataset. The R1, R10, R20 denote Rank-1, 10 and 20 accuracies
(%), respectively. The mAP denotes mean average precision score (%).

Methods V→ I I→ V
R1 mAP R1 mAP

Zero-Padding (Wu et al. 2017) 17.8 18.9 16.7 17.9
TONE (Ye et al. 2018a) 16.9 14.9 13.9 17.0
BCTR (Ye et al. 2018b) 32.7 31.0 - -
BDTR (Ye et al. 2018b) 33.5 31.8 32.7 31.1

MAC (Ye, Lan, and Leng 2019) 36.4 37.0 36.2 36.6
D2RL (Wang et al. 2019b) 43.4 44.1 - -

JSIA-ReID (Wang et al. 2020) 48.5 49.3 48.1 48.9
D-HSME (Hao et al. 2019) 50.9 47.0 50.2 46.2

AlignGAN (Wang et al. 2019a) 57.9 53.6 56.3 53.4
XIV-ReID (Li et al. 2020) - - 62.2 60.1

FMSP (Wu et al. 2020) 65.0 64.5 - -
DDAG (Ye et al. 2020) 69.3 63.4 68.0 61.8
DFE (Hao et al. 2019) 70.1 69.1 67.9 66.7

Hi-CMD (Choi et al. 2020) 70.9 66.0 - -
HAT(Ye, Shen, and Shao 2020) 71.8 67.5 70.0 66.3

cm-SSFT (Lu et al. 2020) Single query 65.4 65.5 63.8 64.2
All queries 72.3 72.9 71.0 71.7

Ours 78.8 69.4 77.9 69.4

Table 2: Comparison with the state-of-the-arts on the RegDB
dataset. V→ I means visible-search-infrared mode, while I
→ V means the opposite mode.

icantly outperforms the state-of-the-art methods, including
DDAG (Ye et al. 2020), HAT (Ye, Shen, and Shao 2020) and
cm-SSFT (Lu et al. 2020). Note that we compare the single
query version of cm-SSFT for fairness, since all queries ver-
sion of cm-SSFT utilizes auxiliary set for testing, which is
prohibited in formal test protocol. In other evaluation modes,
i.e., all-search / indoor-search and single-shot / multi-shot
mode, our approach also consistently exceeds the perfor-
mance of state-of-the-arts, which demonstrates the robust-
ness and effectiveness of our method. The comparison re-
sults on RegDB dataset are shown in Table 2. We achieves
the 78.8% Rank-1 and 69.4% mAP under V → I mode,
which outperforms the state-of-the-arts including Hi-CMD,
HAT and cm-SSFT by a large margin. Our methods also
achieves state-of-the-art performance in I→ V mode.

Compared with the early GAN-based methods (Wang

Methods SYSU-MM01 RegDB
Rank-1 mAP Rank-1 mAP

baseline 45.3 46.7 52.3 51.8
baseline + CICL 53.0 54.8 62.1 60.1
baseline + IAMA 52.6 53.5 70.0 60.8

baseline + CICL + IAMA 57.2 59.3 78.8 69.4

Table 3: The effectiveness of our proposed color-irrelevant
consistency learning (CICL) and identity-aware modality
adaptation (IAMA).

Methods SYSU-MM01
Rank-1 mAP

baseline 45.3 46.7
baseline + intra-modality CICL 51.4 51.9
baseline + inter-modality CICL 49.2 49.7
baseline + CICL (intra+inter) 53.0 54.8

Table 4: The comparison of intra and inter modality CICL.

et al. 2019b; Dai et al. 2018; Wang et al. 2019a, 2020), our
methods does not introduce any additional learnable param-
eters, nor does it add extra computational cost during testing,
which is more efficient and effective. Compared with auxil-
iary modality augmented methods (Li et al. 2020; Ye, Shen,
and Shao 2020), our methods could learn more discrimina-
tive and modality-shared features, which achieves much bet-
ter performance on two VI-ReID datasets. Compared with
recent proposed Hi-CMD and cm-SSFT, our method does
not leverage complicated disentanglement strategy, and per-
forms identity-aware modality adaptation, which would be
more suitable when deployed in pratical scenario.

Ablation Study
The Effectiveness of the Proposed CICL and IAMA. As
shown in Table 3, compared with the two stream baseline,
the CICL brings 8.1% and 8.3% mAP improvements on
SYSU-MM01 and RegDB respectively, which fully demon-
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consistency identity
prediction

feature
embedding

probability
distribution

SYSU-MM01
Rank-1 mAP

baseline – – – 45.3 46.7
1 X – – 48.9 49.6
2 X X – 51.1 52.3
3 X X X 53.0 54.8

Table 5: The effectiveness of various color-irrelevant consis-
tency constraints.

Methods RegDB
Rank-1 mAP

baseline + Grayscaling 55.8 53.3
baseline + ColorAugmentation 58.1 56.2

baseline + CICL 62.1 60.1

Table 6: The comparison of the color-irrelevant consistency
learning with auxiliary grayscale image and naive color aug-
mentation on the baseline.

strates that learning the color-irrelevant features could ef-
fectively decrease the modality gap. We can also observe
that the IAMA brings 17.7% Rank-1 gain to the baseline on
RegDB dataset, which highlights the effectiveness and ne-
cessity of identity-level modality adaptation. More impor-
tantly, when incorporating the CICL and IAMA together,
the performance is further improved, which shows that
color-irrelevant feature learning and identity-aware modality
adaptation are complementary and can promote each other,
removing any one will result in suboptimal performance.
The Analysis of Color-irrelevant Consistency Learning.
Since the CICL integrates both intra and inter modality
CICL, we also conduct ablation study to verify the effec-
tiveness of them. As shown in the Table 4, both intra modal-
ity and inter modality CICL could boost the performance.
Among them, intra-modality CICL is more effective and
inter-modality CICL plays a complementary role. Further-
more, we also analyze the effectiveness of various kinds of
color-irrelevant consistency constraints. As shown in Tab. 5,
on the baseline, we progressively impose the identity predic-
tion consistency constraint, feature embedding consistency
(both intra+inter modality) constraint and probability dis-
tribution consistency (both intra+inter modality) constraint,
the corresponding performance is also gradually improved,
which highlights the complementary and effectiveness of
above consistency constraints.

We further compare the proposed CICL with auxiliary im-
age graying (replace T to grayscale image) and naive color
augmentation (baseline with color augmentation). As shown
in Tab. 6, the CICL significantly outperforms auxiliary im-
age graying and direct color augmentation on the base-
line. Since auxiliary grayscale image may lose some dis-
criminative information and imposes relatively weak color-
irrelevant constraint, while the baseline with naive color
augmentation does not impose such a strong intra-modality
color-irrelevant constraints and it is not just transforming the
clothing region color, which may damage the non-clothing
region (such as face) and harm the performance.
The Analysis of the Identity-aware Modality Adaptation.

(a) baseline (bs) (b) bs+dataset-level (c) bs+identity-level

Figure 3: The t-SNE visualization of features with identity-
level (IAMA) and dataset-level modality adaptation based
on baseline. 20 identities are randomly selected from RegDB
testset. Samples with same color indicate the same identity.
The markers “dot” and “cross” denote RGB and IR modality.

Methods RegDB
Rank-1 mAP

baseline 52.3 51.8
baseline + dataset-level 64.3 54.1
baseline + identity-level 70.0 60.8

Table 7: The comparison of identity-level alignment
(IAMA) with dataset-level modality alignment.

We further verify the effectiveness of identity-aware modal-
ity adaptation (IAMA) both qualitatively and quantitatively.
For comparison, we conduct both identity-level and dataset-
level alignment on our baseline. As shown in Table 7, com-
pare with the baseline, both identity-level and dataset-level
modality alignment can bring large performance improve-
ments to. More importantly, we can observe that identity-
aware alignment significantly surpasses the performance
of dataset-level alignment. Quantitative comparison is also
conducted, we utilize t-SNE to visualize the features in 2-
D plane. As shown in Fig. 3(a), the initial distance be-
tween cross modality features of the same identity is rel-
atively large. After the modality alignment, the modality
gap between the RGB and IR modality are effectively de-
creased, as shown in Fig. 3(b) and (c). However, for dataset-
level modality alignment shown in Fig. 3(b), we can observe
that the features of some identities are misaligned (marked
with red circles), which may harm the discrimination of fea-
tures. In contrast, as shown in Fig. 3(c), by applying the
proposed identity-level modality adaptation, the features of
misaligned identities in Fig. 3(b) are now correctly aligned
(marked with black circles), which further proves the neces-
sity of aligning cross modality features in identity-level.

Conclusion
In this paper, we propose a novel approach for visible-
infrared cross modality person re-identification. To effec-
tively decrease the modality gap, our approach learns the
color-irrelevant features through the color-irrelevant consis-
tency learning and aligns the identity-level feature distribu-
tions by the identity-aware modality adaptation. Extensive
experiments demonstrate that our approach significantly sur-
passes the state-of-the-art methods and ablation studies fur-
ther validate the effectiveness of each component.
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