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Abstract

Recent researches on information theory shed new light on
the continuous attempts to open the black box of neural signal
encoding. Inspired by the problem of lossy signal compres-
sion for wireless communication, this paper presents a Bit-
wise Bottleneck approach for quantizing and encoding neu-
ral network activations. Based on the rate-distortion theory,
the Bitwise Bottleneck attempts to determine the most sig-
nificant bits in activation representation by assigning and ap-
proximating the sparse coefficients associated with differen-
t bits. Given the constraint of a limited average code rate,
the bottleneck minimizes the distortion for optimal activa-
tion quantization in a flexible layer-by-layer manner. Exper-
iments over ImageNet and other datasets show that, by min-
imizing the quantization distortion of each layer, the neural
network with bottlenecks achieves the state-of-the-art accu-
racy with low-precision activation. Meanwhile, by reducing
the code rate, the proposed method can improve the memo-
ry and computational efficiency by over six times compared
with the deep neural network with standard single-precision
representation. The source code is available on GitHub: https:
//github.com/CQUlearningsystemgroup/BitwiseBottleneck.

Introduction
Research on activation compression for efficient neural com-
puting is an emerging popular topic, which reveals great po-
tential for a variety of edge-computing and computer vision
applications (Chen et al. 2015; Wu et al. 2017; McCool,
Perez, and Upcroft 2017; Xu et al. 2017). Both stochas-
tic and deterministic approaches were proposed for neural
network activation quantization (Gupta et al. 2015; Cour-
bariaux, Bengio, and David 2015; Zhou et al. 2016; Wu et al.
2016), which adopted various quantization functions to re-
duce the precision of activation representation while training
the neural network. Though the loss of activation precision
causes notable loss of classification accuracy, yet by reduc-
ing the number of bits required, the deep neural networks
with quantized activation could improve both memory and
time efficiency by orders of magnitude compared with the
standard floating-point implementation (Courbariaux, Ben-
gio, and David 2015; Kim and Smaragdis 2016; Courbariaux
et al. 2016; Rastegari et al. 2016).
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One challenge of the researches for activation quantiza-
tion is the lack of theoretical ground (Sze et al. 2017). The
performance of existing approaches relies on their choices of
quantization strategy, and no minimal loss of representation
precision can be determined given the average code rate. Re-
cently, the concept of information theory based bottleneck
is attracting attention for its potential to bring a better un-
derstanding of the deep learning optimization process (Tish-
by and Zaslavsky 2015; Shwartz-Ziv and Tishby 2017). The
key idea of these approaches is to maintain the most valuable
information of a signal X using a short code of X̂. In the
context of deep neural network, X̂ is the signal of quantized
activation, and we formalize this problem as that of finding
a shortcode for X̂ that preserves the maximum information
about X. That is, we minimize the loss of the information
caused by signal quantization through a ’bottleneck’ in the
deep neural network.

Technically, the proposed Bitwise Bottleneck approach
is based on the rate-distortion theory (Berger 2003). As a
lossy data compression operation, we attempt to determine
the most significant bits in the activation by minimizing the
quantization distortion. To achieve this, the Bitwise Bottle-
neck approach directly minimizes the distortion of quanti-
zation given the constraint of the maximum code rate of the
compressed activation. Specifically, the bitwise bottleneck
optimization is formulated as a sparse convex optimization
problem, which attempts to minimize the distortion given
constrained code rate. Since the nonsignificant bits generally
have near-zero coefficients, the activation can be optimally
compressed in a bitwise way.

The contributions of this paper are threefold. First, this
paper presents an information theory based method for bit-
wise activation quantization and compression. Specifically,
different from recent researches, the proposed method is the
first attempt to optimize bitwise bottleneck for DNN acti-
vation quantization. Second, the code rates of different bot-
tlenecks can be tuned adaptably by a single hyperparameter
of the threshold of peak-signal-to-noise-ratio (PSNR) loss,
allowing the proposed method to flexibly make a trade-off
between efficiency and accuracy for different application-
s. Finally, the bitwise bottleneck minimizes the loss of in-
formation caused by activation quantization; therefore, the
proposed method suffers almost no loss of classification ac-
curacy while obtaining over six times of memory and com-
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Figure 1: Illustration of the Bitwise Bottleneck approach. The bitwise bottleneck operation can be inserted in the convolutional
neural network for activation quantization. The idea of the proposed method is to substitute the constant levels of the standard
quantization, which are the power of two in this example, for variable coefficients. By exploiting the sparsity of the bitwise
coefficients, the bottleneck could reduce the number of bits required for activation representation.

putational efficiency improvement.

Related Work
Emerging research on neural encoding based on the infor-
mation theory is an interesting topic which attempts to an-
swer the basic questions about the design principle of deep
networks such as the optimal architecture and the optimal
quantization scheme. Recently proposed deep neural net-
works with information bottlenecks usually had an encoder-
decoder architecture for feature-wise compression, which
treated the neural network as a trade-off between compres-
sion and prediction (Tishby and Zaslavsky 2015; Dai, Zhu,
and Wipf 2018). As far as we know, this work is the first
attempt for bitwise compression addressing the challenge of
minimizing the code rate while optimally preserving activa-
tion integrity.

Despite information theory motivated researches, the re-
search on deterministic or stochastic model-based activation
quantization is also attracting more attention lately. Lee et al.
quantized neural networks according to channel-level distri-
bution (Lee et al. 2018). Zhao et al. used outlier channel
splitting to eliminate the effect of outliers caused by quan-
tization (Zhao et al. 2019a). Minimum mean squared error
(Kravchik et al. 2019) and complementary approach (Ban-
ner, Nahshan, and Soudry 2019) were both used for reducing
quantization error. Meanwhile, the research on data-driven
activation quantization was also booming. Qiu et al. present-
ed a Fisher vector method to encode activation with a fixed-
point number using a deep generative model (Qiu, Yao, and
Mei 2017). Jacob et al. quantized both the activations and
weights as 8-bit integers using an iterative approach (Jacob
et al. 2018). Li et al. proposed an entropy-based method for
interpretable quantization (Li et al. 2019). Compared with
information theory based methods, these approaches were
generally based on different assumptions on the quantization
function, many researchers used non-derivative quantization

operation (Qiu, Yao, and Mei 2017; Jacob et al. 2018; Li
et al. 2019), which might lead to uninterpretable and subop-
timal results.

The Bitwise Bottleneck Method
Recently, there has been growing interest in applying infor-
mation theory for deep neural network activation compres-
sion. By interpreting the deep neural network as a lossy data
compression approach, the black box of the deep neural net-
work may be opened and its performance can be optimized
by the tool of rate-distortion theory, which is widely applied
in the area of telecommunications (Shwartz-Ziv and Tishby
2017).

Rate-distortion Theory
Assume the random variable X(l) ∈ RP ·Q·K is the floating-
point neural network activation tensor associated with the
lth layer, where P , Q, K are respectively the height, width
and number of feature maps at the lth layer. The common
quantization function Q(·) can be written as

X̂(l) = Q(X(l)) (1)

where X̂(l) is the fixed-point representation of the floating-
point activation. The goal of lossy data compression is to
achieve minimal distortion given the constraint of the maxi-
mum code rate. Assume g(·) is the function that indicates the
number of bits of the given data. According to rate-distortion
theory, the typical lossy data compression approach attempts
to minimize the distortion function d(·) given the maximum
number of bits η as

min
Q(·)

E(d(X(l),Q(X(l)))) s.t. E(g(X̂(l))) ≤ η (2)

In practice, the quantization functionQ(·) is nondifferen-
tiable and nonconvex due to its integer output, which makes
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(a) Activation distribution (b) Bitwise rate of code one and coefficients of α(l)

Figure 2: Feature-wise vs. bitwise activation sparsity. (a) The distributions of real-valued (upper) and quantized (lower) ac-
tivations of the first four layers of ResNet50 over CIFAR10. (b) The average rate of code one of each bit of the quantized
activation (upper), and the estimated coefficients α(l) (lower). It seems that the optimal code rates of different layers depend on
the level of activation sparsity, and the Bitwise Bottleneck approach can adaptively remove the near-zero high-end bits and the
less-informative low-end bits of the activation representation.

Eq. 2 difficult to solve. Different from typical rounding-
based quantization approaches that settle for suboptimal so-
lutions, this paper attempts to find the optimal solution by
reformulating Eq. 2 as a sparse coding problem.

Activation Quantization via Bitwise Bottleneck
Encoding
In practice, we could approximate the solution of Eq. 2 us-
ing a training sample set. Assume X

(l)
i ∈ RP ·Q·K is the

floating-point activation tensor associated with the ith sam-
ple output by lth layer. Fig. 1 illustrates the Bitwise Bottle-
neck approach. Formally speaking, assume X̂

(l)
i is theD-bit

fixed-point approximation of X
(l)
i as defined in Eq. 3, where

X̂
(l)
ij ∈ {0, 1}P ·Q·K is a three-dimensional binary tensor

representing the jth bit of X̂
(l)
i .

X̂
(l)
i = Q(X(l)

i ) = 20X̂
(l)
i1 +21X̂

(l)
i2 + ...+2D−1X̂

(l)
iD (3)

where each bitwise data matrix is assigned a constant co-
efficient of 20, ..., 2D−1. In practice, this bitwise activation
representation allows the computation of fixed-point data to
be implemented in a bitwise way. The computational and
memory complexity are proportional to the number of bits
of different representations.

Technically, the binary quantization of Eq. 3 inherently
assumes that each of the D bits in the activation representa-
tion is needed, although different bits contain different but
fixed amounts of information. By removing this assumption,
the proposed method substitutes the fixed coefficient for a
variable α(l) ∈ RDas

X̂
(l)
i = Q(X(l)

i ) = α
(l)
1 X̂

(l)
i1 +α

(l)
2 X̂

(l)
i2 + ...+α

(l)
D X̂

(l)
iD (4)

The Bitwise Bottleneck approach treats the design of neu-
ral networks as a trade-off between compression and pre-
diction, which assumes that the bitwise bottlenecks can ex-
ploit the sparsity in the activation representation so that one
can reduce the precision of activation representation without
hurting classification accuracy. Fig. 2 illustrates the activa-
tion distributions of the first 4 layers of ResNet50 (He et al.

2016) over the CIFAR10 dataset. It seems that activations of
different layers are sparse, but the sparsity varies from layer
to layer. Fig. 2(b) illustrates the average rate of code one in
each bit of the activation representation (upper graph). De-
spite the change of feature-wise sparsity as shown in Fig.
2(a), the bitwise sparsity over the high-end bits of activa-
tion representation is easier to detect. Therefore, one might
be able to estimate the optimal and sparse coefficients α(l)

associated with the most significant bits.
According to the rate-distortion theory (Eq. 2), the Bit-

wise Bottleneck attempts to find the optimal quantization
scheme by minimizing the standard squared distortion rate
over N training samples given that less than η bitwise coef-
ficients are nonzero,

arg min
α(l)

N∑
i=1

‖X(l)
i −

D∑
j=1

α
(l)
j X̂

(l)
ij ‖

2
2 s.t. ‖α(l)‖0 ≤ η (5)

where X̂
(l)
ij calculated by initial quantization operation are

usually known as the quantization codebook. In practice, d-
ifferent initial quantization operations can be applied, and
Eq. 3 is a simple example of the rounding quantization ap-
proach. It is worth noting that since the number of nonzero
coefficients in α(l) equals the number of bits in the fixed-
point representation, the constraint function of Eq. 5 actu-
ally limits the maximum number of bits in the quantized
representation as required by the rate-distortion theory. Re-
cent research shows that Eq. 5 is equivalent to the following
L1-norm-based problem when fulfilling the sparsity require-
ment, which leads to a sparse solution (Baraniuk 2007).

arg min
α(l)

N∑
i=1

‖X(l)
i −

D∑
j=1

α
(l)
j X̂

(l)
ij ‖

2
2 s.t. ‖α(l)‖1 ≤ η (6)

The bitwise bottleneck operation solves Eq. 6 to determine
the sparse significant bits and leads to the minimal distor-
tion. In practice, one usually calculates Eq. 6 by solving its
Lagrangian form as

arg min
α(l)

N∑
i=1

‖X(l)
i −

D∑
j=1

α
(l)
j X̂

(l)
ij ‖

2
2 + λ‖α(l)‖1
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Figure 3: Deep neural network with bitwise bottleneck layers. The second macroblock is extended and shown in detail. By
setting a single hyperparameter of the threshold of PSNR loss, the bitwise bottlenecks in different macroblocks can be trained
to quantize the normalized activations flexibly with different optimal code rates.

where λ is the hyperparameter for controlling the trade-off
between the optimized error rate and the code rate. Eq. 6
generally leads to a sparse solution of the coefficients α(l),
so the activation bits associated with zero coefficients are re-
moved during the inference stage. To avoid expensive com-
putations caused by floating-point, we quantize the coeffi-
cient vector α(l) during the retraining process; therefore, the
computational efficiency can be improved significantly.

Neural Network with Bitwise Bottlenecks
As shown in Eq. 6, the bitwise bottleneck operation calcu-
lates the optimal coefficients associated with different bits of
the compressed activation representation so that a minimal
distortion can be achieved given the maximum code rate.
This section shows how the bitwise bottlenecks work in the
deep neural network.

Fig. 3 shows an example of efficient neural computing
with bitwise bottlenecks. The whole network is built based
on the classic ResNet, although the bitwise bottleneck op-
eration can be easily integrated into different networks. In
practice, the bitwise bottleneck operation can be inserted in
the macroblock of the deep neural network. A typical mac-
roblock contains a bitwise bottleneck layer, a convolution
layer, a pooling layer (optional), a batch normalization lay-
er and an activation layer. Thanks to the bitwise bottleneck
layer, which transforms the normalized floating-point acti-
vation to compressed fixed-point activation, the convolution
layer can substitute the computationally expensive floating-
point multiplications for efficient fixed-point bitwise multi-
plications.

The benefits of inserting the bitwise bottlenecks in deep
neural networks are twofold. From the perspective of mem-
ory efficiency, compared with the standard deep neural net-
works using 32-bit single-precision activation representa-
tion, the bitwise bottlenecks can compress the activation
into arbitrary low-precision (1 to 8 bits), obtaining an im-
provement of memory efficiency by 32 to 4 times. From
the perspective of computational efficiency, single-precision
floating-point multiplication generally requires considerably
more hardware resources and calculation time compared
with fixed-point multiplication. By employing the bitwise

Algorithm 1: Training Algorithm
Input: Pre-trained floating-point CNN model Θ,

threshold of PSNR loss T , number of layers L,
number of training samples N , number of bits
for initial quantization D;

Output: An Optimized Quantized model Θ̂;
1 Obtain the floating-point activation tensors

X
(1)
i , ...,X

(L)
i of Θ for each sample;

2 for l = 1, ..., L do
3 while t(l) < T do
4 for i = 1, ..., N do
5 Obtain the codebook X̂

(l)
i1 , X̂

(l)
i2 , ..., X̂

(l)
iD by

initial quantization of X
(l)
i ;

6 Obtain the coefficient vector α(l) via Eq. 6
and restore X̂

(l)
i via Eq. 4;

7 Compute the PSNR loss between X̂
(l)
i and

X
(l)
i as t(l)i ;

8 t(l) = max(t
(l)
i ) for each i = 1, ..., N ;

9 Increase λ;

10 Insert the bottleneck layers into Θ as a new model Θ̂;
11 Refine and quantize the weights and the vector α(l) of

Θ̂ by backpropagation until reaching convergence.

bottleneck layers before the convolution layers (as shown in
Fig. 1), the inference latency of deep neural networks may
be reduced by over 90%, as indicated in early research (Zhou
et al. 2018).

Training Sparse Bitwise Bottlenecks
In practice, the sparsity level of the activation may vary
from layer to layer in the neural network. It is desired
that different macroblocks should use different quantiza-
tion precisions. As one of the advantages of the proposed
method, the optimal code rates of different bitwise bot-
tlenecks can be approximated by tuning a single hyper-
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Figure 4: The bitwise bottleneck layer can compress the images using 5-bit representation, which is compared with the standard
rounding-based quantization and sensitivity-based quantization methods. The error maps of pixel-wise absolute values of the
difference between the compressed images and the original images are shown above.

parameter, which is the threshold of peak-signal-to-noise-
ratio (PSNR) loss. The measurement of the PSNR is de-
fined as PSNR = 10 · log10

(
(2D−1)2
MSE

)
, where MSE =

1
P ·Q·K ‖X

(l)
i −

∑D
j=1 α

(l)
j X̂

(l)
ij ‖22. By increasing the hyperpa-

rameter of λ and comparing the PSNR loss with the thresh-
old, each layer can approximate the respective acceptable
minimal code rate independently. More detailed information
about the training algorithm can be found in Algorithm 1.

An illustrative example of training the neural network
with multiple bitwise bottlenecks is shown in Fig. 2. A clos-
er look at the image reveals three interesting observations.
First, the statistical phenomenon of bitwise sparsity exist-
s. Specifically, the high-end bits of the activation represen-
tation are statistically near-zero for different layers of the
neural network, which validates our assumption. Second, the
optimal code rates of different layers depend on the level of
activation sparsity. As an example, the activations of the first
macroblock of ResNet50 are less sparse than that of the nex-
t three macroblocks, resulting in a higher acceptable mini-
mal code rate. Third, it seems that the bitwise bottlenecks
can adaptively reduce the coefficients α(l)

j of both near-zero
high-end bits and less-informative low-end bits of the acti-
vation representation.

Experiments
A list of experiments were carried out to evaluate the effec-
tiveness of the proposed method.

Experimental Setting
Our experiments were performed on three standard bench-
marks: the MNIST (LeCun et al. 1998), CIFAR10
(Krizhevsky, Hinton et al. 2009) and ImageNet (ILSVR-
C2012) (Deng et al. 2009) datasets. The MNIST dataset of
28×28 monochrome images contained 60 thousand training
samples and 10 thousand test samples. The CIFAR10 dataset

of 32×32 color images contained 50 thousand training sam-
ples and 10 thousand test samples, which had 10 classes. The
ImageNet dataset contained 1.28 million training samples,
50 thousand verification samples, 100 thousand test samples
and 1,000 classes.

The proposed Bitwise Bottleneck approach required an
initial quantization operation to calculate the binary activa-
tion codebook at the first step. Two different initial quantiza-
tion methods were adopted, including the Iterative Round-
ing method (Courbariaux, Bengio, and David 2014) and
the DoReFa-Net method (Zhou et al. 2016). The Iterative
Rounding method quantized the activation during the iter-
ative backpropagation training process, which was widely
used for deep neural network quantization. To validate our
method, we used the standard average classification accura-
cy over the test dataset as our evaluation criterion. The re-
sults of the proposed method were achieved based on the
ResNet50, and all the compared approaches were also based
on ResNet50 for fair comparison.

All the experiments were performed on a computer e-
quipped with Intel i7-7800X CPU and 2 NVIDIA TITAN
Xp GPU. Similar to other studies, a backpropagation-based
training process was adopted in the proposed method to re-
fine and quantize the weight parameters of the deep neu-
ral network and the coefficients α(l). In our experiment, the
ADAM (Kingma and Ba 2014) algorithm was applied to
implement the backpropagation process, where the learning
rate was 0.0001, and the batch size was 64. We retrained
4,000 iterations on the MNIST and CIFAR10 datasets and 5
epochs on the ImageNet dataset.

Visualization and Analysis
A group of experiments were performed over the MNIST
dataset to analyze and visualize the performance of the pro-
posed method compared with the initial and other quantiza-
tion approaches. The bitwise bottlenecks reduced the code
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(a) (b) (c) (d)

Figure 5: (a) The relation between the PSNR and the effective code rate, which equals the number of nonzero coefficients in
α(l) and the relation between the effective code rate and the value of λ. (b) Accuracy of the deep neural network with bitwise
bottlenecks over the MNIST (upper) and CIFAR10 (lower) datasets, which can compress the activation of the deep neural
network with different effective code rates d. (c) The change in accuracy and average effective code rate of different layers
when using the bitwise bottlenecks to compress the 8-bit fixed-point activation according to different PSNR loss thresholds. (d)
The ratio of α(l)

j /2j−1 with different thresholds of PSNR loss (T = 26 upper, T = 30 lower).

rate of the fixed-point representation from the initial quan-
tization length of D bits to the effective code rate d, which
was the number of nonzero coefficients in vector α(l) (Eq.
6). Fig. 4 visualized the loss of activation integrity caused
by 5-bit activation quantization over the MNIST dataset.
The absolute values of the difference between the com-
pressed image data and the original image data were com-
pared between the proposed method and the baseline quan-
tization methods. In summary, the proposed Bitwise Bot-
tleneck method showed the highest PSNR (47.30±0.51 d-
B) for activation quantization compared with the standard
rounding-based method (42.02±0.54 dB) and sensitivity-
based method (34.94±0.84 dB) (Li et al. 2020).

Fig. 5(a) shows the relation between the effective code
rate d and the average PSNR achieved over the MNIST
dataset. Overall, the proposed Bitwise Bottleneck approach
achieved 1.98 dB to 12.44 dB higher PSNR compared
with the classic rounding-based quantization and sensitivity-
based quantization methods. The superiority of PSNR was
consistent when different numbers of nonzero coefficients
were chosen, which can be controlled by the hyperparame-
ter of λ, as shown in the figure.

Similar to other activation quantization approaches, a
backpropagation retraining process was applied after the ac-
tivation quantization process to refine the weight parameters
and the coefficients α(l) that were quantized to D bits with
a round-based approach. Fig. 5(b) shows the final classifi-
cation accuracy achieved with backpropagation. The aver-
age accuracy over both the MNIST and CIFAR10 datasets
was evaluated with various numbers of nonzero coefficients
d. Experimental results showed that the proposed method
outperformed the baseline approach when fewer than four

bits were used for activation quantization. The loss of ac-
curacy caused by the rounding-based quantization became
worse when the dataset was more complicated, while the
Bitwise Bottleneck approach suffered almost no loss of ac-
curacy compared with the floating-point model when more
than three bits were used for activation representation.

The Bitwise Bottleneck approach featured its ability to
automatically determine the effective code rates of differ-
ent layers. By setting the threshold of PSNR loss accepted
for activation quantization, the bitwise bottlenecks could es-
timate the minimal effective code rate by the sparse opti-
mization. Fig. 5(c) shows the relation among the threshold
of PSNR loss, the average effective code rate across differ-
ent layers, and the classification accuracy. As shown in our
experiments over the CIFAR10 dataset, the classification ac-
curacy declined when the threshold of PSNR loss increased.
However, when the PSNR loss was less than 24 dB, almost
no decrease in classification accuracy was detected (less than
1%). The accuracy began to decrease when fewer than 6 bits
on average were used for activation representation.

The Bitwise Bottlenecks approach handled the task of ac-
tivation quantization as a trade-off between compression and
prediction. Fig. 5(d) shows the ratio of α(l)

j /2j−1 for each bit
of the quantized activation, where 2j−1 is the natural coeffi-
cient of Eq. 3, which reflects how much information the jth
bit contains. Two interesting observations could be found in
the image. First, the low-end bits of the activation represen-
tation were removed by the bottlenecks, leading to minimal
loss of information caused by bitwise compression. Second,
despite containing more information, the high-end bits were
also removed by the bottlenecks, which was caused by the
bitwise sparsity in high-end bits (as shown in Fig. 2).
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Method Year Weights Activations Top-1 Acc (%) Top-5 Acc (%)
Floating-point Model 2016 32 32 75.6 92.8
Bitwise Bottleneck – 8 5 75.7 92.7
DSQ 2019 8 5 75.2 92.5
Focused Compression 2019 5 32 74.9 92.6
Integer-only 2018 8 8 74.9 –
INQ 2017 5 32 74.8 92.5
DoReFa-Net (initial quantization) 2016 8 5 73.8 91.7
Iterative Rounding 2014 8 5 72.1 90.4
Bitwise Bottleneck – 8 4 74.8 92.2
DSQ 2019 8 4 73.8 91.7
UNIQ 2018 4 8 73.4 –
ACIQ 2019 8 4 71.8 –
DoReFa-Net (initial quantization) 2016 8 4 70.1 89.3
Iterative Rounding 2014 8 4 70.0 89.4

Table 1: Comparing with state-of-the-art over the ImageNet dataset.

Compared with the State-of-the-Art
We evaluated the proposed method with the state-of-the-
art activation quantization approaches over the ImageNet
dataset. The original floating-point model and the proposed
Bitwise Bottleneck approach were compared with the DSQ
(Gong et al. 2019), ACIQ (Banner, Nahshan, and Soudry
2019), Focused Compression (Zhao et al. 2019b), Integer-
only (Jacob et al. 2018), UNIQ (Baskin et al. 2018), INQ
(Zhou et al. 2017), DoReFa-Net (Zhou et al. 2016) and It-
erative Rounding (Courbariaux, Bengio, and David 2014)
approaches. Thresholds of PSNR loss of 8 dB and 16 dB
were adopted to quantize the activations, which resulted in
an average effective code rate of 5.0 (±1) and 4.0 (±1) bits.
The quantization method of DoReFa-Net (Zhou et al. 2016)
was adopted for initial quantization. The standard Tensor-
Flow quantization tool was used to quantize the weights to 8
bits and all the coefficients of α(l) were quantized to 6 bits.

We found in our experiments that most quantization meth-
ods could achieve almost the same accuracy as the floating-
point model with 6 to 8 bits activation representation, but at
5-bit and below the accuracy began to drop obviously. Table.
1 summarizes the results of classification accuracies over the
ImageNet dataset. As shown in the table, the top-1 accuracy
loss of 5-bit activation representation was up to 3.5%, and
top-1 accuracy loss of 4-bit activation representation was
between 1.8% to 5.6%. However, the Bitwise Bottleneck
method could achieve marginal loss of accuracy at 5-bit and
4-bit. The loss of accuracy at 4-bit was 0.8%, which was
4.7% higher than the initial quantization method (DoReFa-
Net). What’s more, the Bitwise Bottleneck method exceed-
ed the Integer-only method with 8-bit activation, the IN-
Q and Focused Compression methods with 32-bit floating-
point activation.

Efficiency Improvement
From the perspective of reducing computational complexity,
when the neural network was implemented in a bitwise way,
a lower code rate led to linearly fewer bitwise operations.
Taking the 8-bit fixed-point representation as an example,
each fixed-point operation could be implemented by 8 bit-

wise operations, and if we cut off 1 bit, the number of oper-
ations could be reduced by 12.5%. In addition, by reducing
a single bit, the hardware source requirement was also re-
duced by 12.5% when it was implemented using dedicated
hardware. Generally, compared with the 32-bit activation-
s representation, the bitwise bottlenecks could improve the
computational efficiency by over 6.4 times without hurting
the performance of the deep neural network. Besides, con-
sidering the weighs were quantized to 8-bit, the computa-
tional efficiency improvement could reach 25.6 times.

From the perspective of reducing memory occupation, re-
ducing the activation code rate linearly decreased the memo-
ry requirement. The activation of a standard neural network
was usually represented by 32-bit floating-point, which oc-
cupied 4 bytes of memory. However, the bitwise bottlenecks
could compress them to fewer than 5 bits without hurting the
classification accuracy, where the running memory could be
reduced by 84%.

Conclusion and Discussion
This paper presents the Bitwise Bottleneck approach for
neural network activation quantization. Based on the rate-
distortion theory, the bitwise bottlenecks inserted in the deep
neural network attempt to minimize the quantization error
rate and code rate. Experiments over different datasets show
that the proposed method could reduce the code rate of the
activation of the deep neural network to one to five bits with-
out hurting the performance, which could improve the mem-
ory efficiency as well as the computational efficiency of the
neural network inference by over 6 times.

The proposed Bitwise Bottleneck method assumes that
the activations of deep neural networks have a certain lev-
el of sparsity; what’s more, in practice, the activations of
different layers have different levels of sparsity. Although
applying flexible quantization as adopted by different bit-
wise bottlenecks could reduce the quantization PSNR loss,
the proposed method is subject to the constraint of activation
sparsity. In the future, we plan to incorporate sparse regular-
ization to intentionally introduce sparsity in the activation so
that the bitwise bottlenecks could achieve higher activation
integrity with a lower code rate.
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