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Abstract

Many practical applications require the solution of numeri-
cally challenging linear programs (LPs) and mixed integer
programs (MIPs). Scaling is a widely used preconditioning
technique that aims at reducing the error propagation of the
involved linear systems, thereby improving the numerical be-
havior of the dual simplex algorithm and, consequently, LP-
based branch-and-bound. A reliable scaling method often
makes the difference whether these problems can be solved
correctly or not. In this paper, we investigate the use of ma-
chine learning to choose at the beginning of the solution pro-
cess between two common scaling methods: Standard scal-
ing and Curtis-Reid scaling. The latter often, but not always,
leads to a more robust solution process, but may suffer from
longer solution times.
Rather than training for overall solution time, we propose to
use the attention level of a MIP solution process as a learning
label. We evaluate the predictive power of a random forest
approach and a linear regressor that learns the (square-root of
the) difference in attention level. It turns out that the result-
ing classification not only reduces various types of numerical
errors by large margins, but it also improves the performance
of the dual simplex algorithm.
The learned model has been implemented within the FICO
Xpress MIP solver and it is used by default since release 8.9,
May 2020, to determine the scaling algorithm Xpress applies
before solving an LP or a MIP.

Introduction
Numerics play an important role in solving linear and mixed
integer programs (LPs and MIPs) (Miltenberger, Ralphs,
and Steffy 2018). All major solvers for LPs and MIPs rely
on floating-point arithmetic, hence numerical round-off er-
rors and cancellation effects might occur and therefrom, nu-
merical errors might propagate. This affects the solution
process in various critical ways: first of all, the dual sim-
plex algorithm might be more prone to cycling, leading
to a longer runtime or even an unsuccessful termination.
The computed optimal solution vectors might have resid-
ual errors larger than acceptable and consequently, the so-
lution might be deemed wrong. In a worst case, instances
might be declared infeasible by mistake or seemingly neu-
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tral changes in the model, like changing the order of con-
straints, might lead to different optimal solutions being re-
ported (Lodi and Tramontani 2013). Since the two stan-
dard methods to solve MIPs, namely LP-based branch-and-
bound and cutting plane algorithms, both rely heavily on the
dual simplex algorithm as a subroutine, they directly inherit
its numerical properties and issues. To make things worse,
tableau-based cuts like Gomory cuts (Gomory 1958) can
amplify numerical issues, unless these cuts are carefully fil-
tered and selected (Balas et al. 1996).

Obviously, cycling, residual errors and other numerical
problems are undesirable and various methods exist to mit-
igate them, see, e.g., Gleixner, Steffy, and Wolter (2016),
Cheung, Gleixner, and Steffy (2017), or Espinoza (2006).
One of the earliest and to date still most effective way to pre-
vent numerical issues from occuring in LP and MIP solvers
is the use of various scaling algorithms. Scaling methods
for linear programming have first been suggested in the
early 1960’s (Fulkerson and Wolfe 1962). In 1972, Curtis
and Reid introduced a scaling algorithm that solves a least-
squares problem, which effectively minimizes the sum of the
squares of the logarithms of the matrix elements, plus some
correction terms (Curtis and Reid 1972).

Various different scaling algorithms have been suggested,
each of them beneficial for some classes of instances. How-
ever, it is not clear a priori which scaling algorithm is best-
suited for a given LP or MIP instance. To this end, we sug-
gest a method to predict which of two of the most common
scaling methods will lead to a numerically more robust so-
lution process.

In this paper, we consider general mixed integer programs
(MIPs) of the form

min{cTx |Ax ≥ b, ` ≤ x ≤ u, xj ∈ Z ∀j ∈ I}, (1)

with objective coefficient vector c ∈ Qn, constraint coeffi-
cient matrixA ∈ Qm×n, constraint right-hand side b ∈ Qm,
and variable bounds `, u ∈ Qn

, where Q := Q ∪ {±∞}.
Furthermore, the set I ⊆ {1, . . . , n} denotes the indices of
variables that are required to take integer values. If I = ∅,
(1) is called a linear program (LP). By omitting the inte-
grality requirements for a given MIP, we obtain its LP relax-
ation.

We address the solution of LPs and MIPs by a general
purpose solver, in our case FICO Xpress (FICO). Recently,
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the use of Machine Learning methods to take criticial deci-
sions within MIP solvers gained a lot of interest. Examples
include learning when to run primal heuristics (Khalil et al.
2017), the addition of new cutting planes (Tang, Agrawal,
and Faenza 2019) or one of the most challenging tasks
in MIP solving, choosing a variable to branch on (Khalil
et al. 2016; Balcan et al. 2018). For an overview, see Ben-
gio, Lodi, and Prouvost (2018). However, to the best of our
knowledge, no publication so far considered learning scaling
methods or other features addressing the numerical stability
of a solve. As an important observation, Tang, Agrawal, and
Faenza (2019) pointed out that learning methods that solely
minimize running time might tend to prefer a less stable al-
ternative, given that solvers often terminate faster when they
produce a wrong result due to numerical errors.

The contribution of this paper is to introduce machine
learning models to choose between different scalings dur-
ing the runtime of an LP or MIP solve. This is not a proof
of concept; the technique has been implemented within the
state-of-the-art MIP solver FICO Xpress and is used by de-
fault in its latest release. To this end, we use the attention
level as a learning label when using ML to take decisions for
a mathematical optimization process. The attention level is a
measure between 0 and 1 that aims at estimating how likely
numerical errors are to occur during an LP or MIP solve; for
more details see next section. While numerical robustness
of an algorithm represents a valuable goal of its own, this
avoids getting the learning process flawed by wrong results.
Moreover, we demonstrate that this can still lead to a signif-
icant speed improvement, at least for LPs, which is mainly
due to the fact that the solver can save on costly recovering
procedures.

Background: Scaling, Attention Level
Formally, scaling refers to the multiplication of each row
and column in a linear system Ax ≥ b by a non-negative
scalar, hence transforming the system to an equivalent sys-
tem RACx∗ ≥ Rb, x∗ = C−1x, with R ∈ Qm×m

≥0 , C ∈
Qn×n
≥0 , with C,R being diagonal matrices, i.e., Cij = 0 and

Rij = 0 for i 6= j. In other words, the diagonals of R and C
contain the scaling factors for the rows and columns, respec-
tively. Note that for a MIP, integer columns are not scaled,
i.e. if j ∈ I, then Cjj = 1.

Within FICO Xpress, only powers of two are considered
as potential values Cjj and Rii for scaling. This has the
added advantage that no errors in the system itself will be
introduced by scaling, since multiplication and division by
powers of two can be done exactly in floating point repre-
sentation, cf. Bauer (1963).

In this paper, we use two different scaling approaches.
The first one is standard scaling (ST), also referred to as
equilibration scaling (Tomlin 1975). ST first scales rows by
dividing each row by the absolute value of the nearest power
of two of its largest element and then scales columns in the
same fashion. For many years, this has been the default scal-
ing procedure of FICO Xpress.

The second scaling approach that we consider is Curtis-
Reid scaling (CR) (Curtis and Reid 1972). CR solves the

least squares problem

min
m∑
i=1

n∑
j=1

(log2|Aij | − ri − qj)2 (2)

Then, CR scales the matrix by Rii = 2bri+0.5c and Cjj =

2bqj+0.5c. The rationale is that this method takes all ele-
ments into account and not only extreme ones. Generally,
CR is known to work best on numerically challenging prob-
lems and is consequently by far the most commonly used
non-default scaling technique within FICO Xpress. How-
ever, always using CR comes at the price of a slight slow-
down of 2–3% on average, according to our computational
study. Therefore it is not enabled by default.

Other approaches have been suggested, with no clear ev-
idence that any of them is superior (Larsson 1993; Ploskas
and Samaras 2013). Up to the experience of the authors, it is
rare that another method significantly outperforms the better
of ST and CR. The next common scaling options to make a
difference are to apply scaling before presolving instead of
after presolving and the question of whether to use dedicated
special rules for so-called big-M constraints. This, however,
is beyond the scope of the present paper.

Scaling has different goals. Its main purpose is to im-
prove the numerical behavior of the solver; a secondary
goal is to improve the runtime of the simplex algorithm. In
fact, the observed runtime improvements mostly are a direct
consequence of the improved numerical stability. However,
runtime improvements might be counteracted by the afore-
mentioned effect that producing wrong results due to a nu-
merical error might lead to faster termination. Hence, run-
time improvements from scaling might not be as pronounced
as improvements in the stability.

There are various ways to measure the numerical stability
of an LP or MIP solve. One way is to directly observe the
actual number of failures when solving a problem. There are
three main types of failures that FICO Xpress tracks for the
simplex algorithm: dual failures, primal failures and singu-
lar inverts. Note that during a MIP solve, LPs are typically
solved via dual simplex, since this allows for warm-starting
after adding cuts or branching restrictions (Tomlin 1971). In-
terior point algorithms, the most common alternative to the
simplex method, are are not considered in the present work
as they are invariant to scaling (Andersen et al. 1996).

FICO Xpress first attempts to solve each node LP relax-
ation via dual simplex. Primal simplex serves as fallback
strategy if dual simplex fails to maintain dual feasibility due
to numerical errors. Dual and primal failures occur if the
corresponding simplex algorithm (dual or primal) fails to
maintain its respective (dual and primal) feasibility. 1

For performance reasons, the basis inverse (more pre-
cisely: its factorization) is incrementally updated after most
iterations (Forrest and Tomlin 1972), and only infrequently
recomputed from scratch to get rid of accumulated errors.
A singular invert refers to a situation where refactorization
cannot be computed correctly because the current basis ma-
trix is found not to be of full rank. In this case, the solver tries

1In either case, various strategies are executed to recover feasi-
bility before giving up and deeming the attempt as failure.
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to repair the basis by replacing dependent columns, which
often leads to a loss of dual feasibility, comparable to a dual
failure. Singular inverts as well as dual and primal failures
are mostly performance issues, with primal failures being
worse: since primal simplex is already the back-up strategy,
a primal failure results in an unsolved node LP relaxation. At
such a point, the solver has to conduct a branching without
LP information. which is most likely poor and might lead to
a significantly larger branch-and-bound (sub-)tree.

Other kinds of errors can be observed a posteriori. One
of the most typical issues with numerically challenging in-
stances is that a solution which was feasible in the presolved
space violates constraints in the original space by more than
an acceptable threshold. Also sometimes it can be observed
that due to numerical errors, different solvers finish with
contradicting primal and dual bounds. It should be noted
that such inconsistent results do not necessarily mean that
one of them is wrong. Since both feasibility and optimality
of a MIP solve are defined w.r.t. numerical thresholds, mul-
tiple answers can be “correct within tolerances” at the same
time.

In Numerical Analysis, condition numbers represent up-
per bounds of the change in the output value of a func-
tion given a marginal change in the input value. Wilkin-
son showed that the condition number of a square matrix
κ(AB) = ||AB ||·||A−1B || can be used to calculate a bound on
the relative error obtained when multiplying this matrix with
a perturbed vector (Wilkinson 1988). In our application, AB

is the basis matrix of an optimal LP solution. To compute
the attention level we sample those basis condition numbers
κ(ABi

) once at each search node with optimal LP relaxation
and count the relative frequency of the following four buck-
ets: each κ(ABi

) < 107 is counted as stable, each κ(ABi
) <

1010 is counted as suspicious, each κ(ABi
) < 1014 is

counted as unstable, and bases for which κ(ABi) ≥ 1014 are
counted as ill-posed. These four percentages add up to one:
pstab + psusp + punst + pill = 1. From the three critical cat-
egories, the attention level α = 0.01psusp + 0.3punst + pill
is defined, such that α ∈ [0, 1]. The attention level assumes
zero or one if and only if all sampled bases are stable or
ill-posed, respectively. The higher the attention level, the
more likely numerical issues occur. The attention level was
first introduced in Cplex (Cplex Documentation) and is also
available in FICO Xpress (Xpress Documentation).

As a rule of thumb, instances are said to be numerically
suspicious if their attention level is larger than 0.1. In this
case, it is advisable to alter the model formulation itself to
improve numerics, to use control settings that address nu-
merical behavior (e.g., scaling) or to activate non-default
procedures that aim for higher solution accuracy, e.g., itera-
tive refinement (Gleixner, Steffy, and Wolter 2016) or MIP
refinement.

It should be noted that, in our experience, CR often leads
to better numerical behavior, but not always. On the data set
in the subsequent sections, ST turns out to be the more stable
scaling option (has the smaller attention level) in 24 % of the
cases, whereas CR reduces the attention level in 30 % of the
cases. The remaining cases are ties.

The advantage of the attention level is that it is also mean-

ingful for numerically less challenging instances that do not
lead to actual failures. It has a fine granularity to measure
the grade of numerical conditions, taking the whole solution
process into account. We therefore decided to use the atten-
tion level as a label to design ML models that have numerical
stability as a learning goal.

An obvious alternative would be using time. This would
carry a peculiar risk. For some numerically challenging
problems, numerical errors might not lead to a wrong result,
but seemingly prove optimality by a wrong conclusion. Con-
sider the situation when the optimal solution has been found
early in the search. Then, numerical errors in techniques that
improve the dual bound may close the remaining gap prema-
turely without the error being noticed. As a consequence, a
worse scaling might seemingly speed up the solver. This is
a major motivation why we train for the attention level, not
for running time.

Methodology
Learning Task/Feature Space Let S = {st, cr} denote
the set of available scalings. We aim to train a classifier
y : Rd 7→ S that labels a d-dimensional input vector of fea-
tures f = (fi, . . . , fd) onto one of our two mentioned scal-
ing choices such that the resulting attention level α(y(f)) is
minimized. In our case, the feature vector is 3-dimensional,
where each feature describes one difference between the two
scaling methods regarding the obtained matrix coefficients,
right-hand side, and objective coefficients after presolving.
Our feature space measures for each scaling the orders of
magnitude between, for example, the smallest and largest
nonzero coefficient of the matrix A. In preliminary exper-
iments, we also tested larger feature spaces, including, for
example, the original (unpresolved) coefficient ranges of the
matrix. We found that training models on the unpresolved
coefficients of the matrix leads to significantly worse train-
ing and test performance. This confirms our expectation that
presolving transformations alone may increase numerical
stability even for ill-posed input data.

For the feature computation, we apply each of the two
scaling methods s ∈ S to the presolved matrix A to ob-
tain the corresponding scaling matrices Rs, Cs that contain
the row and column multipliers along their respective diago-
nals. We obtain minimum and maximum nonzero entries of
the scaled matrix coefficients, right-hand side, and objective
coefficients, denoted by symbols d and D, respectively:
• dcoef

s , Dcoef
s = min,max{|(RsACs)ij |; (RsACs)ij 6= 0},

• dobj
s , Dobj

s = min,max{|(Csc)j |; (Csc)j 6= 0},
• drhs

s , Drhs
s = min,max{|(Rsb)i|; (Rsb)i 6= 0}.

If all objective coefficients or right-hand side entries are 0,
we define their corresponding minimum/maximum entry to
be 0, where finite bounds of the variables are treated as part
of the right-hand side.

We then capture the range in the orders of magnitude
of the scaled MIP problem by three separate logarithms,
Lcoef
s = log10(Dcoef

s /dcoef
s ), Lobj

s = log10(Dobj
s /dobj

s ), and
Lrhs
s = log10(Drhs

s /drhs
s ). Intuitively, numerically stable

MIPs feature small coefficient ranges, whereas MIPs that
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combine coefficients at vastly different orders of magnitude
are more often ill-posed and prone to numerical issues. Note
that Lcoef

s , Lobj
s , Lrhs

s ≥ 0. We capture the special case of an
all-zero component by setting the corresponding L to 0, just
like in the case that all values are equal to the same nonzero
value. The L-values represent how many orders of magni-
tude the coefficients of a given MIP span. Our feature vector
consists of the difference in the L-vectors of standard and
Curtis-Reid scaling:

f =
(
Lcoef

cr − Lcoef
st , Lobj

cr − L
obj
st , L

rhs
cr − Lrhs

st

)
.

We approach the classification problem to choose a scal-
ing from S by a regression problem, for which we use the at-
tention level difference as label: ∆ =

√
αcr−

√
αst. We chose

the square root to artificially inflate notable differences in at-
tention level close to 0. This is mainly motivated by the em-
pirical observation that for our training (and test) data, the
majority of values are rather close to zero than close to one.

We will train a regression model ∆̃(f) that computes
(predicts) the expected ∆ based on the coefficient statis-
tics captured by f . The classification algorithm uses ∆̃(f)

and a threshold value τ . If ∆̃(f) ≤ τ , it selects Curtis-
Reid scaling, otherwise it selects standard scaling. The ad-
ditional control parameter τ allows to bias the selection to-
wards standard scaling, i.e., to switch to CR only if a sub-
stantial reduction in attention level is expected. This conser-
vative approach may prevent performance degradations due
to switching to CR unnecessarily.

Data collection The regression is trained offline on data
collected by running FICO Xpress on a large test bed of
1199 diverse MIP problems. This test bed comprises pub-
licly available problems from the MIPLIB 2017 (Gleixner
et al. 2019) benchmark set as well as confidential customer
problems. A subset of these problems is part of a numeri-
cally challenging test set. We solve all problems twice us-
ing FICO Xpress, once with standard (st) and again with
Curtis-Reid (cr) scaling. We enable the computation of the
attention level at the largest supported sampling frequency
by setting the parameter MIPKAPPAFREQ to 1, such that the
condition number κ is computed after every feasible node
LP relaxation throughout the search. In addition, we diver-
sify our data even more by running each problem/scaling
combination with three (default + two) different permuta-
tion seeds. FICO Xpress uses a nondefault permutation seed
for a cyclic reordering of the rows and columns of a prob-
lem. While the problem stays unchanged mathematically, it
is well-known that such problem permutations can have a
dramatic impact on the performance (Lodi and Tramontani
2013). We use the term “instance” to denote an input prob-
lem together with a seed.

We filter out unsuitable records from our data set: some of
the instances are solved in presolving or with the initial LP,
whereas others do not finish the initial LP within the time
limit, such that no κ can be computed. We identify 362 such
cases, such that we are left with 3235 training examples.

The attention levels measured with both scaling tech-
niques are depicted in Figure 1. Each point corresponds to
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Figure 1: Square root of attention level with standard and
Curtis-Reid scaling on our data set.

the pair (
√
αst,
√
αcr) of one data record. We observe hor-

izontal and vertical concentrations of points along a grid at
values

√
0.01 = 0.1,

√
0.3 ≈ 0.55, and 1. Those are exactly

the attention level values if all measured values of κ fall into
a single category “suspicious”, “unstable” or “ill-posed”, re-
spectively. The considerable number of points below the di-
agonal shows that there is room for improving (reducing) the
attention level by switching the used scaling.

Training For the training of the regression models, we
split our data set randomly into 60 % (1941) training and
40 % (1294) test set. Since each problem has been solved
multiple times with different seeds, a single problem may be
present in both the training and the test set, but with different
seeds. Since the size and coefficients of the presolved model
can be different between seeds, also the scaling applied after
presolving is affected by permutations. The data reveals that
there are 598 matrices for which the fastest and slowest seed
differ by at least 5 %, and there are about the same number
of instances (560/600 for Standard/Curtis Reid) that differ in
attention level across seeds.

On the training set, we train a linear regression (see,
e.g., Chambers (1992)) and a random forest regres-
sion (Liaw, Wiener et al. 2002). We perform the training in
the R programming language, which provides linear regres-
sion through its base function lm and random forest regres-
sion from the add-on package randomForest. We train
a random forest with 500 trees. After the model training,
we pick the thresholds τ by searching the domain [−1, 1] in
0.01-steps to finish our classifier individually for the linear
regression and random forest models on the training set. The
values of τ that minimize the attention level on the training
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Figure 2: Performance of the trained models in attention
level and mean squared error.

set are -0.05 for the linear model and 0.01 for the random
forest model. The negative tau for the linear model yields a
conservative switch that avoids unnecessary switches to CR
with potential performance degradations.

We evaluate all models on the training and test data in
Figure 2. For the continuous regression problem, a com-
mon quality measure is the mean squared error (MSE)
1

ktest

∑ktest

i=1(∆̃(fi) − ∆i)
2. In addition, we report the aver-

age attention level separately for the training and test set.
We compute the attention level achieved by the classifiers
that combine the trained regression models and the optimal
thresholds. Figure 2 shows the average attention level on all
instances for which at least one scaling has a nonzero atten-
tion level.

In terms of MSE, the random forest model is clearly bet-
ter than the linear model. On the test set, the random forest
model achieves an MSE of 0.014, which is a reduction com-
pared to the linear model by more than 50 %. However, the
random forest model performs much better on the training
than on the test set, which can be seen as an indication for
overfitting. The linear model achieves an MSE of approx.
0.03 on both the training and the test set. While this error
is not as small as the one for the random forest model, the
linear model shows no tendency of overfitting to the training
set.

Concerning the attention level, we see that the standard
scaling method has the highest average attention level on
both training and test sets. By using Curtis-Reid scaling, the
average attention level can be reduced by more than 30 %
compared to standard scaling. The trained models reduce the
attention level on the test set even further. The linear model
achieves an average attention level of 0.09 on the test set,
and the random forest achieves an average attention level of
0.089. Both learned models exhibit a performance close to
the best possible average attention level of 0.087 on the test
set, with a relative deviation of only 3 % (random forest) and
4 % (linear).

Figure 3 provides a visual comparison between the two in-
dividual, basic scaling methods standard and Curtis-Reid as
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Figure 3: Comparison of Attention Level
√
α between avail-

able and learned scaling methods on training and test set

well as the two learned scaling selection models. We use the
measurement

√
α to stretch attention levels close to 0. As

a base line serves the best possible attention level, i.e., the
minimum of

√
αst and

√
αcr. All points on the main diago-

nal are therefore optimal for the considered instance. On the
contrary, instances in the top-left corner belong to the unde-
sirable group of cases where the numerics can be improved
most drastically by simply switching the scaling method.

The figure confirms that both individual scaling methods,
standard and Curtis-Reid, have a substantial number of sub-
optimal records. Using a trained model, however, changes
the picture. Both the linear and the random forest based clas-
sifiers are able to classify most of the test instances correctly,
with only a few visible deviations from the best possible
main diagonal. In particular, there are no remaining cases
in the top left corner using either of the learned models, i.e.,
all of the most extreme cases are classified correctly.

While the random forest regression gives a clearly bet-
ter result in terms of the mean squared error, its additional
benefits as a classifier that minimizes attention level over the
linear model are diminishingly small on the test set. Both the
linear and the random forest classifiers achieve an attention
level that is very close to optimal. In the light of these results,
we selected the linear model for the use inside FICO Xpress
because the loss is marginal compared to a random forest
model. From a solver development point of view this comes
with the added advantages that a linear model requires less
memory than a random forest, and is interpretable. Our final
implementation uses as coefficients

∆̃(f) = 0.014f coef + 0.07f obj + 0.008f rhs, τ = −0.054.

It confirmed our expectation to see that the difference in
the orders of magnitude spanned by the matrix coefficients
is by far the most important feature. This coincides with
the scaling algorithms mainly focussing on the matrix val-
ues themselves and not on the right-hand sides and objec-
tive coefficients. Curiously, the impact of the right-hand side
values was larger than those of the objective. This might
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be explained by two aspects. Firstly, some of the MIP in-
stances are either pure feasibility problems with no objective
at all or models in which a single artificial variable is min-
imized. In both cases, the objective feature is zero, hence
it has no predictive power. Secondly, in all MIPs, a certain
percentage of the variables are integer and can therefore not
be scaled. This restricts the degrees of freedom for column
scaling compared to row scaling, and hence the degrees of
freedom for objective vs. right-hand side scaling.

Computational Results
The use of the linear classification previously described is
available as a new “autoscaling” functionality in Xpress 8.9
and enabled by default. In this section, we compare the LP
and MIP stability and performance between autoscaling and
standard scaling, which used to be the previous default scal-
ing of FICO Xpress. As for the training, our test sets are
comprised of a mixture of publicly available LP and MIP
problems and proprietary data, usually from customers. We
consider three test sets, one of which is a dedicated LP per-
formance test set, and two MIP test sets, one of which we use
for benchmarking solver run time, and the other consisting
of numerically challenging instances.

LP The first test set consists of hard linear programming
problems. It is comprised of a mixture of LPs that do not
have integer variables by design as well as hard LP re-
laxations of actual MIP problems. This test set consists of
348 problems, which we solve with 3 permutation seeds,
yielding a total of 1044 test instances. We use a 1 hour
time limit and solve all instances with the parallel dual sim-
plex method (Huangfu and Hall 2018) with up to 8 threads.
We present an overview of the obtained results in Table 1,
where we aggregate all discussed numerical properties of a
solution process and the required solving time. More pre-
cisely, we summarize all measures (except the number of in-
consistencies) using a shifted geometric mean (Achterberg
2007) with a shift of 1 as follows. A vector of measurements
X = (X1, . . . , Xn) is aggregated via

sgm(X) = −1 +
n∏

i=1

(Xi + 1)
1
n .

The use of the shifted geometric mean is the de-facto stan-
dard method to aggregate performance measures, in particu-
lar running time, of MIP algorithms. Due to the exponential
nature of the Branch-and-bound method, one is mostly in-
terested in relative improvements when comparing different
methods. For many test sets, the actual measurements might
differ by orders of magnitude. While the geometric mean is
known to reduce the weight of the extreme measurements at
the high end of the scale compared to the arithmetic mean,
the shift value has been introduced to diminish the influence
of tiny measurements onto the result. When we count oc-
curences of numerical problems such as the number of pri-
mal failures, we also circumvent the presence of zeros in the
data, which could not be summarized by a geometric mean
without a shift.

In Table 1, we report the same measurements for each of
the three test sets LP, MIP Benchmark, and MIP Numerics
separately, if a measurement is applicable. Each measure-
ment is summarized for standard scaling and for autoscaling.
We also show the relative percentage deviation.

For the LP test sets, not all measurements are applicable.
As expected, the mean number of dual solves is 1. Perhaps
surprisingly, the same holds for the number of primal solves.
The latter is usually called as a final cleanup step to polish
the solution obtained by the dual simplex algorithm. We see
that the number of inverts is slightly reduced by autoscaling,
and the number of singular inverts is reduced significantly,
albeit on a small scale. Finally, the Time row shows that
autoscaling achieves a remarkable speedup of 4.4 % com-
pared to standard scaling. If we restrict ourselves to the set
of 358 instances that are affected by this change, which is
not shown in the table, we see a time improvement of 11 %.

MIP Benchmark & Numerics We consider a benchmark
set of 1100 MIP problems as well as a (disjoint) numerically
challenging problem set consisting of 619 MIPs. Together
with the aforementioned three permutation seeds used, we
obtain 3300 benchmark and 1857 numerically challenging
instances, respectively. As for the LP test set, we use a time
limit of 1h. The branch-and-bound search is conducted in
parallel using up to 20 threads. Only for the numerically
challenging test set, we activate the collection of MIP kappa
statistics after every node LP, which slows down the solution
process by approximately 10 % on average.

We present the obtained numerical results in Table 1. All
measurements except for the total number of inconsistencies
were aggregated using a shifted geometric mean and a shift
of 1.

We see a reduction in the dual failures by 30.0 % and
55.4 % on the benchmark and numerically challenging sets,
respectively. Primal failures and singular inverts are reduced
by 79 % and 17 % on the benchmark set and 59 % and 33 %
on the numerically challenging test set.

We also show the number of problems that have been
solved inconsistently across seeds. We call a problem incon-
sistently solved if the outcomes of running the same model
with different seeds contradict each other regarding the com-
puted primal and dual bounds. An extreme example of such
an inconsistency occurs if a problem is declared infeasible
for one seed, whereas using a different seed results in a fea-
sible solution. Although both situations may mathematically
be correct within the used floating point tolerances, a solu-
tion is usually preferable from a user perspective.

In contrast to the shifted geometric mean reduction else-
where, we report inconsistencies in the corresponding row
of Table 1 as the number of problems for which inconsisten-
cies were encountered across seeds. Note that this time, the
sum corresponds to the number of problems, not instances.
In order to refer to the test set instance counters, the num-
bers in this row have to be multiplied by three, the number
of permutation seeds. As one might expect, inconsistencies
occur much more frequently on the numerically challeng-
ing test set, whereas they are negligible on the LP and MIP
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LP (1044) MIP Benchmark (3300) MIP Numerics (1857)

standard auto rel. standard auto rel. standard auto rel.

Numerics
Dual

Solves 1 1 ±0 % 367 372 +1.2 % 5016 6527 +30.1 %
Fail. 0.01 0.01 ±0 % 0.72 0.55 -30.0 % 16.70 10.74 -55.4 %

Primal
Solves 1 1 ±0 % 222 226 +1.8 % 2366 2827 +19.5 %
Fail. 0 0 ±0 % 0.012 0.007 -79.4 % 0.108 0.067 -59.7 %

Inverts
# 99 95 -4.7 % 441 439 -0.5 % 7002 8069 +15.2 %
Singular 0.02 0.01 -53.0 % 0.14 0.12 -17.7 % 1.25 0.94 -33.2 %

MIP Nodes
# – – – 109 112 +2.8 % 1575 1974 +25.4 %
Failures – – – 0.012 0.007 -78.1 % 0.125 0.077 -61.7 %

Inconsistencies
# 1 0 – 6 4 -50.0 % 57 40 -42.5 %

Condition
Stable – – – – – – 55 184 +237.4 %
Ill-posed – – – – – – 1.10 0.82 -34.2 %
Att. Level – – – – – – 0.101 0.078 -28.6 %

Performance
Time 157.9 151.3 -4.4 % 28.7 28.5 -0.6 % – – –

Table 1: Summary of performance and numerical results on three test sets LP, MIP Benchmark, and MIP Numerics. In paren-
theses, the number of instances (matrix-seed combinations) is shown. Numbers are shifted geometric means with a shift of 1,
while the column “rel.” shows percentage deviations after enabling autoscaling.

Benchmark sets. For all three instance sets, autoscaling re-
duces the number of inconsistent results. On the numerically
challenging test set, autoscaling achieves a notable reduction
from 57 to 40 problems with inconsistent results.

Kappa statistics are only enabled for the numerically chal-
lenging set. We report the Kappa statistics for the two ends
of the Kappa classes, namely the stable and the ill-posed LPs
according to the value of the condition number κ. The use
of autoscaling increases the shifted geometric mean of the
number of stable conditioned LPs by more than a factor of
three from 55 to 184, whereas the number of ill-posed LPs is
substantially reduced by 34 %. The overall reduction of the
condition numbers finally yields a reduction in the attention
level by almost 30 %.

Because of the many encountered inconsistencies, we
do not report time results for the challenging test set. For
the MIP benchmark set, runtime performance is almost un-
changed between standard and autoscaling. This might seem
surprising in the light of the previously observed speedup of
the dual simplex algorithm on the LP test set. However, to-
gether with a faster LP, we also observe an increase in the
number of nodes for both MIP test sets, which we see as
the main reason for the non-transfer of the LP performance
improvements onto the MIP case. The increased number of
nodes seems to be the price for an increased numerical ro-
bustness of the solution process. It may often happen that a
less stable method cuts off a local subproblem prematurely
as infeasible, whereas a more robust method has to spend a
few extra nodes to prune that subtree.

Conclusion
In this paper, we demonstrated that a machine learning
model can be used to robustify the solution process of LP
and MIP solvers. More precisely, we presented a way to de-
rive a linear model of three features which automatically de-
cides between two alternative scaling options. In a detailed
computational study we showed that the resulting model
improves numerical stability of the MIP solver’s solution
process in many different aspects. It outperforms both in-
dividual methods and comes close to a virtual best selection
w.r.t. the mean observed attention level. As an added bene-
fit, the procedure significantly improved the mean runtime of
the parallel dual simplex algorithm. The autoscaling proce-
dure introduced in this paper is implemented within Xpress
8.9 and used by default. To the best of our knowledge, the
present research is the first to address numerical issues in
MIP solvers by ML methods and one of only a few exam-
ples where an ML model is used by default within a MIP
solver (for a notable exception, see (Anderson et al. 2019)).

The idea of using machine learning in the context of nu-
merics of mathematical optimization problems can be ex-
tended in many directions. One could, for example, try to
directly predict the attention level of an LP or MIP solve.
Another possible extension of the methodology could aim
at quadratic optimization problems by also considering the
scaling of the involved quadratic matrices, whose coeffi-
cients on the one hand often operate on a different scale than
the linear part of the problem and for which error propaga-
tion can be easily amplified (or diminished) by the quadratic
nature of the problem. Also, using a convex combination of
two (or more) scalings and learning the combination param-
eter(s) could be promising.
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