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Abstract

Combinatorial optimization has found applications in numer-
ous fields, from aerospace to transportation planning and eco-
nomics. The goal is to find an optimal solution among a finite
set of possibilities. The well-known challenge one faces with
combinatorial optimization is the state-space explosion prob-
lem: the number of possibilities grows exponentially with the
problem size, which makes solving intractable for large prob-
lems. In the last years, deep reinforcement learning (DRL) has
shown its promise for designing good heuristics dedicated to
solve NP-hard combinatorial optimization problems. However,
current approaches have an important shortcoming: they only
provide an approximate solution with no systematic ways to
improve it or to prove optimality. In another context, constraint
programming (CP) is a generic tool to solve combinatorial
optimization problems. Based on a complete search procedure,
it will always find the optimal solution if we allow an execu-
tion time large enough. A critical design choice, that makes
CP non-trivial to use in practice, is the branching decision,
directing how the search space is explored. In this work, we
propose a general and hybrid approach, based on DRL and CP,
for solving combinatorial optimization problems. The core of
our approach is based on a dynamic programming formulation,
that acts as a bridge between both techniques. We experimen-
tally show that our solver is efficient to solve three challenging
problems: the traveling salesman problem with time windows,
the 4-moments portfolio optimization problem, and the 0-1
knapsack problem. Results obtained show that the framework
introduced outperforms the stand-alone RL and CP solutions,
while being competitive with industrial solvers.

Introduction
The design of efficient algorithms for solving NP-hard prob-
lems, such as combinatorial optimization problems (COPs),
has long been an active field of research (Wolsey and
Nemhauser 1999). Broadly speaking, there exist two main
families of approaches for solving COPs, each of them having
pros and cons. On the one hand, exact algorithms are based
on a complete and clever enumeration of the solutions space
(Lawler and Wood 1966; Rossi, Van Beek, and Walsh 2006).
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Such algorithms will eventually find the optimal solution, but
they may be prohibitive for solving large instances because
of the exponential increase of the execution time. That being
said, well-designed exact algorithms can nevertheless be used
to obtain sub-optimal solutions by interrupting the search be-
fore its termination. This flexibility makes exact methods
appealing and practical, and as such they constitute the core
of modern optimization solvers as CPLEX (Cplex 2009),
Gurobi (Optimization 2014), or Gecode (Schulte, Lagerkvist,
and Tack 2006). It is the case of constraint programming (CP)
(Rossi, Van Beek, and Walsh 2006), which has the additional
asset to be a generic tool that can be used to solve a large
variety of COPs, whereas mixed integer programming (MIP)
(Bénichou et al. 1971) solvers only deal with linear prob-
lems and limited non-linear cases. A critical design choice in
CP is the branching strategy, i.e., directing how the search
space must be explored. Naturally, well-designed heuristics
are more likely to discover promising solutions, whereas bad
heuristics may bring the search into a fruitless subpart of
the solution space. In general, the choice of an appropriate
branching strategy is non-trivial and their design is a hot
topic in the CP community (Palmieri, Régin, and Schaus
2016; Fages and Prud’Homme 2017; Laborie 2018).

On the other hand, heuristic algorithms (Aarts and Lenstra
2003; Gendreau and Potvin 2005) are incomplete methods
that can compute solutions efficiently, but are not able to
prove the optimality of a solution. They also often require
substantial problem-specific knowledge for building them. In
the last years, deep reinforcement learning (DRL) (Sutton,
Barto et al. 1998; Arulkumaran et al. 2017) has shown its
promise to obtain high-quality approximate solutions to some
NP-hard COPs (Bello et al. 2016; Khalil et al. 2017; Deudon
et al. 2018; Kool, Van Hoof, and Welling 2018). Once a model
has been trained, the execution time is typically negligible
in practice. The good results obtained suggest that DRL is a
promising new tool for finding efficiently good approximate
solutions to NP-hard problems, provided that (1) we know
the distribution of problem instances and (2) that we have
enough instances sampled from this distribution for training
the model. Nonetheless, current methods have shortcomings.
Firstly, they are mainly dedicated to solve a specific problem,
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as the travelling salesman problem (TSP), with the notewor-
thy exception of (Khalil et al. 2017) that tackle three other
graph-based problems, and of (Kool, Van Hoof, and Welling
2018) that target routing problems. Secondly, they are only
designed to act as a constructive heuristic, and come with no
systematic ways to improve the solutions obtained, unlike
complete methods, such as CP.

As both exact approaches and learning-based heuristics
have strengths and weaknesses, a natural question arises:
How can we leverage these strengths together in order to
build a better tool to solve combinatorial optimization prob-
lems ? In this work, we show that it can be successfully done
by the combination of reinforcement learning and constraint
programming, using dynamic programming as a bridge be-
tween both techniques. Dynamic programming (DP) (Bell-
man 1966), which has found successful applications in many
fields (Godfrey and Powell 2002; Topaloglou, Vladimirou,
and Zenios 2008; Tang, Mu, and He 2017; Ghasempour and
Heydecker 2019), is an important technique for modelling
COPs. In its simplest form, DP consists in breaking a prob-
lem into sub-problems that are linked together through a
recursive formulation (i.e., the well-known Bellman equa-
tion). The main issue with exact DP is the so-called curse of
dimensionality: the number of generated sub-problems grows
exponentially, to the point that it becomes infeasible to store
all of them in memory.

This paper proposes a generic and complete solver, based
on DRL and CP, in order to solve COPs that can be modelled
using DP. Our detailed contributions are as follows: (1) A
new encoding able to express a DP model of a COP into a RL
environment and a CP model; (2) The use of two standard
RL training procedures, deep Q-learning and proximal policy
optimization, for learning an appropriate CP branching strat-
egy. The training is done using randomly generated instances
sampled from a similar distribution to those we want to solve;
(3) The integration of the learned branching strategies on
three CP search strategies, namely branch-and-bound, iter-
ative limited discrepancy search and restart based search;
(4) Promising results on three challenging COPs, namely
the travelling salesman problem with time windows, the 4-
moments portfolio optimization, the 0-1 knapsack problem;
(5) The open-source release of our code and models, in order
to ease the future research in this field1.

In general, as there are no underlying hypothesis such
as linearity or convexity, a DP cannot be trivially encoded
and solved by standard integer programming techniques
(Bergman and Cire 2018). It is one of the reasons that drove
us to consider CP for the encoding. The next section presents
the hybrid solving process that we designed. Then, exper-
iments on the two case studies are carried out. Finally, a
discussion on the current limitations of the approach and the
next research opportunities are proposed.

A Unifying Representation Combining
Learning and Searching

Because of the state-space explosion, solving NP-hard COPs
remains a challenge. In this paper, we propose a generic and

1https://github.com/qcappart/hybrid-cp-rl-solver

complete solver, based on DRL and CP, in order to solve
COPs that can be modelled using DP. This section describes
the complete architecture of the framework we propose. A
high-level picture of the architecture is shown in Figure 1. It is
divided into three parts: the learning phase, the solving phase
and the unifying representation, acting as a bridge between
the two phases. Each part contains several components. Green
blocks and arrows represent the original contributions of this
work and blue blocks corresponds to known algorithms that
we adapted for our framework.

Learning phase Unifying representation Solving phase
Training instances

(randomly generated)
Evaluated 
instances

Combinatorial 
optimization problem

DP model

Value-selection 
heuristic

Reinforcement 
learning

Constraint 
programming

Environment

Agent

Model

Search

Dominance pruning
rules

Solution

Figure 1: Overview of our framework for solving COPs.

Dynamic Programming Model
Dynamic programming (DP) (Bellman 1966) is a technique
combining both mathematical modeling and computer pro-
gramming for solving complex optimization problems, such
as NP-hard problems. In its simplest form, it consists in
breaking a problem into sub-problems and to link them
through a recursive formulation. The initial problem is then
solved recursively, and the optimal values of the decision
variables are recovered successively by tracking back the in-
formation already computed. Let us consider a general COP
Q : {max f(x) : x ∈ X ⊆ Zn}, where xi with i ∈ {1..n}
are n discrete variables that must be assigned in order to
maximize a function f(x). In the DP terminology, and as-
suming a fixed-variable ordering where a decision has to
been taken at each stage, the decision variables of Q are
referred to as the controls (xi). They take value from their
domain D(xi), and enforce a transition (T : S ×X → S)
from a state (si) to another one (si+1) where S is the set
of states. The initial state (s1) is known and a transition is
done at each stage (i ∈ {1, . . . , n}) until all the variables
have been assigned. Besides, a reward (R : S × X → R)
is induced after each transition. Finally, a DP model can
also contain validity conditions (V : S ×X → {0, 1}) and
dominance rules (P : S × X → {0, 1}) that restrict the
set of feasible actions. The difference between both is that
validity conditions are mandatory to ensure the correctness
of the DP model (V (s, x) = 0 ⇔ T (s, x) = ⊥) whereas
the dominance rules are only used for efficiency purposes
(P (s, x) = 0 ⇒ T (s, x) = ⊥), where⇔,⇒, and ⊥ repre-
sent the equivalence, the implication, and the unfeasible state,
respectively. A DP model for a COP can then be modelled
as a tuple 〈S,X, T,R, V, P 〉. The problem can be solved re-
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cursively using Bellman Equation, where gi : X → R is a
state-value function representing the optimal reward of being
at state si at stage i:

gi(si) = max
{
R(si, xi) + gi+1

(
T (si, xi)

)}
(1)

This applies ∀i ∈ {1..n} and such that T (si, xi) 6= ⊥. The
reward is equal to zero for the final state (gn+1(sn+1) = 0)
and is backtracked until g1(s1) has been computed. This
last value gives the optimal cost of Q. Then, by tracing the
values assigned to the variables xi, the optimal solution is
recovered. Unfortunately, DP suffers from the well-known
curse of dimensionality, which prevents its use when dealing
with problems involving large state/control spaces. A par-
tial solution to this problem is to prune dominated actions
(P (s, x) = 0). An action is dominated if it is valid according
to the recursive formulation, but is (1) either strictly worse
than another action, or (2) it cannot lead to a feasible solution.
In practice, pruning such dominated actions can have a huge
impact on the size of the search space, but identifying them
is not trivial as assessing those two conditions precisely is
problem-dependent. Besides, even after pruning the domi-
nated actions, the size of the state-action space may still be
too large to be completely explored in practice.

RL Encoding
An introduction to reinforcement learning is proposed in
appendices. Note that all the sets used to define an RL envi-
ronment are written using a larger size font. Encoding the
DP formulation into a RL environment requires to define,
adequately, the set of states, the set of actions, the transition
function, and the reward function, as the tuple 〈S,A,T,R〉
from the DP model 〈S,X, T,R, V, P 〉 and a specific instance
Qp of the COP that we are considering. The initial state of
the RL environment corresponds to the first stage of the DP
model, where no variable has been assigned yet.

State For each stage i of the DP model, we define the
RL state si as the pair (Qp, si), where si ∈ S is the DP
state at the same stage i, and Qp is the problem instance we
are considering. Note that the second part of the state (si)
is dynamic, as it depends on the current stage i in the DP
model, or similarly, to the current time-step of the RL episode,
whereas the first part (Qp) is static as it remains the same for
the whole episode. In practice, each state is embedded into a
tensor of features, as it serves as input of a neural network.

Action Given a state si from the DP model at stage i and
its control xi, an action ai ∈ A at a state si has a one-to-one
relationship with the control xi. The action ai can be done
if and only if xi is valid under the DP model. The idea is to
allow only actions that are consistent with regards to the DP
model, the validity conditions, and the eventual dominance
conditions. Formally, the set of feasible actions A at stage i
are as follows:

Ai =
{
vi
∣∣ vi ∈ D(xi)∧V (si, vi) = 1∧P (si, vi) = 1

}
(2)

Transition The RL transition T gives the state si+1 from si
and ai in the same way as the transition function T of the DP
model gives a state si+1 from a previous state si and a control
value vi. Formally, we have the deterministic transition:

si+1 = T(si, ai) =
(
Qp, T (si, ai)

)
=
(
Qp, T (si, vi)

)
(3)

Reward An initial idea for designing the RL reward func-
tion R is to use the reward function R of the DP model using
the current state si and the action ai that has been selected.
However, performing a sequence of actions in a DP subject
to validity conditions can lead to a state with no solutions,
which must be avoided. Such a situation happens when a state
with no action is reached whereas at least one control x ∈ X
has not been assigned to a value v. Finding first a feasible
solution must then be prioritized over maximizing the DP
reward and is not considered with this simple form of the
RL reward. Based on this, two properties must be satisfied in
order to ensure that the reward will drive the RL agent to the
optimal solution of the COP: (1) the reward collected through
an episode e1 must be lesser than the reward of an episode
e2 if the COP solution of e1 is worse than the one obtained
with e2, and (2) the total reward collected through an episode
giving an unfeasible solution must be lesser than the reward
of any episode giving a feasible solution. A formal definition
of these properties is proposed in the supplementary material.
By doing so, we ensure that the RL agent has incentive to
find, first, feasible solutions (i.e., maximizing the first term is
more rewarding), and, then, finding the best ones (i.e., then,
maximizing the second term). The reward we designed is as
follows : R(s, a) = ρ ×

(
1 + |UB(Qp)| + R(s, a)

)
; where

UB(Qp) corresponds to an upper bound of the objective value
that can be reached for the COPQp. The term 1+|UB(Qp)| is
a constant factor that gives a strict upper bound on the reward
of any solution of the DP and drives the agent to progress
into a feasible solution first. For the travelling salesman prob-
lem with time windows, this bound can be, for instance, the
maximum distance that can be traveled in a complete tour
(computed in O(1)). This term is required in order to pri-
oritize the fact that we want first a feasible solution. The
absolute value ensures that the term is positive and is used
to negate the effect of negative rewards that may lead the
agent to stop the episode as soon as possible. The second
term R(s, a) forces then the agent to find the best feasible
solution. Finally, a scaling factor ρ ∈ R can also be added in
order to compress the space of rewards into a smaller interval
value near zero. Note that for DP models having only feasible
solutions, the first term can be omitted.

Learning Algorithm
We implemented two different agents, one based on a value-
based method (DQN) and a second one based on policy gra-
dient (PPO). In both cases, the agent is used to parametrize
the weight vector (w) of a neural network giving either the Q-
values (DQN), or the policy probabilities (PPO). The training
is done using randomly generated instances sampled from a
similar distribution to those we want to solve. It is important
to mention that this learning procedure makes the assump-
tion that we have a generator able to create random instances
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(Qp) that follows the same distribution that the ones we want
to tackle, or a sufficient number of similar instances from
past data. Such an assumption is common in the vast major-
ity of works tackling NP-hard problems using ML (Khalil
et al. 2017; Kool, Van Hoof, and Welling 2018; Cappart et al.
2019), and, despite being strong, has nonetheless a practi-
cal interest when repeatedly solving similar instances of the
same problem (e.g., package shipping by retailers)

Neural Network Architecture
In order to ensure the genericity and the efficiency of the
framework, we have two requirements for designing the neu-
ral network architecture: (1) be able to handle instances of
the same COPs, but that have a different number of variables
(i.e., able to operate on non-fixed dimensional feature vectors)
and (2) be invariant to input permutations. In other words,
encoding variables x1, x2, and x3 should produce the same
prediction as encoding x3, x1, and x2. A first option is to
embed the variables into a set transformer architecture (Lee
et al. 2018), that ensures these two requirements. Besides,
many COPs also have a natural graph structure that can be
exploited. For such a reason, we also considered another em-
bedding based on graph attention network (GAT) (Veličković
et al. 2017). The embedding, either obtained using GAT or set
transformer, can then be used as an input of a feed-forward
network to get a prediction. Case studies will show a practical
application of both architectures. For the DQN network, the
dimension of the last layer output corresponds to the total
number of actions for the COP and output an estimation of
the Q-values for each of them. The output is then masked
in order to remove the unfeasible actions. Concerning PPO,
distinct networks for the actor and the critic are built. The last
layer on the critic output only a single value. Concerning the
actor, it is similar as the DQN case but a softmax selection is
used after the last layer in order to obtain the probability to
select each action.

CP Encoding
An introduction to constraint programming is proposed in
appendices. Note that the teletype font is used to refer
to CP notations. This section describes how a DP formulation
can be encoded in a CP model. Modeling a problem using CP
consists in defining the tuple 〈X, D, C, O〉 where X is the set
of variables, D(X) is the set of domains, C is the set of con-
straints, and O is the objective function. Let us consider the
DP formulation 〈S,X, T,R, V, P 〉 with also n the number
of stages.

Variables and domains We make a distinction between
the decision variables, on which the search is performed,
and the auxiliary variables that are linked to the decision
variables, but that are not branched on during the search. The
encoding involves two variables per stage: (1) xsi ∈ X is an
auxiliary variable representing the current state at stage i
whereas (2) xai ∈ X is a decision variable representing the
action done at this state, similarly to the regular decom-
position (Pesant 2004). Besides, a last auxiliary variable is
considered for the stage n + 1, which represents the final

state of the system. In the optimal solution, the variables thus
indicate the best state that can be reached at each stage, and
the best action to select as well.

Constraints The constraints of our encoding have two
purposes. Firstly, they must ensure the consistency of the
DP formulation. It is done (1) by setting the initial state to
a value (e.g., ε), (2) by linking the state of each stage to
the previous one through the transition function (T ), and
finally (3) by enforcing each transition to be valid, in the
sense that they can only generate a feasible state of the sys-
tem. Secondly, other constraints are added in order to re-
move dominated actions and the subsequent states. In the
CP terminology, such constraints are called redundant con-
straint, they do not change the semantic of the model, but
speed-up the search. The constraints inferred by our en-
coding are as follows, where validityCondition and
dominanceCondition are both Boolean functions de-
tecting non-valid transitions and dominated actions, respec-
tively.

xs1 = ε (4)
∀i ∈ {1, . . . , n} : xsi+1 = T (xsi , x

a
i ) (5)

∀i ∈ {1, . . . , n} : validityCondition(xsi , x
a
i ) (6)

∀i ∈ {1, . . . , n} : dominanceCondition(xsi , x
a
i ) (7)

Setting the initial state is done in Eq. (4), enforcing the
transition function in Eq. (5), keeping only the valid transi-
tions in Eq. (6), and pruning the dominated states in Eq. (7)

Objective function The goal is to maximize the accumu-
lated sum of rewards generated through the transition (R :
S ×A→ R) during the n stages: maxxa

(∑n
i=1R(xsi , x

a
i )
)
.

Note that the optimization and branching selection is done
only on the decision variables (xa).

Search Strategy
From a single DP formulation, we are able to (1) build a RL
environment dedicated to learn the best actions to perform,
and (2) state a CP model of the same problem (Figure 1).
This consistency is at the heart of the framework. This section
shows how the knowledge learned during the training phase
can be transferred into the CP search. We considered three
standard CP specific search strategy: depth-first branch-and-
bound search (BaB), and iterative limited discrepancy search
(ILDS), that are able to leverage knowledge learned with
a value-based method as DQN, and restart based search
(RBS), working together with policy gradient methods. The
remaining of this section presents how to plug a learned
heuristics inside these three search strategies.

Depth-First Branch-and-Bound Search with DQN This
search works in a depth-first fashion. When a feasible solu-
tion has been found, a new constraint ensuring that the next
solution has to be better than the current one is added. In case
of an unfeasible solution due to an empty domain reached,
the search is backtracked to the previous decision. With this
procedure, and provided that the whole search space has been
explored, the last solution found is then proven to be optimal.
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This search requires a good heuristic for the value-selection.
This can be achieved by a value-based RL agent, such as
DQN. After the training, the agent gives a parametrized state-
action value function Q̂(s, a,w), and a greedy policy can be
used for the value-selection heuristic, which is intended to be
of a high, albeit non-optimal, quality. The variable ordering
must follow the same order as the DP model in order to keep
the consistency with both encoding. As highlighted in other
works (Cappart et al. 2019), an appropriate variable ordering
has an important impact when solving DPs. However, such
an analysis goes beyond the scope of this work.

Algorithm 1: BaB-DQN Search Procedure.
. Pre: Qp is a COP having a DP formulation.
. Pre: w is a trained weight vector.
〈X,D,C,O〉 := CPEncoding(Qp)
K = ∅
Ψ := BaB-search(〈X,D,C,O〉)
while Ψ is not completed do

s := encodeStateRL(Ψ)
x := takeFirstNonAssignedVar(X)
if s ∈ K then

v := peek(K, s)
else

v := argmaxu∈D(x)Q̂(s, u,w)

end
K := K ∪ {〈s, v〉}
branchAndUpdate(Ψ,x, v)

end
return bestSolution(Ψ)

The complete search procedure (BaB-DQN) is presented
in Algorithm 1, taking as input a COP Qp, and a pre-trained
model with the weight vector w. First, the optimization prob-
lem Qp in encoded into a CP model. Then, a new BaB-
search Ψ is initialized and executed on the generated CP
model. Until the search is not completed, a RL state s is ob-
tained from the current CP state (encodeStateRL). The
first non-assigned variable xi of the DP is selected and is
assigned to the value maximizing the state-action value func-
tion Q̂(s, a,w). All the search mechanisms inherent of a CP
solver but not related to our contribution (propagation, back-
tracking, etc.), are abstracted in the branchAndUpdate
function. Finally, the best solution found during the search
is returned. We enriched this procedure with a cache mech-
anism (K). During the search, it happens that similar states
are reached more than once (Chu, de La Banda, and Stuckey
2010). In order to avoid recomputing the Q-values, one can
store the Q-values related to a state already computed and
reuse them if the state is reached again. In the worst-case, all
the action-value combinations have to be tested. This gives
the upper boundO(dm), wherem is the number of actions of
the DP model and d the maximal domain size. Note that this
bound is standard in a CP solver. As the algorithm is based
on DFS, the worst-case space complexity isO(d×m+ |K|),
where |K| is the cache size.

Iterative Limited Discrepancy Search with DQN
Iterative limited discrepancy search (ILDS) (Harvey and
Ginsberg 1995) is a search strategy commonly used when
we have a good prior on the quality of the value selection
heuristic used for driving the search. The idea is to restrict
the number of decisions deviating from the heuristic choices
(i.e., a discrepancy) by a threshold. By doing so, the search
will explore a subset of solutions that are likely to be good
according to the heuristic while giving a chance to recon-
sider the heuristic selection which may be sub-optimal. This
mechanism is often enriched with a procedure that iteratively
increases the number of discrepancies allowed once a level
has been fully explored.

As ILDS requires a good heuristic for the value-selection,
it is complementary with a value-based RL agent, such as
DQN. After the training, the agent gives a parametrized
state-action value function Q̂(s, a,w), and the greedy policy
argmaxaQ̂(s, a,w) can be used for the value-selection heuris-
tic, which is intended to be of a high, albeit non-optimal,
quality. The variable ordering must follow the same order
as the DP model in order to keep the consistency with both
encoding.

Algorithm 2: ILDS-DQN Search Procedure.
. Pre: Qp is a COP having a DP formulation.
. Pre: w is a trained weight vector.
. Pre: I is the threshold of the iterative LDS.

〈X,D,C,O〉 := CPEncoding(Qp)
c? = −∞, K = ∅
for i from 0 to I do

Ψ := LDS-search(〈X,D,C,O〉, i)
while Ψ is not completed do

s := encodeStateRL(Ψ)
x := takeFirstNonAssignedVar(X)
if s ∈ K then

v := peek(K, s)
else

v := argmaxu∈D(x)Q̂(s, u,w)

end
K := K ∪ {〈s, v〉}
branchAndUpdate(Ψ,x, v)

end
c? := max

(
c?,bestSolution(Ψ)

)
end
return c?

The complete search procedure we designed (ILDS-DQN)
is presented in Algorithm 2, taking as input a COP Q, a
pre-trained model with the weight vector w, and an itera-
tion threshold I for the ILDS. First, the optimization prob-
lem Q in encoded into a CP model. Then, for each num-
ber i ∈ {1, . . . , I} of discrepancies allowed, a new search
Ψ is initialized and executed on Q. Until the search is not
completed, a RL state s is obtained from the current CP
state (encodeStateRL). The first non-assigned variable
xi of the DP is selected and is assigned to the value max-
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imizing the state-action value function Q̂(s, a,w). All the
search mechanisms inherent of a CP solver but not related
to our contribution (propagation, backtracking, etc.), are ab-
stracted in the branchAndUpdate function. Finally, the
best solution found during the search is returned. The cache
mechanism (K) introduced for the BaB search is reused. The
worst-case bounds are the same as BaB-DQN presented in
the main manuscript: O(dm) for the time complexity, and
O(d ×m + |K|) for the space complexity, where m is the
number of actions of the DP model, d is the maximal domain
size, and |K| is the cache size.

Restart-Based Search with PPO
Restart-based search (RBS) is another search strategy, which
involves multiple restarts to enforce a suitable level of explo-
ration. The idea is to execute the search, to stop it when a
given threshold is reached (i.e., execution time, number of
nodes explored, number of failures, etc.), and to restart it.
Such a procedure works only if the search has some random-
ness in it, or if new information is added along the search
runs. Otherwise, the exploration will only consider similar
sub-trees. A popular design choice is to schedule the restart
on the Luby sequence (Luby, Sinclair, and Zuckerman 1993),
using the number of failures for the threshold, and branch-
and-bound for creating the search tree.

The sequence starts with a threshold of 1. Each next parts
of the sequence is the entire previous sequence with the last
value of the previous sequence doubled. The sequence can
also be scaled with a factor σ, multiplying each element. As
a controlled randomness is a key component of this search, it
can naturally be used with a policy π(s,w) parametrized with
a policy gradient algorithm. By doing so, the heuristic ran-
domly selects a value among the feasible ones, and according
to the probability distribution of the policy through a softmax
function. It is also possible to control the exploration level
by tuning the softmax function with a standard Boltzmann
temperature τ . The complete search process is depicted in
Algorithm 3. Note that the cache mechanism is reused in or-
der to store the vector of action probabilities for a given state.
The worst-case bounds are the same as BaB-DQN presented
in the main manuscript: O(dm) for the time complexity, and
O(d ×m + |K|) for the space complexity, where m is the
number of actions of the DP model, d is the maximal domain
size and, |K| is the cache size.

Experimental Results
The goal of the experiments is to evaluate the efficiency of
the framework for computing solutions of challenging COPs
having a DP formulation. To do so, comparisons of our three
learning-based search procedures (BaB-DQN, ILDS-DQN,
RBS-PPO) with a standard CP formulation (CP-model),
stand-alone RL algorithms (DQN, PPO), and industrial solvers
are performed. Three NP-hard problems are considered in the
main manuscript: the travelling salesman problem with time
windows (TSPTW), involving non-linear constraints, and the
4-moments portfolio optimization problem (PORT), which
has a non-linear objective, and the 0-1 knapsack problem
(KNAP). In order to ease the future research in this field and

Algorithm 3: RBS-PPO Search Procedure.
. Pre: Qp is a COP having a DP formulation.
. Pre: w is a trained weight vector.
. Pre: I is the number of restarts to do.
. Pre: σ is the Luby scale factor.
. Pre: τ is the softmax temperature.

〈X,D,C,O〉 := CPEncoding(Qp)
c? = −∞, K = ∅
for i from 0 to I do
L = Luby(σ, i)
Ψ := BaB-search(〈X,D,C,O〉,L)
while Ψ is not completed do

s := encodeStateRL(Ψ)
x := takeFirstNonAssignedVar(X)
if s ∈ K then

p := peek(K, s)
else

p := π(s,w)
end
K := K ∪ {〈s, p〉}
v ∼D(x) softmaxSelection(p, τ)
branchAndUpdate(Ψ,x, v)

end
c? := max

(
c?,bestSolution(Ψ)

)
end
return c?

to ensure reproducibility, the implementation, the models, the
results, and the hyper-parameters used are released with the
permissive MIT open-source license. Algorithms used for
training have been implemented in Python and Pytorch
(Paszke et al. 2019) is used for designing the neural networks.
Library DGL (Wang et al. 2019) is used for implementing
graph embedding, and SetTransformer (Lee et al. 2018)
for set embedding. The CP solver used is Gecode (Schulte,
Lagerkvist, and Tack 2006), which has the benefit to be open-
source and to offer a lot of freedom for designing new search
procedures. As Gecode is implemented in C++, an oper-
ability interface with Python code is required. It is done
using Pybind11 (Jakob, Rhinelander, and Moldovan 2017).
Training time is limited to 48 hours, memory consumption
to 32 GB and 1 GPU (Tesla V100-SXM2-32GB) is used per
model. Models are trained with a single run. A new model
is recorded after each 100 episodes of the RL algorithm and
the model achieving the best average reward on a valida-
tion set of 100 instances generated in the same way as for
the training is selected. The final evaluation is done on 100
other instances (still randomly generated in the same man-
ner) using Intel Xeon E5-2650 CPU with 32GB of RAM
and a time limit of 60 minutes. Detailed information about
the hyper-parameters tested and selected are proposed in the
supplementary material.

Travelling Salesman Problem with Time Windows
Detailed information about this case study (TSPTW) and
the baselines used for comparison is proposed in supplemen-
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tary material. In short, OR-Tools is an industrial solver
developed by Google, PPO uses a beam-search decoding of
width 64, and CP-nearest solves the DP formulation with
CP, but without the learning part. A nearest insertion heuristic
is used for the value-selection instead. Results are summa-
rized in Table 1. First of all, we can observe that OR-Tools,
CP-model, and DQN are significantly outperformed by the
hybrid approaches. Good results are nevertheless achieved
by CP-nearest, and PPO. We observe that the former
is better to prove optimality, whereas the latter is better to
discover feasible solutions. However, when the size of in-
stances increases, both methods have more difficulties to
solve the problem and are also outperformed by the hybrid
methods, which are both efficient to find solutions and to
prove optimality. Among the hybrid approaches, we observe
that DQN-based searches give the best results, both in finding
solutions and in proving optimality.

We also note that caching the predictions is useful. Indeed,
the learned heuristics are costly to use, as the execution time
to finish the search is larger when the cache is disabled. For
comparison, the average execution time of a value-selection
without caching is 34 milliseconds for BaB-DQN (100 cities),
and goes down to 0.16 milliseconds when caching is enabled.
For CP-nearest, the average time is 0.004 milliseconds.
It is interesting to see that, even being significantly slower
than the heuristic, the hybrid approach is able to give the best
results.

4-Moments Portfolio Optimization (PORT)
Detailed information about this case study (Atamtürk and
Narayanan 2008; Bergman and Cire 2018) is proposed in
supplementary material. In short, Knitro and APOPT are
two general non-linear solvers. Given that the problem is
non-convex, these solvers are not able to prove optimality as
they may be blocked in local optima. The results are sum-
marized in Tables 2 and 3. When optimality is not proved,
hybrid methods are run until the timeout. Let us first consider
the continuous case (Table 2). For the smallest instances,
we observe that BaB-DQN?, ILDS-DQN?, and CP-model
achieve the best results, although only BaB-DQN? has been
able to prove optimality for all the instances. For larger contin-
uous instances, the non-linear solvers achieve the best results,
but are nevertheless closely followed by RBS-PPO?. When
the coefficients of variables are floored (Table 3), the objec-
tive function is not continuous anymore, making the problem
harder for non-linear solvers, which often exploit information
from derivatives for the solving process. Such a variant is not
supported by APOPT. Interestingly, the hybrid approaches do
not suffer from this limitation, as no assumption on the DP
formulation is done beforehand. Indeed, ILDS-DQN? and
BaB-DQN? achieve the best results for the smallest instances
and RBS-PPO? for the larger ones.

0-1 Knapsack Problem (KNAP)
Detailed information about this case study is proposed in
supplementary material. In short, COIN-OR is a integer pro-
gramming solver, and three types of instances, that differ
from the correlation between the weight and the profit of
each item, are considered (Pisinger 2005). The results (size

of 50, 100 and 200 with three kinds of weight/profit correla-
tions - easy, medium, and hard) are summarized in Table 4.
For each approach, the optimality gap (i.e., the ratio with the
optimal solution) is proposed. First, it is important to note
that an integer programming solver, as COIN-OR (Saltzman
2002), is far more efficient than CP for solving the knapsack
problem, which was already known. For all the instances
tested, COIN-OR has been able to find the optimal solution
and to prove it. No other methods have been able to prove
optimality for all of the instances of any configuration. We
observe that RBS-PPO? has good performances, and outper-
forms the RL and CP approaches. Methods based on DQN
seems to have more difficulties to handle large instances,
unless they are strongly correlated.

Discussion and Limitations
First of all, let us highlight that this work is not the first
one attempting to use ML for guiding the decision process
of combinatorial optimization solvers (He, Daume III, and
Eisner 2014). According to the survey and taxonomy of (Ben-
gio, Lodi, and Prouvost 2018), this kind of approach belongs
to the third class (Machine learning alongside optimization
algorithms) of ML approaches for solving COPs. It is for
instance the case of (Gasse et al. 2019), which propose to aug-
ment branch-and-bound procedures using imitation learning.
However, their approach requires supervised learning and is
only limited to (integer) linear problems. The differences we
have with this work are that (1) we focus on COPs modelled
as a DP, and (2) the training is entirely based on RL. Thanks
to CP, the framework can solve a large range of problems, as
the TSPTW, involving non-linear combinatorial constraints,
or the portfolio optimization problem, involving a non-linear
objective function. Another limitation of imitation learning is
that it requires the solver to be able to find a least a feasible
solution for collecting data, which can be challenging for
some problems as the TSPTW. Thanks to the use of rein-
forcement learning, our framework does not suffer from this
restriction.

Besides its expressiveness, and in contrast to most of the re-
lated works solving the problem end-to-end (Bello et al. 2016;
Kool, Van Hoof, and Welling 2018; Deudon et al. 2018; Joshi,
Laurent, and Bresson 2019), our approach is able to deal with
problems where finding a feasible solution is difficult and is
able to provide optimality proofs. This was considered by
(Bengio, Lodi, and Prouvost 2018) as an important challenge
in learning-based methods for combinatorial optimization.
Note also that compared to failure-driven explanation-based
learning (Kambhampati 1998), hybridation with ant colony
optimization (Meyer 2008; Khichane, Albert, and Solnon
2010; Di Gaspero, Rendl, and Urli 2013), and related mech-
anisms (Katsirelos and Bacchus 2005; Xia and Yap 2018),
where learning is used to improve the search of the solving
process for a specific instance, the knowledge learned by
our approach can be used to solve new instances. The clos-
est related work we identified is the approach of (Antuori
et al. 2020) that has been developed in parallel by another
team independently. Reinforcement learning is also lever-
aged for directing the search of a constraint programming
solver. However, this last approach is restricted to a realistic
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Approaches 20 cities 50 cities 100 cities

Type Name Success Opt. Gap Time Success Opt. Gap Time Success Opt. Gap Time

Constraint programming
OR-Tools 100 0 0 < 1 0 0 - t.o. 0 0 - t.o.
CP-model 100 100 0 < 1 0 0 - t.o. 0 0 - t.o.
CP-nearest 100 100 0 < 1 99 99 - 6 0 0 - t.o.

Reinforcement learning DQN 100 0 1.91 < 1 0 0 - < 1 0 0 - < 1
PPO 100 0 0.13 < 1 100 0 0.86 5 21 0 - 46

Hybrid (no cache) BaB-DQN 100 100 0 < 1 100 99 0 2 100 52 0.06 20
ILDS-DQN 100 100 0 < 1 100 100 0 2 100 53 0.06 39
RBS-PPO 100 100 0 < 1 100 80 0.02 12 100 0 0.18 t.o.

Hybrid (with cache) BaB-DQN? 100 100 0 < 1 100 100 0 < 1 100 91 0 15
ILDS-DQN? 100 100 0 < 1 100 100 0 1 100 90 0 15
RBS-PPO? 100 100 0 < 1 100 99 0 2 100 11 0.04 32

Table 1: Results for TSPTW. Methods with ? indicate that caching is used, Success reports the number of instances where at least
a solution has been found (among 100), Opt. reports the number of instances where the optimality has been proven (among 100),
Gap reports the average gap with the best solution found by any method (in %, and only including the instances having only
successes) and Time reports the average execution time to complete the search (in minutes, and only including the instances
where the search has been completed; when the search has been completed for no instance t.o. (timeout) is indicated.

Approaches 20 items 50 items 100 items

Type Name Sol. Opt. Time Sol. Opt. Time Sol. Opt. Time

Non-linear solver KNITRO 343.79 0 < 1 1128.92 0 < 1 2683.55 0 < 1
APOPT 342.62 0 < 1 1127.71 0 < 1 2678.48 0 < 1

Constraint programming CP-model 356.49 98 8 1028.82 0 t.o. 2562.59 0 t.o.

Reinforcement learning DQN 306.71 0 < 1 879.68 0 < 1 2568.31 0 < 1
PPO 344.95 0 < 1 1123.18 0 < 1 2662.88 0 < 1

Hybrid (with cache)
BaB-DQN? 356.49 100 < 1 1047.13 0 t.o. 2634.33 0 t.o.
ILDS-DQN? 356.49 100 < 1 1067.20 0 t.o. 2639.18 0 t.o.
RBS-PPO? 356.35 0 t.o. 1126.09 0 t.o. 2674.96 0 t.o.

Table 2: Results for PORT (continuous coefficients). Best results are highlighted, Sol. reports the best average objective profit
reached, Opt. reports the number of instances where the optimality has been proven (among 100), and Time reports the average
execution time to complete the search (in minutes, and only including the instances where the search has been completed; when
the search has been completed for no instance t.o. -timeout- is indicated).

Approaches 20 items 50 items 100 items

Type Name Sol. Opt. Time Sol. Opt. Time Sol. Opt. Time

Non-linear solver KNITRO 211.60 0 < 1 1039.25 0 < 1 2635.15 0 < 1
APOPT - - - - - - - - -

Constraint programming CP-model 359.81 100 t.o. 1040.30 0 t.o. 2575.64 0 t.o.

Reinforcement learning DQN 309.17 0 < 1 882.17 0 < 1 2570.81 0 < 1
PPO 347.85 0 < 1 1126.06 0 < 1 2665.68 0 < 1

Hybrid (with cache)
BaB-DQN? 359.81 100 < 1 1067.37 0 t.o. 2641.22 0 t.o.
ILDS-DQN? 359.81 100 < 1 1084.21 0 t.o. 2652.53 0 t.o.
RBS-PPO? 359.69 0 t.o. 1129.53 0 t.o. 2679.57 0 t.o.

Table 3: Results for PORT (discrete coefficients). Best results are highlighted, Sol. reports the best average objective profit
reached, Opt. reports the number of instances where the optimality has been proven (among 100), and Time reports the average
execution time to complete the search (in minutes, and only including the instances where the search has been completed; when
the search has been completed for no instance t.o. -timeout- is indicated).

transportation problem. In our work, we proposed a generic
approach that can be used for a larger range of problems
thanks to the DP formulation, but without considering realis-
tic instances. Then, we think that the ideas of both works are
complementary.

In most situations, experiments show that our approach
can obtain more and better solutions than the other methods
with a smaller execution time. However, they also highlighted
that resorting to a neural network prediction is an expensive
operation to perform inside a solver, as it has to be called
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Approaches 50 items 100 items 200 items

Type Name Easy Medium Hard Easy Medium Hard Easy Medium Hard

Integer programming COIN-OR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Constraint programming CP-model 0.30 2.35 2.77 16.58 5.99 5.44 26.49 7.420 6.19

Reinforcement learning DQN 2.11 1.97 1.36 2.08 4.87 1.32 35.88 8.98 5.99
PPO 0.08 0.27 0.21 0.16 0.42 0.14 0.37 0.80 0.80

Hybrid (with cache)
BaB-DQN? 0.02 0.01 0.00 0.44 1.73 0.60 4.20 7.84 0.00
ILDS-DQN? 0.03 0.05 0.01 0.38 2.90 0.35 30.33 7.80 4.91
RBS-PPO? 0.01 0.01 0.00 0.01 0.12 0.04 0.11 0.90 0.28

Table 4: Results for KNAP. The best results after COIN-OR are highlighted, and the average optimality gap is reported. A
timeout is always reached for the hybrids and the standard CP method.

numerous times during the solving process. It is currently a
bottleneck, especially if we would like to consider larger in-
stances. It is why caching, despite being a simple mechanism,
is important. Another possibility is to reduce the complexity
of the neural network by compressing its knowledge, which
can for instance be done using knowledge-distillation (Hin-
ton, Vinyals, and Dean 2015) or by building a more compact
equivalent network (Serra, Kumar, and Ramalingam 2020).
Note that the Pybind11 binding between the Python and C++
code is also a source of inefficiency. Another solution would
be to implement the whole framework into a single, efficient,
and expressive enough, programming language. Although
not considered in this paper, it is worth mentioning that vari-
able ordering also plays an important role in the efficiency
of CP solvers. Learning a good variable ordering is another
promising direction but raises additional challenge, such as a
correct design of the reward.

Only three case studies are considered, but the approach
proposed can be easily extended to other COPs that can be
modeled as a DP. Many COPs have an underlying graph
structure, and can then be represented by a GNN (Khalil et al.
2017), and the set architecture is also general for modelling
COPs as they can take an arbitrary number of variables as
input. DP encodings are also pervasive in the optimization
literature and, similar to integer programming, have been
traditionally used to model a wide range of problem classes
(Godfrey and Powell 2002; Topaloglou, Vladimirou, and
Zenios 2008; Tang, Mu, and He 2017).

An important assumption that is done is that we need a
generator able to create random instances that follows the
same distribution that the ones we want to solve, or enough
historical data of the same distribution, in order to train the
models. This can be hardly achieved for some real-world
problems where the amount of available data may be less
important. Analyzing how this assumption can be relaxed is
an interesting and important direction for future work.

Conclusion
The goal of combinatorial optimization is to find an opti-
mal solution among a finite set of possibilities. There are
many practical and industrial applications of COPs, and ef-
ficiently solving them directly results in a better utilization
of resources and a reduction of costs. However, since the
number of possibilities grows exponentially with the prob-

lem size, solving is often intractable for large instances. In
this paper, we propose a hybrid approach, based on both
deep reinforcement learning and constraint programming,
for solving COPs that can be formulated as a dynamic pro-
gram. To do so, we introduced an encoding able to express a
DP model into a reinforcement learning environment and a
constraint programming model. Then, the learning part can
be carried out with reinforcement learning, and the solving
part with constraint programming. The experiments carried
out on the travelling salesman problem with time windows,
the 4-moments portfolio optimization, and the 0-1 knapsack
problem show that this framework is competitive with stan-
dard approaches and industrial solvers for instances up to 100
variables. These results suggest that the framework may be a
promising new avenue for solving challenging combinatorial
optimization problems. In future work, we plan to tackle in-
dustrial problems with realistic instances in order to assess
the applicability of the approach for real-world problems.
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