
An Improved Upper Bound for SAT

Huairui Chu, Mingyu Xiao∗ , Zhe Zhang
School of Computer Science and Engineering,

University of Electronic Science and Technology of China
a1444933023@163.com, myxiao@gmail.com, 2017060106011@std.uestc.edu.cn

Abstract

We show that the CNF satisfiability problem can be solved
O∗(1.2226m) time, where m is the number of clauses in the
formula, improving the known upper bounds O∗(1.234m)
given by Yamamoto 15 years ago and O∗(1.239m) given by
Hirsch 22 years ago. By using an amortized technique and
careful case analysis, we successfully avoid the bottlenecks
in previous algorithms and get the improvement.

1 Introduction
The problem of testing the satisfiability of a proposition-
al formula in conjunctive normal form (CNF), denoted by
SAT, is one of the most fundamental problems in computer
science. It is the first problem proved to be NP-complete
(Cook 1971) and plays an important role in computational
complexity and artificial intelligence (Garey and Johnson
1979). To make the problem tractable, a large number of
references studied it from the view of heuristic algorithms,
approximation algorithms, randomized algorithms, and ex-
act algorithms. In this paper, we study exact algorithms for
SAT with guaranteed theoretical running time bounds.

1.1 Related Works
To evaluate the running time bound, there are three frequent-
ly used measures: the number of variables n, the number
of clauses m, and the length of the whole input L, i.e., the
sum of the lengths of all clauses. The trivial algorithm to
check all possible assignments runs inO∗(2n) time1. A non-
trivial bound better than O∗(2n) was obtained in (Dantsin,
Hirsch, and Wolpert 2004), which isO∗(2n(1−2

√
1/n log m)).

Later better upper bounds were introduced in (Dantsin and
Wolpert 2004) and (Schuler 2005). However, no algorithm
with running time bound O∗(cn) for some constant c < 2
was found, despite decades of hard work. The nonexistence
of these algorithms is known as the Strong Exponential Time
Hypothesis (SETH) (Impagliazzo and Paturi 2001). On the
other hand, for a restricted version, the k-SAT problem

∗The corresponding author.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The notation O∗ suppresses all polynomially bounded factors.
For two functions f and g, we write f(n) = O∗(g(n)) if f(n) =
g(n)nO(1).

running times references
O∗(1.260m) (Monien, Speckenmeyer, and Vornberger 1981)
O∗(1.239m) (Hirsch 1998)
O∗(1.234m) (Yamamoto 2005)
O∗(1.2226m) This paper

Table 1: Previous and our upper bounds for SAT

(where each clause in the CNF-formula contains at most k
literals), a series of significant results have been developed.
A branch-and-bound technique was introduced in (Monien
and Speckenmeyer 1985) and (Dantsin 1983), which can
solve k-SAT in O∗((αk)n) time where αk is the largest root
of the function x = 2 − 1/xk−1. After this, a series of
improvements on the upper bounds for k-SAT have been
made. Most of them are based on derandomization, such
as the O∗(2(1−1/2k)n) bound in (Paturi, Pudlák, and Zane
1997) and theO∗((2−2/(k+1))n) bound in (Dantsin et al.
2002). Recently a new randomized algorithm for k-SAT
with a better running time bound was introduced (Hansen
et al. 2019). However, the running time bound became com-
plicated to present.

When the length of the input L is taken as the
measure, from the first algorithm with running time
bound O∗(1.0927L) by Gelder (1988), the result was
improved frequently. Let us quote the bound O∗(1.0801L)
by Kullmann and Luckhardt (1997), O∗(1.0758L) by
Hirsch (1998), O∗(1.074L) by Hirsch (2000), and
O∗(1.0663L) by Wahlström (2005). Currently, the best
known bound was O∗(1.0652L) obtained by Chen and
Liu (2009).

Another important measure is the number of clauses m.
Monien, Speckenmeyer, and Vornberger (1981) gave an
O∗(1.260m)-time algorithm in 1981, which was improved
to O∗(1.239m) by Hirsch (1998) in 1998. Then it took
seven years for Yamamoto to slightly improve Hirsch’s
bound to O∗(1.234m) (Yamamoto 2005). In this paper, we
will significantly improve Yamamoto’s bound obtained 15
years ago. Previous and our results are listed in Table 1.

1.2 The Techniques
All algorithms in Table 1 are branch-and-search algorithm-
s. The branch-and-search idea is simple and practical: we
iteratively branch on a literal into two branches by letting

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3707

it be 1 or 0. Consider an (a, b)-literal (a literal such that
itself appears in a clauses and the negation of it appears in
b clauses). In the branching where the literal is assigned 1,
we can reduce a clauses; in the branching where the literal is
assigned 0, we can reduce b clauses. We hope that the values
of a and b are larger so that we can reduce the instance to
a greater extent. There are several developed techniques to
deal with (a, b)-literals with small values of a and b, say
one of them is at most 2. Thus the worst case will become
to branch on a (3, 3)-literal, in which we can only get a
branching vector of (3, 3) and a branching factor 1.2600. We
get the bound of O∗(1.260m) (Monien, Speckenmeyer, and
Vornberger 1981). It seems that branching on (3, 3)-literals
is unavoidable. Hirsch (1998) showed that after branching
on a (3, 3)-literal we can always branch with a branching
vector at least (4, 3) or (3, 4) subsequently. Combining the
bad branching vector (3, 3) with the good branching vector
(4, 3) or (3, 4), he got a better worst-case and then improved
the running time bound to O∗(1.239m). Yamamoto (2005)
further showed that the worst cases in Hirsch’s algorithm
would not always happen: we can further branch with (4, 3)
or (3, 4) at the third level, i.e., after branching with (4, 3)
or (3, 4) after branching with (3, 3). Yamamoto considered
more levels of the branching but could only slightly improve
the bound to O∗(1.234m). The improvement is very slow,
and we seem to have reached the bottleneck.

Our algorithm is still a branch-and-search algorithm, fol-
lowing the main framework in the previous algorithms. We
still can not avoid branching on (3, 3)-literals, otherwise, the
worst case would be to branch on (3, 4)-literals or (4, 3)-
literals, and the bound would be improved to O∗(1.2208m).
We also show that after branching on a (3, 3)-literal we can
further branch with better branching vectors. However, the
traditional analysis to combine several levels of branchings
into a big branching is somewhat complicated and limited.
To exhibit the relations among good and bad branchings in
our algorithm and also to use as many good branchings as
possible to even out the bad ones, we will use an amortized
technique to analyze the running time bound. To get the
claimed result, we also need to use some new reduction and
branching rules and deep analysis of the structure.

Due to the limited space, the proofs of lemmas marked
with ’*’ and one case analysis are omitted, which can be
found in the full version of this paper (Chu, Xiao, and Zhang
2020).

2 Preliminaries
Let V = {x1, x2, . . . , xn} denote a set of n Boolean vari-
ables. For each variable xi (i = 1, 2, 3, . . . , n), a literal is
either xi or the negation of it xi (we use x to denote the
negation of a literal x, and then x = x). A clause on V is
a set of literals on V without a negation of any literal in it,
which means x and x cannot be contained simultaneously
in a clause for any variable x ∈ V . A CNF-formula on
V is a sequence of clauses F = {C1, C2, C3, . . . , Cm}.
We will use mF to denote the number of clauses in F . An
assignment for V is a map A : V → {0, 1}. A clause Cj

on V is satisfied by A if and only if there exists a literal x
in Cj such that A(x) = 1. A CNF-formula is satisfied by an

assignmentA if and only if each clause in it is satisfied byA.
An assignment A that makes a CNF-formula F satisfied is
called a satisfying assignment for F . Given a CNF-formula
F on a set of variables V , the SAT problem is to check the
existence of a satisfying assignment for F .

The degree of a literal x in F is the number of clauses in
F containing it. The total degree of a literal x is the degree
of x plus the degree of x. If the degree of x is a (resp., at least
a or at most a) and the degree of x is b, we say x is an (a, b)-
literal (resp., an (a+, b)-literal or an (a−, b)-literal). Simi-
larly, we can define (a, b+)-literal, (a, b−)-literal, (a+, b+)-
literal, (a−, b−)-literal and so on. Note that a literal x is
an (a, b)-literal if and only if x is a (b, a)-literal. A clause
containing exactly c literals is called a c-clause. A pair of
literals x and y is called a coincident pair if there are at least
two clauses containing them simultaneously.

Our algorithm will first apply reduction rules to reduce
the instance and then apply branching rules to search for a
solution when the instance can not be further reduced. Next,
we first introduce the reduction rules.

3 Reduction Rules
We have five reduction rules. The first two are easy to
observe and used in the literature (Davis and Putnam 1960).
R-Rule 1. (Elimination of 1-clauses and pure literals) If
the CNF-formula contains a 1-clause {x} or an (a, 0)-literal
x with a > 0, assign x = 1.
R-Rule 2. (Elimination of subsumptions) If the CNF-
formula contains two clauses C and C ′ such that C ⊆ C ′,
then delete C ′.

The following proposition is known as the resolution tech-
nique in the literature, which was first proved in (Robinson
1965), and then used in many SAT algorithms.
Definition 1. (Resolution on a variable) Let F be a CNF-
formula containing a variable x. Let E1, E2, . . . , Ea be the
clauses containing x and D1, D2, . . . , Db be the clauses
containing x̄. Resolving on variable x is to construct a
new CNF-formula F\x by the following method: for each
i ∈ {1, 2, . . . , a} and j ∈ {1, 2, . . . , b}, add the clause
Fij = Ei ∪ Dj \ {x, x̄} to the formula if it does not
contain both a literal and the negation of it; delete Ei

(i ∈ {1, 2, . . . , a}) and Dj (j ∈ {1, 2, . . . , b}) from the
formula.

We may always use F\x to denote the CNF-formula after
resolving a variable x in F .
Proposition 1. (Robinson 1965) Let F be a CNF-formula
containing a variable x and F\x be the CNF-formula after
resolving on variable x. Then F has a satisfying assignment
if and only if F\x does.
R-Rule 3. (Resolving on some variables) If there is an
(a, b)-literal x such that a = 1 and b ≥ 1 or a = 2 and
b = 2, then resolve x in F , i.e., replace F with F\x.

We also introduce a simple but powerful concept, based
on which we can design several reduction rules.
Definition 2. (Autarkic sets) A setX of literals is called an
autarkic set if each clause containing a negation of a literal
in X also contains a literal in X .

3708

Lemma 1. (*) If a CNF-formula F has a satisfying assign-
ment, then it has a satisfying assignment where all literals in
an autarkic set are assigned 1.

The following reduction rule was firstly used in (Hirsch
1998). It is an application of a special autarkic set.
R-Rule 4. (Hirsch 1998) If each clause containing a
(2, 3+)-literal also contains a (3+, 2)-literal, assign 1 to
each (3+, 2)-literal.

Our algorithm also needs to eliminate another kind of
autarkic sets.
R-Rule 5. LetX be the set of (4, 3)-literals x such that there
is a clause containing both x and a (3, 3+)-literal. If each
clause containing a negation of a literal in X also contains
a (4, 3)-literal, assign 1 to each literal in X .

Each clause containing a negation of a literal x ∈ X
also contains a (4, 3)-literal y. Since x̄ is a (3, 4)-literal, we
know that y is also in X . Thus X is an autarkic set. In this
reduction rule, the requirement of ‘a clause containing both
x and a (3, 3+)-literal’ plays no role in establishing X to
be an autarkic set. This requirement is used to identify a
particular subset of (4, 3)-literals, which will be useful in
our analysis.
Lemma 2. After applying any of the above reduction rules,
the satisfiability of the formula does not change. Except for
the application of R-Rule 3 on a (2, 2)-literal where the
number of clauses does not increase, each application of
other reduction rules decreases the clause number by at
least 1.
Definition 3. (Reduced formulas) A formula is called re-
duced if none of the five reduction rules can be applied to
the formula.

For an instance F , we will use R(F) to denote the result-
ing reduced formula after iteratively applying the reduction
rules on F .
Lemma 3. (*) Given a formula, we can apply the five
reduction rules in polynomial time to change it to a reduced
formula.
Lemma 4. (*) Let F be a reduced formula. Then there is
no 1-clause, (2, 2)-literal or (1−, a)-literal with a ≥ 1 in F .
Furthermore, the total degree of any literal in F is at least
5.

4 Branch-and-Search Paradigms
Our algorithm will first apply our reduction rules to reduce
the instance. When no reduction rule can be applied any-
more, we will branch to search for a solution. Our branching
rule is simple. We take a literal x and branch on it into two
sub-instances. In one sub-instance we assign x = 1 and in
the other one we assign x = 0, i.e, we get two sub instances
Fx and Fx̄. Selecting different literals to branch will lead
to different algorithms. We want to select ‘good’ literals to
branch on such that the size of the sub instances can be
reduced fast.

We use the number m of clauses to evaluate the size
of the formula. Assume the number of clauses of the cur-
rent instance is m. If a branching operation branches into

l sub-branches such that the number of clauses in the i-
th sub-instance decreases by at least ci, we say this op-
eration branches with a branching vector (c1, c2, . . . , cl).
The largest root of the function f(x) = 1 −

∑l
i=1 x

−ci is
called the branching factor. If γ is the maximum branching
factor among all branching factors in an algorithm, then
the running time of the algorithm is bounded by O∗(γm).
More details about the analysis and how to solve recur-
rences can be found in the monograph (Fomin and Kratsch
2010). The following property is frequently used in the
paper: for two branching vectors C = (c1, c2, . . . , cl) and
B = (b1, b2, . . . , bl), if it holds that ci ≥ bi for each i, then
we say B covers C. The corresponding branching factor of
a branching vector C is not greater than the corresponding
branching factor of a branching vector that covers C.

4.1 Good Formulas & Bad Formulas
Similar to the technique used by Niedermeier and Ross-
manith to solve the 3-hitting set problem (Niedermeier and
Rossmanith 2003), we also classify formulas in our algo-
rithm into two classes: good formulas and bad formulas.
For good formulas, we may be able to branch with good
branching vectors. For bad formulas, we may only be able to
get bad branching vectors. We will show that bad formulas
will not appear frequently. Then we can use an amortized
analysis to get better branching vectors. To make the amor-
tized analysis easy to follow, we will use the substitution
method to prove our bounds. The precise definitions of good
and bad formulas are given below.
Definition 4. (Good formulas & bad formulas) A formula
F is a bad formula if and only if the following four condi-
tions are satisfied
(1) F only contains (3, 3)-literals, (3, 4)-literals and (4, 3)-

literals.
(2) There is no coincident pair.
(3) There is no 2-clause.
(4) There is no clause containing a (4, 3)-literal and a

(3, 3+)-literal simultaneously.
A formula is good if it is not a bad formula.

4.2 The Algorithm and Its Analysis
The main steps of our algorithm are listed in Algorithm 1.
The precise descriptions and analysis of lines 11 and 14 are
delayed to Section 6.1 and Section 6.2.

Recall that, for an instance F , R(F) is the resulting
reduced instance after applying the reduction rules onF , and
mF is the number of clauses in F . We have the following
important lemmas, which are the base for us to establish the
running time bound.
Lemma 5. Let F be a CNF-formula. It holds thatmR(F) ≤
mF . Furthermore, if F is good, then either R(F) is good or
mR(F) ≤ mF − 1.

Proof. By Lemma 2, we have that mR(F) ≤ mF . Next, we
assume that F is good.

If R(F) = F , obviously R(F) is good. So we assume
that some R-Rules are applied. By Lemma 2, we know that

3709

Algorithm 1 SAT(F)

1: if {F is not reduced} then
2: Iteratively apply our reduction rules to reduce it.
3: end if
4: if {F is empty} then
5: Return true.
6: end if
7: if {F contains an empty clause} then
8: Return false.
9: end if

10: if {F is a bad formula} then
11: Apply branching rules in Sec.6.1 to search for a solu-

tion.
12: end if
13: if {F is a good formula} then
14: Apply branching rules in Sec.6.2 to search for a solu-

tion.
15: end if

if mR(F) = mF then only R-Rule 3 is applied on (2, 2)-
literals. For any F ′ with a (2, 2)-literal x in it, we show that
after applying R-Rule 3 on x the resulting instance F ′\x is
good. Let the two clauses containing x in F ′ be D1 and D2,
the two clauses containing x̄ beE1 andE2. IfmF ′ = mF ′\x ,
then all Eij = Di ∪ Ej \ {x, x̄} for each 1 ≤ i, j ≤ 2 are
in F ′\x. If one of D1, D2, E1 and E2 contains at least three
literals, then we will get some coincident pair. Otherwise,
each Eij is a 2-clause. For any case, F ′\x is good.

Lemma 6. If the formulaF is reduced and bad, then our al-
gorithm can branch with either a branching vector covered
by (3, 4) or (4, 3), or a branching vector (3, 3) such that the
formula in each branch is good.

Lemma 7. If the formula to branch is reduced and good,
then our algorithm can branch with either a branching vec-
tor covered by one of (3, 5), (5, 3), and (4, 4), or a branching
vector (3, 4) or (4, 3) such that the formula in each branch
is good.

The proof of Lemma 6 and Lemma 7 are given in Section
6.1 and Section 6.2, respectively. Next, we prove the running
time bound of the algorithm based on Lemma 5, Lemma 6,
and Lemma 7.

Theorem 1. SAT can be solved in O∗(1.2226m) time.

Proof. We use T (F) to denote the size of the search tree
(number of nodes in the tree) generated by the algorithm
running on an instance F . We only need to prove that
T (F) = O(1.2226mF). To prove the theorem, we will show
that there are two constants c1 = 2 and c2 = c1/0.9136 such
that

T (F) ≤ c11.2226mF − 1, if F is good, (1)

and
T (F) ≤ c21.2226mF − 1, if F is bad. (2)

First of all, we show that we can assume F is a reduced
instance without loss of generality. If the current instance F

withm clauses is not a reduced one, our algorithm will apply
reduction rules on it to get a reduced instance F∗ with m∗
clauses. To prove that (1) and (2) hold forF , we only need to
prove that (1) and (2) hold forF∗. The reason is based on the
following observations. If both ofF andF∗ are bad or good,
then it holds that ci1.2226mF∗ ≤ ci1.2226mF sincemF∗ ≤
mF by Lemma 5. If F is bad and F∗ is good, then it holds
that c11.2226mF∗ ≤ c21.2226mF . If F is good and F∗ is
bad, then it still holds that c21.2226mF∗ ≤ c11.2226mF

because now we have mF∗ ≤ mF − 1 by Lemma 5 and
then c1 < 1.2226c2.

Next, we simply assume that the instance F is reduced
and useF1 andF2 to denote the two sub instances generated
by our branching operations. We use the substitution method
to prove (1) and (2).

Assume that T (F) ≤ ci1.2226mF − 1 (where ci = c1 if
F is good and ci = c2 if F is bad) holds for all instances
F with less than m clauses. We show that it also holds for
instances with m clauses.

First, we consider the case where F is bad. According to
Lemma 6, there are two cases. For the first case of branching
with a vector (3, 4) or (4, 3), we have that
T (F) = T (R(F1)) + T (R(F2)) + 1

≤ c21.2226mR(F1) + c21.2226mR(F2) − 1

(by the assumption and c1 < c2)

≤ c21.2226mF−3 + c21.2226mF−4 − 1

≤ c21.2226mF − 1.

For the second case of branching with a vector (3, 3), the
two sub instances are good, we have that

T (F) = T (R(F1)) + T (R(F2)) + 1

≤ c11.2226mF−3 + c11.2226mF−3 − 1

≤ c21.2226mF − 1.

Second, we consider the case whereF is good. According
to Lemma 7, there are two cases.

In the first case, the branching vector is (3, 5) or (5, 3) or
(4, 4). If it is (3, 5) or (5, 3), we have that

T (F) = T (R(F1)) + T (R(F2)) + 1

≤ ci11.2226mF−3 + ci21.2226mF−5 − 1

≤ c21.2226mF−3 + c21.2226mF−5 − 1

≤ c11.2226mF − 1,

where ci1 , ci2 ∈ {1, 2}. If the branching vector is (4, 4), we
have that

T (F) = T (R(F1)) + T (R(F2)) + 1

≤ ci11.2226mF−4 + ci21.2226mF−4 − 1

≤ 2c21.2226mF−4 − 1

≤ c11.2226mF − 1,

where ci1 , ci2 ∈ {1, 2}.
For the second case of branching with a vector (3, 4) or

(4, 3) such that the two sub instances are good, we have that
T (F) = T (R(F1)) + T (R(F2)) + 1

≤ c11.2226mF−3 + c11.2226mF−4 − 1

≤ c11.2226mF − 1.

3710

We have proved that (1) and (2) hold for F . Thus, it holds
that T (F) = O(1.2226mF), no matter F is good or bad.

5 Some Properties
Before giving the detailed steps of the branching operations,
we give some properties that will be used to simplify our
presentation and analysis.

In a branching operation, we need to analyze the branch-
ing vector, i.e., the number of clauses decreased in each
branching. Sometimes we can get a branching vector good
enough for our analysis, such as branching vectors (4, 4),
(3, 5), and (5, 3). Sometimes the branching vector is not
good enough and we still need to prove the remaining for-
mulas are good, which will allow us to use amortization.
Usually, we will fall into one of the following two cases:

1. Some variables are assigned values (including applying
R-Rule 1) and then some clauses are deleted because
some literals in them are assigned 1. We need to prove
that the remaining formula is good.

2. R-Rule 3 is applied and we need to prove that the remain-
ing formula is good.
We will use the following two lemmas to help us solve

these two cases.
Lemma 8. (*) Let F be a formula containing a (3−, 0+) or
(0+, 2−)-literal y. Assume the total degree of y is a > 0. If
we delete fromF at most a−1 clauses and some literals oth-
er than y and ȳ, where at least one deleted clause contains
y, then the resulting formula is good.
Corollary 1. (*) Let F be a reduced formula containing
only (3−, 3−), (2, 4+) and (4+, 2)-literals. For any literal x
in it with degree at most 4, the formula Fx is good.
Lemma 9. Let F be a formula containing a (1, 1+)-literal
x and at least two different (2−, 0+)-literals other than x
and x̄. It holds that either mF\x ≤ mF − 1 and F\x is a
good formula or mF\x ≤ mF − 2.

Proof. Let the unique clause containing x be C and the
clauses containing x̄ be D1, D2, . . . Dl. Let y and z be two
different (2−, 0+)-literals other than x and x̄, where y and z
can be each other’s negation.

It is easy to see that resolving on x will decrease the
number of clauses by at least 1. We assume that the number
of clauses decreases by exactly 1 after resolving on x and
show for this case the formula F\x must be good. For this
case, the l + 1 clauses C,D1, D2, . . . Dl are deleted and all
the l clauses Di ∪ C \ {x, x̄} (i = 1, 2, . . . , l) are added in
F\x.

Case 1. x is a (1, 1)-literal: after resolving on x, the degree
of any literal does not increase and no literal other than
x and x̄ disappears. So y and z are still (2−, 0+)-literals,
witnessing the goodness of F\x.

Case 2. x is a (1, 2+)-literal: We further distinguish two
cases: |C| ≥ 3 and |C| ≤ 2. If |C| ≥ 3, then any pair
of literals in C \ {x} will be a coincident pair in F\x. Thus,
F\x is good. If |C| ≤ 2, then at most one literal the degree of
who will increase after resolving on x, since only the degree

Cases Literals Vectors Factors
Case 1 (3, 4)-literals (3,4) 1.2208
Case 2 (3, 3)-literals (3∗, 3∗) 1.2600

Table 2: Branching for Bad Formulas

Cases Literals Vectors Factors
Case 1 (3, 5+)-literals (3,5) 1.1939
Case 1 (4+, 4+)-literals (4,4) 1.1893
Case 2 (3, 4)-literals (4,4) 1.1893

(3,5) or (5,3) 1.1939
(3∗, 4∗) or (4∗, 3∗) 1.2208

Case 3 (2, 3+)-literals (4,4) 1.1893
(3,5) or (5,3) 1.1939

(3∗, 4∗) or (4∗, 3∗) 1.2208
Case 4 (3, 3)-literals (4,4) 1.1893

(3,5) or (5,3) 1.1939
(3∗, 4∗) or (4∗, 3∗) 1.2208

Table 3: Branching for Good Formulas

of literals in C \ {x} will increase. So one of y and z will
be remained as a (2−, 0+)-literal in F\x. Thus, F\x is good.

6 Detailed Branching Operations
In this section, we show the detailed branching operations
in Algorithm 1. Recall that we only branch on reduced
formulas. The detailed branching steps for bad and good
formulas are given in Sec.6.1 and 6.2, respectively. For a bad
formula, if there exist (3, 4) or (4, 3)-literals, then deal with
them. Else we deal with (3, 3)-literals. For a good formula,
we first deal with (3, 5+) or (4+, 4+)-literals; second deal
with (3, 4)-literals (and also (4, 3)-literals); third deal with
(2, 3+)-literals (and also (3+, 2)-literals); last there are only
(3, 3)-literals and we deal with them.

The main results of these steps are summarized in the
following two tables, where the number with ‘∗’ in the
‘Vectors’ column means the corresponding branch will leave
a good formula. From the two tables, we can see that direct
analysis will get a bound of O∗(1.2600m) since the largest
branching factor is 1.2600. This does not use amortization.
Our deep analysis in the proof of theorem 1 shows that we
can improve the bound to O∗(1.2226m).

6.1 F is a Bad Formula
Case 1. F contains a (3, 4)-literal x: We branch on x into
two branchings Fx and Fx̄. The branching vector is (3, 4).

Case 2. F only contains (3, 3)-literals: We branch on an
arbitrary literal x into two branchings Fx and Fx̄. The
branching vector is (3, 3). However, the two sub-instances
in the two branchings are good formulas by Corollary 1.

6.2 F is a Good Formula
Case 1. F contains a (3, 5+) or (4+, 4+)-literal x: Branch
on x into two branchings Fx and Fx̄. The branching vector
will be at least (3, 5) or (4, 4).

3711

Case 2. F contains a (3, 4)-literal (but no (3, 5+) or
(4+, 4+)-literal): We further distinguish several cases to
analyze the branching vector.

Case 2.1. F also contains a (2, 3+)-literal y: We first
branch on an arbitrary (3, 4)-literal x into two branchings
Fx and Fx̄. If there is a clause containing both x and y, then
in the branching Fx, the degree of y is at most 1. Thus y will
become a (1, 1+)-literal or (0, 1+)-literal in Fx and we will
further apply R-Rule 1 or 3 on y to decrease the number of
clauses by at least 1. We can get a branching vector at least
(4, 4).

If there is a clause containing both x̄ and y, then in the
branching Fx̄, the degree of y is at most 1. We apply R-Rule
1 or 3 on y to further decrease the number of clauses by at
least 1. We can get a branching vector at least (3, 5).

The remaining case is that the clauses containing x or x̄
does not contain y. For this case, we can only get a branching
vector (3, 4). However, in each branching of Fx and Fx̄, the
new instance is a good formula, because there is at least one
(2, 0+)-literal y in them.

Case 2.2. F contains only (3, 4)-literals, (4, 3)-literals
and (3, 3)-literals: Let Y be the set of (4, 3)-literals x′ such
that there is a clause containing both x′ and a (3, 3+)-literal.

Case 2.2.1. Y 6= ∅: There is a literal x ∈ Y and
a clause containing x̄ which does not contain any (4, 3)-
literals, otherwise R-Rule 5 could be applied and F would
not be a reduced instance. Thus the clause containing x̄
will contain some (3, 3+)-literals. We branch on x with a
branching vector (4, 3). By Lemma 8, we know that both
branchings Fx and Fx̄ are good formulas.

Case 2.2.2. Y = ∅: For this case, (4, 3)-literals appear
in clauses containing only (4, 3)-literals. Now Conditions
(1) and (4) in the definition of bad formulas hold. Since
F is a good formula now, we know either Condition (2) or
Condition (3) will not hold. Thus there is either a 2-clause
or a coincident pair.

First, we assume that F contains a coincident pair {x, y}.
If x is a (3, 4)-literal, then y must be a (3, 3+)-literal. For
this case, we branch on x into two branchings Fx and Fx̄.
In the branching Fx, literal y becomes a (1, 1+)-literal or
a (0, 1+)-literal and we can reduce the number of clauses
by 1 by applying R-Rule 3 or R-Rule 1 on y. We get a
branching vector (4, 4). If both of x and y are (3, 3)-literals,
we branch on an arbitrary (3, 4)-literal with a branching
vector (3, 4). Furthermore, in each branching, the instance
is a good formula because there is either a coincident pair
(x, y) or one of x and y becomes a literal of degree at most
2. The remaining case is that both of x and y are (4, 3)-
literals. For this case, we branch on x into two branchings
Fx and Fx̄ with a branching vector (4, 3). The formula Fx

is good because literal y becomes a (2−, 1+)-literal. The
formula Fx̄ is good by Lemma 8. Notice that for this case in
F the clauses containing x̄ cannot contain any (4, 3)-literal
and then each of them must contain another (3, 3+)-literal.

Second, we assume that F does not contain any coinci-
dent pair and there is a 2-clause {x, y}. We branch on x
into two branchings Fx and Fx̄. In the branching Fx̄, we
get a 1-clause containing only y. Furthermore, Fx̄ has at
least two clauses containing y because y and x̄ do not form

a coincident pair in F . We apply R-Rule 1 on y and can
further decrease the number of clauses by at least 2. We get
a branching vector at least (3, 5).

Case 3. F contains a (2, 3+)-literal (but no (3, 4+)
or (4+, 3)-literal): Now F contains only (2, 3+)-literals,
(3+, 2)-literals and (3, 3)-literals. We consider the following
subcases.

Case 3.1. There is a 2-clause C = {x, y} containing a
(3+, 2+)-literal x:

For this case, we can branch with a branching vector (3, 4)
or (4, 3) leaving a good formula in each branching or a
branching vector covered by one of (3, 5), (5, 3), and (4, 4).
In this case, there exists a 2-clause and we will do deep
analysis based on this special structure. The detailed analysis
is omitted here due to the limited space. Some arguments are
similar to that for the following Case 3.2.

Case 3.2. There is a 2-clause C = {x, y} containing two
(2, 3+)-literals: We consider two subcases.

Case 3.2.1. There is no clause containing both of y and
x̄: We branch on x. In the branching of Fx, literal y will
become a (1−, 2+)-literal. We can reduce one more clause
by applying R-Rule 3 on y. In the branching of Fx̄, a 1-
clause {y} is created and there are two clauses containing y.
We can reduce two more clauses by applying R-Rule 1 on y.
We get a branching vector of (3, 5).

Case 3.2.2. There is a clause D containing both of y and
x̄: IfD is also a 2-clause, then there are two 2-clauses {x, y}
and {x̄, y}. We simply assign y = 1 without branching.
Next, we assume that D is a 3+-clause.

IfD is a 3-clause, we branch on y. In the branching ofFy ,
literal x will become a (1−, 2+)-literal. We can reduce one
more clause by applying R-Rule 3 on x. In the branching of
Fȳ , we will get two -clauses {x} and {z}, where z is the
third literal in D. By applying R-Rule 1 on {x} and {z}, we
can reduce two more clauses. We get a branching vector of
(3, 5).

Else D is a 4+-clause, and we branch on x. In the branch-
ing of Fx, literal y will become a (1, 2+)-literal. After
applying R-Rule 3 on y, we reduce one more clause leaving
a good formula, because D contains at least two literals
other than y and x̄ and then there is a coincident pair after
applying R-Rule 3 on y. In the branching of Fx̄, we will
get a 1-clause {y}. We can reduce one more clause by
applying R-Rule 1 on it. Same as before, if just 4 clauses
are removed, the remaining instance is good. Thus, we can
either get a branching vector (3, 4) with a good formula in
each remaining branching or a branching vector covered by
(3, 5).

Next, we assume that there is no 2-clause.
Case 3.3. There is a clause in F containing both a (3, 3)-

literal x and a (2, 3+)-literal y: Let C1, C2 and C3 be the
three clauses containing x, where we assume that C1 also
contains y. Let C4 be the other clause containing y. We first
branch on xwith a branching vector (3, 3). We may decrease
the number of clauses more by applying reduction rules for
different cases.

Case 3.3.1. C4 = C2 or C4 = C3: This means {x, y} is
a coincident pair. In the branching Fx, the literal y becomes

3712

a (0, 2+)-literal. We can further remove at least two clauses
by applying R-Rule 1 on y. We get a branching vector (5, 3).
Next, we assume that C4 6= C2 or C3.

Case 3.3.2. C4 6= C2 and C4 6= C3: Notice that C2

and C3 are 3+-clauses and each of them will contain a
literal different from {x, x̄, y, ȳ}. In Fx, there is a (1, 1+)-
literal y and two different (2−, 0+)-literals different from
{x, x̄, y, ȳ}. So it satisfies the condition in Lemma 9. After
resolving y in Fx, we can further either reduce one clause
leaving a good formula or reduce at least two clauses. In the
branching of Fx̄, we reduce three clauses directly and the
remaining formula is good according to Corollary 1. So the
branching vector is either (4, 3) with a good formula in each
branching or a vector covered by (5, 3).
Lemma 10. (*) For a reduced instanceF without (3+, 4+)-
literals, if there is no 2-clause and no clause contains both
a (2, 3+)-literal and a (3, 3)-literal, then either there is no
(2, 3+)-literal or there is a clause containing at least three
(2, 3+)-literals.

By Lemma 10, we know that the remaining case is that
Case 3.4. There is a 3+-clause C containing at least

three (2, 3+)-literals {x1, x2, x3}: LetCi be the other clause
containing xi (i = 1, 2, 3), where it is possible two of C1,
C2 and C3 are the same.

Case 3.4.1. Two literals in {x1, x2, x3}, say x1 and x2,
form a coincident pair: We branch on x1 with a branching
vector (2, 3) first. In the branching of Fx1 , literal x2 will
become a (0, 3+)-literal and we reduce three clauses by
applying R-Rule 1 on x2. So we can get a branching vector
of (5, 3).

Case 3.4.2. At least one ofC1, C2 andC3 contains a nega-
tion of x1, x2 or x3: Without loss of generality we assume
that C2 contains a negation of x1. We first branch on x1 with
a branching vector (2, 3). In the branching ofFx1

, each of x2

and x3 will become a (1, 1+)-literal. We can further reduce
the number of clauses by at least 2 by applying R-Rule 3 on
x2 and x3 one by one. In the branching ofFx̄1

, after deleting
the three clauses containing x̄1 (including C2), the degree of
x2 is at most 1. We can reduce one more clause by applying
reduction rules on x2. Thus, we can branch with a branching
vector (4, 4).

Case 3.4.3. None of Case 3.4.1 and Case 3.4.2 happens:
We first branch on x1 with a branching vector (2, 3). In the
branching of Fx1

, each of x2 and x3 will become a (1, 3+)-
literal. We can reduce two more clauses by applying R-Rule
3 on x2 and x3 one by one. Furthermore, the remaining
instance is a good formula, because applying R-Rule 3 will
create coincident pairs in this case. In the branchingFx̄2 , the
formula is a good formula by Corollary 1. We get a branch-
ing vector (3, 4) with a good formula in each branching.

Case 4. F contains only (3, 3)-literals: Since F is a good
formula, we know that there is either a coincident pair or a
2-clause.

Case 4.1. F contains a coincident pair {x, y}: We branch
on x into two branchings Fx and Fx̄, and distinguish two
subcases to analyze the branching operation.

Case 4.1.1. Three clauses contain x and y simultaneously:
In the branching of Fx, the literal y will become a (0, 3)-

literal and we can further decrease the number of clauses by
at least 3 by applying R-Rule 1. So we can get a branching
vector (3, 6) at least.

Case 4.1.2. Only two clauses contain x and y simultane-
ously: we assume without loss of generality that no pair of
literals appear in more than two clauses simultaneously now.

Assume that one of the clauses containing x is a 2-clause
{x,w}, where w can be y. In the branching of Fx, we
can apply R-Rule 3 on y to further reduce 1 clause. In the
branching of Fx̄, we apply R-Rule 1 on w to further reduce
1 clause. The branching vector will be covered by (4, 4).

Next, we assume that any of the three clauses containing
x also contains a literal other than y and ȳ. At least two
of the three literals are different because no pair of literals
appear in three clauses as assumed. Let z1 and z2 be the
two different literals. In Fx, literal y will become a (1, 1+)-
literal and z1 and z2 will become (2−, 0+)-literals. The
condition in Lemma 9 holds. After resolving y in Fx, we
can either reduce 1 clause leaving a good formula or reduce
at least 2 clauses. In the branching of Fx̄, we reduce three
clauses directly and the leaving formula is good according to
Corollary 1. The branching vector is either (4, 3) with a good
formula in each branching or a vector covered by (5, 3).

Case 4.2. F does not contain a coincident pair but con-
tains a 2-clause {x, y}: We branch on x with a branching
vector (3, 3). In the branching Fx̄, we will get a 1-clause
that only contains y. Furthermore, since F does not contain
a coincident pair, we know that there are at least two clauses
containing y in Fx̄. We can apply R-Rule 1 on y in Fx̄ to
further reduce 2 clauses. Thus, we can get a branching vector
covered by (3, 5).

7 Conclusion
SAT is one of the most widely studied NP-complete
problems. There is a large number of references in
history, whether from the perspective of experimental
algorithms or theoretical algorithms. Many fast solvers
have been developed and they can solve medium-large
sized instances within a reasonable running time bound.
However, theoretical research is relatively backward. It
took us decades to improve the running time bound to
O∗(1.2226m). According to the theoretical results, the size
of the problems we can solve is much smaller than that
of the problems solved by fast practical solvers. The gap
between theoretical and experimental results is large. It is
interesting to further explore the problem nature and reduce
the gap, especially to accelerate the research of theoretical
algorithms and explain the fast experimental algorithms.

Acknowledgements
The work is supported by the National Natural Science
Foundation of China, under grants 61972070 and 61802049,
and Sub Project of Independent Scientific Research Project,
under grant ZZKY-ZX-03-02-04.

References
Chen, J.; and Liu, Y. 2009. An Improved SAT Algorithm in
Terms of Formula Length. In Algorithms and Data Struc-

3713

tures, 11th International Symposium, WADS 2009, Banff,
Canada, August 21-23, 2009. Proceedings, 144–155.
Chu, H.; Xiao, M.; and Zhang, Z. 2020. An Improved Upper
Bound for SAT. CoRR abs/2007.03829. URL https://arxiv.
org/abs/2007.03829.
Cook, S. A. 1971. The Complexity of Theorem-Proving Pro-
cedures. In Proceedings of the 3rd Annual ACM Symposium
on Theory of Computing, May 3-5, 1971, Shaker Heights,
Ohio, USA, 151–158.
Dantsin, E. 1983. Two systems for proving tautologies,
based on the split method. Journal of Mathematical Sciences
22: 1293–1305.
Dantsin, E.; Goerdt, A.; Hirsch, E. A.; Kannan, R.; K-
leinberg, J. M.; Papadimitriou, C. H.; Raghavan, P.; and
Schöning, U. 2002. A deterministic (2-2/(k+1))n algorithm
for k-SAT based on local search. Theor. Comput. Sci. 289(1):
69–83.
Dantsin, E.; Hirsch, E. A.; and Wolpert, A. 2004. Algorithm-
s for SAT Based on Search in Hamming Balls. In STACS
2004, 21st Annual Symposium on Theoretical Aspects of
Computer Science, Montpellier, France, March 25-27, 2004,
Proceedings, 141–151.
Dantsin, E.; and Wolpert, A. 2004. Derandomization of
Schuler’s Algorithm for SAT. Electronic Colloquium on
Computational Complexity (ECCC) (017).
Davis, M.; and Putnam, H. 1960. A Computing Procedure
for Quantification Theory. J. ACM 7(3): 201–215.
Fomin, F. V.; and Kratsch, D. 2010. Exact Exponential
Algorithms. Texts in Theoretical Computer Science. An
EATCS Series. Springer.
Garey, M. R.; and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.
Gelder, A. V. 1988. A Satisfiability Tester for Non-clausal
Propositional Calculus. Inf. Comput. 79(1): 1–21.
Hansen, T. D.; Kaplan, H.; Zamir, O.; and Zwick, U. 2019.
Faster k-SAT algorithms using biased-PPSZ. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, 578–589.
Hirsch, E. A. 1998. Two New Upper Bounds for SAT. In
Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, 25-27 January 1998, San Francisco,
California, USA, 521–530.
Hirsch, E. A. 2000. New Worst-Case Upper Bounds for
SAT. J. Autom. Reasoning 24(4): 397–420.
Impagliazzo, R.; and Paturi, R. 2001. On the Complexity of
k-SAT. J. Comput. Syst. Sci. 62(2): 367–375.
Kullmann, O.; and Luckhardt, H. 1997. Deciding proposi-
tional tautologies: Algorithms and their complexity. preprint
82.
Monien, B.; and Speckenmeyer, E. 1985. Solving satisfia-
bility in less than 2n steps. Discrete Applied Mathematics
10(3): 287–295.

Monien, B.; Speckenmeyer, E.; and Vornberger, O. 1981.
Upper bounds for covering problems. Methods of operations
research 43: 419–431.
Niedermeier, R.; and Rossmanith, P. 2003. An efficient
fixed-parameter algorithm for 3-Hitting Set. Journal of
Discrete Algorithms 1(1): 89 – 102.
Paturi, R.; Pudlák, P.; and Zane, F. 1997. Satisfiability
Coding Lemma. In 38th Annual Symposium on Foundations
of Computer Science, FOCS ’97, Miami Beach, Florida,
USA, October 19-22, 1997, 566–574.
Robinson, J. A. 1965. A Machine-Oriented Logic Based on
the Resolution Principle. J. ACM 12(1): 23–41.
Schuler, R. 2005. An algorithm for the satisfiability problem
of formulas in conjunctive normal form. J. Algorithms 54(1):
40–44.
Wahlström, M. 2005. Faster Exact Solving of SAT Formulae
with a Low Number of Occurrences per Variable. In Theory
and Applications of Satisfiability Testing, 8th International
Conference, SAT 2005, St. Andrews, UK, June 19-23, 2005,
Proceedings, 309–323.
Yamamoto, M. 2005. An Improved O(1.234m)-Time De-
terministic Algorithm for SAT. In Algorithms and Compu-
tation, 16th International Symposium, ISAAC 2005, Sanya,
Hainan, China, December 19-21, 2005, Proceedings, 644–
653.

3714

