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Abstract

The constraint satisfaction problem (CSP) has important ap-
plications in computer science and AI. In particular, infinite-
domain CSPs have been intensively used in subareas of AI
such as spatio-temporal reasoning. Since constraint satisfac-
tion is a computationally hard problem, much work has been
devoted to identifying restricted problems that are efficiently
solvable. One way of doing this is to restrict the interac-
tions of variables and constraints, and a highly successful
approach is to bound the treewidth of the underlying primal
graph. Bodirsky & Dalmau [J. Comput. System. Sci. 79(1),
2013] and Huang et al. [Artif. Intell. 195, 2013] proved that
CSP(Γ) can be solved in nf(w) time (where n is the size of
the instance, w is the treewidth of the primal graph and f is
a computable function) for certain classes of constraint lan-
guages Γ. We improve this bound to f(w) · nO(1), where
the function f only depends on the language Γ, for CSPs
whose basic relations have the patchwork property. Hence,
such problems are fixed-parameter tractable and our algo-
rithm is asymptotically faster than the previous ones. Addi-
tionally, our approach is not restricted to binary constraints,
so it is applicable to a strictly larger class of problems than
that of Huang et al. However, there exist natural problems
that are covered by Bodirsky & Dalmau’s algorithm but not
by ours.

Introduction
The constraint satisfaction problem over a constraint lan-
guage Γ (CSP(Γ)) is the problem of finding a variable as-
signment which satisfies a set of constraints, where each
constraint is constructed from a relation in Γ. This prob-
lem can be used to model many problems encountered in
computer science and AI, see e.g. Rossi et al. (2006) or
Dechter (2003). The CSP is computationally hard in the gen-
eral case; if the variable domains are finite, then the problem
is NP-complete, and otherwise it may be of arbitrarily high
complexity (Bodirsky and Grohe 2008). Hence, identifying
tractable problems is of great practical interest.

Tractable fragments have historically been identified us-
ing two different methods: either (1) restrict the relations
that are allowed in the constraint language or (2) restrict how
variables and constraints interact in problem instances. We
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focus on the second kind of restrictions in this paper; these
are referred to as structural restrictions. One way of study-
ing structural restrictions is via the primal graph: this graph
has the variables as its vertices with two of them joined by
an edge if they occur together in the scope of a constraint.
The graph parameter treewidth (Bertelé and Brioschi 1972;
Robertson and Seymour 1984) is very useful in this con-
text since many NP-hard graph problems are tractable on in-
stances with bounded treewidth. The treewidth of the primal
graph has been extensively used in the study of finite-domain
CSPs. It is known that the problem is fixed-parameter
tractable (fpt), i.e. it can be solved in f(w+ d) ·nO(1) time,
where n is the size of the instance, w is the treewidth of the
primal graph, d is the domain size, and f is some computable
function. This was proven by Gottlob et al. (2002); also see
Samer & Szeider (2010) for a more general treatment.

Let us now consider infinite-domain CSPs. For certain
classes of constraint languages, Bodirsky & Dalmau (2013,
Corollary 1) proved that CSP(Γ) can be solved in nO(w)

time (where the exact expression in the O(w) term may de-
pend on the constraint language) while Huang et al. (2013,
Theorem 6) proved the bound O(w3n · ew2 logn) = nO(w2).
These results do not prove fixed-parameter tractability but
the weaker property of membership in the complexity
class XP. Algorithms with a running time bounded by nf(w)

are obviously polynomial-time when w is fixed. However,
since w appears in the exponent, such algorithms become
impractical (even for small w) when large instances are con-
sidered. It is significantly better if a problem is fpt and can be
solved in time f(w) ·nO(1) since the order of the polynomial
in n does not depend at all on w.

Our main result is an fpt algorithm for CSPs where the un-
derlying basic relations have the patchwork property (Lutz
and Miličić 2007). Several important CSPs (such as Allen’s
algebra and RCC8) are known to have this property. The
patchwork property ensures that the union of two satisfiable
CSPs, whose constraints agree on their common variables, is
also satisfiable. With the discussion above in mind, it is clear
that our algorithm has better computational properties than
the two previous ones. We will now briefly compare the ap-
plicability of the algorithms; more information on this can
be found in the discussion section. Bodirsky & Dalmau’s
algorithm (BD) works for constraint languages that are ω-
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categorical (in fact, it works even for languages where only
the core is ω-categorical) while Huang, Li & Renz’s algo-
rithm (HLR) works for languages with binary relations that
have the atomic network amalgamation property (aNAP).
Our algorithm has a wider applicability than HLR since
aNAP implies the patchwork property and our algorithm is
not restricted to binary relations. The relation to BD is more
complex since there are problems that are covered by BD
but not by our algorithm (an example is the branching time
algebra—the details are discussed later on). The exact di-
viding line is unfortunately unclear.

The rest of this paper is divided into two distinct parts.
In the first part, we present our main algorithm (which is
based on dynamic programming) and prove that it achieves
the required time bound. In the second part, we analyse the
applicability of our algorithm. Even though the patchwork
property is well known within the CSP community, there are
not that many formalisms that have been proven to have this
property. By using certain model-theoretical concepts, we
obtain an alternative way of identifying constraint languages
with the patchwork property. Based on this, we demonstrate
how to apply our results on constraint languages that are de-
finable in (Q;<) (with applications in, for instance, tem-
poral reasoning and scheduling) and phylogeny languages
(which are useful in bioinformatics).

Preliminaries
In this section we introduce the necessary prerequisites.

Logic
A (relational) signature τ is a set of symbols, each with an
associated natural number called its arity. A (relational) τ -
structure A consists of a set D (the domain) together with
relations RA ⊆ Dk for each k-ary symbol R ∈ τ . A struc-
ture is countable if its domain is a countable set.

Let A be a τ -structure over a domain D. We say that A
is k-ary if every relation in A has arity k. The relations in a
k-ary A are jointly exhaustive (JE) if

⋃
R∈AR = Dk. They

are pairwise disjoint (PD) if R ∩ R′ = ∅ for all distinct
R,R′ ∈ A.

First-order formulas φ over A (or, for short, A-formulas)
are defined using the logical symbols of universal and ex-
istential quantification, disjunction, conjunction, negation,
equality, bracketing, variable symbols, the relation sym-
bols from τ , and the symbol ⊥ for the truth-value false.
First-order formulas over A can be used for defining re-
lations: for a formula φ(x1, . . . , xk) with free variables
x1, . . . , xk, the corresponding relation R is the set of all k-
tuples (t1, . . . , tk) ∈ Dk such that φ(t1, . . . , tk) is true in
A. In this case we say that R is first-order definable in A.
Our definitions are always parameter-free, i.e. we do not al-
low the use of domain elements within them. We may as-
sume without loss of generality that all formulas defining
relations are in disjunctive normal form (DNF). A formula
is in DNF if it is a disjunction of one or more conjunctions
of one or more atomic formulas of the type R(x̄) or ¬R(x̄),
where R ∈ A ∪ {=} and x̄ is a sequence of variables. The
conjunctions of atomic formulas are referred to as clauses.

The most common way of using JEPD relations in AI-
relevant CSPs is via the constraint language A∨=, where A
is a k-ary structure. The set A∨= contains the unions of all
subsets of A. Equivalently, R ∈ A∨= if R can be written as
a disjunction R1(x̄) ∨ · · · ∨ Rp(x̄) where R1, . . . , Rp ∈ A
and x̄ = (x1, . . . , xk). Since we want to study more ex-
pressive sets of relations, we let 〈A〉b denote the set of
relations that are definable by quantifier-free formulas that
only contain the relations in A, i.e. using the equality rela-
tion = is not allowed unless it is a member of A. Note that
A∨= ( 〈A〉b, so 〈A〉b strictly generalises A∨=. If the set
of relations in A is finite and JEPD, then we may assume
that all formulas are negation-free: any negated relation can
be replaced by the disjunction of all other relations.

Constraint Satisfaction
Let A be a τ -structure with domain D. The constraint satis-
faction problem over A (CSP(A)) is defined as follows:
INSTANCE: A set V of variables and a set C of constraints
of the form R(v1, . . . , vr), where R ∈ A is a relation of
arity r, and v1, . . . , vr ∈ V
QUESTION: Is there an assignment f : V → D such that
(f(v1), . . . , f(vr)) ∈ R for every R(v1, . . . , vr) ∈ C?

The structure A is referred to as the constraint language.
Let A be a finite k-ary constraint language with JEPD re-
lations. Consider a finite Γ ⊆ 〈A〉b and let I = (V,C)
be an instance of CSP(Γ). Recall that every constraint in C
can be defined by a negation-free DNF A-formula, where
every clause is a conjunction of atomic constraints of the
form R(v̄) with R ∈ A. Note that any assignment satisfy-
ing a constraint in C must satisfy all atomic constraints in at
least one clause of the defining DNF A-formula. A certifi-
cate for I is a satisfiable instance C = (V,C ′) of CSP(A)
that implies every constraint in C, i.e. for every constraint
in C, there is a clause in the corresponding DNF A-formula
such that all atomic constraints in this clause are in C ′.
Proposition 1. An instance of CSP(Γ) admits a certificate
if and only if it is satisfiable.

Now assume CSP(A) is decidable. Then, one can verify
whether an instance (V,C ′) of CSP(A) is a certificate for
an instance (V,C) of CSP(Γ): first, check that (V,C ′) is
satisfiable, and then, for all R(v1, . . . , vr) ∈ C, verify that
(V,C ′) implies R(v1, . . . , vr) by considering every clause
in the definition of R and checking if it is included in C ′.
Note that the length of the DNF formula definingR depends
only on the arity of R and |A|, which are both bounded
by constants since Γ and A are finite languages. Thus, if
CSP(A) is solvable in polynomial time, then the certificate
test can also be carried out in polynomial time.

An instance of CSP(A) is complete if it contains a con-
straint over every k-tuple of (not necessarily distinct) vari-
ables. A certificate is complete if it is a complete instance of
CSP(A). Since the relations in A are JE, any certificate can
be extended to a complete one. Thus, we can assume that all
certificates are complete.

For any instance I = (V,C) of CSP and any set of vari-
ables U ⊆ V , define C[U ] ⊆ C to include all constraints
whose scope is in U . We say that I[U ] = (U,C[U ]) is the
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subinstance of I induced by U . We will also say that I[U ]
is obtained by projecting I onto U . Properties of certificates
(including completeness) are preserved under projections.
We formalise this observation below.

Proposition 2. If C is a certificate for I = (V,C), then C[U ]
is a certificate for I[U ] for all U ⊆ V . If C is complete, then
C[U ] is also complete.

Parameterized Complexity
In parameterized algorithmics (Flum and Grohe 2006; Nie-
dermeier 2006; Downey and Fellows 2013) the runtime of an
algorithm is studied with respect to a parameter p ∈ N and
input size n. The idea is to find a parameter that describes
the structure of the instance such that the combinatorial ex-
plosion can be confined to this parameter. In this respect, the
most favourable complexity class is FPT (fixed-parameter
tractable), which contains all problems that can be decided
by an algorithm running in f(p) · nO(1) time, where f is
a computable function. Problems that can be solved in this
time are said to be fixed-parameter tractable (fpt). A more
general class XP contains all problems decidable in nf(p)
time, i.e. the problems solvable in polynomial time when
the parameter p is bounded. Clearly, FPT ⊆ XP. Moreover,
the inclusion is strict (see e.g. (Flum and Grohe 2006)).

We will concentrate on one well-known parameter in this
paper: the treewidth of the primal graph. Thus, if we state
that some problem is fpt, then we always mean with respect
to this parameter. The primal graph of an instance of CSP is
the undirected graph whose vertices coincide with the vari-
ables of the instance, and where two vertices are joined by
an edge if they occur in the scope of the same constraint.
Treewidth is based on tree decompositions: a tree decompo-
sition (T,X) of an undirected graph G = (V,E) consists of
a rooted tree T and a mapping X from the nodes of T to the
subsets of V . The subsets X(t) are called bags. Tt stands
for the subtree rooted at t, while Vt is the set of all vari-
ables occurring in the bags of Tt, i.e. Vt =

⋃
s∈Tt

X(s). A
tree decomposition fulfils the following properties: for every
u, v ∈ V that are adjacent in G, there is a node t ∈ V (T )
such that u, v ∈ X(t), and for every v ∈ V , the set of bags
of T containing v forms a non-empty sub-tree of T .

The width of a tree decomposition T is defined as
max{|X(t)| : t ∈ T} − 1. The treewidth of a graph G is
the minimum width of a tree decomposition of G. It is NP-
complete to determine if a graph has treewidth at most k
(Arnborg, Corneil, and Proskurowski 1987), but when k is
fixed, the graphs with treewidth k can be recognized and cor-
responding tree decompositions can be constructed in linear
time (Bodlaender 1996).

Qualitative Spatial and Temporal Reasoning
We will consider several well-known formalisms for quali-
tative spatial and temporal reasoning. All of them can be de-
fined as B∨= via a binary constraint language B with JEPD
relations. It is important to note that the exact choice of rela-
tions for representing a reasoning problem as a CSP may be
crucial. This is most easily illustrated with the RCC5 for-
malism that is introduced in item 4 below. RCC5 can be

Basic relation Example Endpoints

I precedes J p iii I+ < J−

J preceded by I pi jjj

I meets J m iiii I+ = J−

J met-by I mi jjjj

I overlaps J o iiii I− < J− < I+,
J overl.-by I oi jjjj I+ < J+

I during J d iii I− > J−,
J includes I di jjjjjjj I+ < J+

I starts J s iii I− = J−,
J started by I si jjjjjjj I+ < J+

I finishes J f iii I+ = J+,
J finished by I fi jjjjjjj I− > J−

I equals J e iiii I− = J−,
jjjj I+ = J+

Table 1: Thirteen basic relations in Allen’s Interval Algebra.
The endpoint relations I− < I+ and J− < J+ that are valid
for all relations have been omitted.

represented with structures A and B such that CSP(A) is
the same computational problem as CSP(B) while A and B
are very different from a model-theoretical point of view.
This is discussed in some detail for RCC5 in (Bodirsky and
Jonsson 2017, Sec. 2.5.2). It is also discussed that there
are A and B that look like suitable representations of RCC5
(for instance, by having the “right” composition tables) but
have different CSPs. For RCC5 and RCC8, we will thus ex-
clusively use the representations suggested by Bodirsky &
Wölfl (2011), whose CSP coincides with the standard inter-
pretation of RCC relations.

The choice of representation for the formalisms in 1–3
is, fortunately, much easier: the natural representations via
concrete objects in Qd have proven to capture the intended
computational problems and at the same time having advan-
tageous model-theoretical properties. We will consequently
use these representations throughout the article.

Allen’s Interval Algebra (IA) (Allen 1983) is a temporal
reasoning formalism where one considers relations between
intervals of the form I = [I−, I+], where I−, I+ ∈ Q are
the start and end points, respectively. The language BIA con-
sists of thirteen basic relations illustrated in Table 1.

The d-dimensional Block Algebra (BAd) (Balbiani, Con-
dotta, and del Cerro 1998) is a generalization of IA to d-
dimensional boxes with sides parallel to the coordinate axes.
The relations in BBA are d-tuples of IA relations, each one
applied in the corresponding dimension.

The Cardinal Direction Calculus (CDC) (Ligozat 1998) is
a formalism for spatial reasoning with points on the plane as
the basic objects. The relations in BCDC correspond to eight
cardinal directions (North, East, South, West, and four inter-
mediate ones) plus the equality relation. They can be viewed
as pairs (R1, R2) for all choices of R1, R2 ∈ {<,=, >},
where each relation applies to the corresponding coordinate.

The Region Connection Calculus (RCC8) (Randell, Cui,
and Cohn 1992) is a spatial reasoning formalism where the
objects are non-empty regular closed subsets of a topologi-
cal space. There are eight relations in BRCC8: EQ (equal),
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PO (partial overlap), DC (disconnected), EC (externally
connected), NTPP (non-tangential proper part), its converse
NTPP−1, TPP (tangential proper part) and its converse
TPP−1. RCC5 is a simplified formalism without tangency,
i.e. NTPP and TPP cannot be distinguished, and neither can
EC and DC.

The Main Algorithm
We utilize the following CSP property in our algorithm:
Definition 3 (Lutz and Miličić (2007)). A JEPD constraint
language B has the patchwork property (PP) if, for every
pair of complete satisfiable instances I1 = (V1, C1) and
I2 = (V2, C2) of CSP(B) such that I1[V1 ∩ V2] = I2[V1 ∩
V2], the instance (V1 ∪ V2, C1 ∪ C2) is also satisfiable.

We want to underline the importance of the completeness
condition in the previous definition: for example, consider
the JEPD constraint language {<,=, >} with domain Q
and the two satisfiable incomplete instances ({a, x, b}, {a <
x, x < b}) and ({a, y, b}, {a > y, y > b}). The intersection
of these instances contains no constraints, so it is trivially
satisfiable. However, their union is not satisfiable since the
constraints imply that a < b and a > b hold simultaneously.

Many formalisms for qualitative spatial and temporal rea-
soning are known to have the patchwork property. For ex-
ample, the basic relations of Allen’s Interval Algebra, the
Block Algebra, and the Cardinal Direction Calculus have the
patchwork property (Lutz and Miličić 2007; Huang 2012),
assuming that the representations that were discussed ear-
lier are used. The picture is more complex for RCC8 and
RCC5. Lutz and Miličić (2007) show that RCC8 restricted
to the real plane has the PP, and Huang (2012) points out
that this result can be lifted to the multi-dimensional case
via Bodirsky & Wölfl’s (2011) representation. Baader & Ry-
dval (2020) also point this out in a more general setting; we
will come back to their results later. The following is a direct
consequence of the patchwork property:
Lemma 4. Let B be a finite set of JEPD relations with the
patchwork property and assume that Γ ⊆ 〈B〉b. For any
two satisfiable instances I1 = (V1, C1) and I2 = (V2, C2)
of CSP(Γ) admitting certificates C1 and C2 such that C1[V1∩
V2] = C2[V1 ∩ V2], the instance (V1 ∪ V2, C1 ∪ C2) is also
satisfiable.

To simplify the presentation of the algorithm, we will use
a particular kind of tree decomposition. A tree decomposi-
tion is nice if it fulfils the following properties: X(r) = ∅
and X(`) = ∅ for the root r and all leaf nodes ` in T ,
and every non-leaf node in T is one of the following three
types: an introduce node t with exactly one child t′ such that
X(t) = X(t′) ∪ {v} for some v ∈ V ; a forget node t with
exactly one child t′ such that X(t) = X(t′) \ {w} for some
w ∈ V , or a join node t with exactly two children t1 and t2
such that X(t) = X(t1) = X(t2).

Given a tree decomposition T of a graphG = (V,E), one
can construct a nice tree decomposition of the same width
andO(n) nodes in linear time (Bodlaender and Kloks 1996).
Theorem 5. Let A be a finite k-ary constraint language
with JEPD relations and the patchwork property. Assume

CSP(A) is decidable. For any finite constraint language
Γ ⊆ 〈A〉b, CSP(Γ) is fpt.

Proof. Let I = (V,C) be an instance of CSP(Γ) and as-
sume (T,X) is a nice tree decomposition of its the pri-
mal graph. The algorithm works as follows: for every node
t ∈ T , we compute the set R(t) consisting of all certificates
for I[Vt] projected onto X(t). Clearly, I is satisfiable if and
only if R(r) 6= ∅, where r is the root of T . We compute
R(t) using dynamic programming from the leaves upwards,
i.e. a node is processed only if all its children have already
been processed.

To start, we setR(`) = {(∅,∅)} for all leaf nodes ` ∈ T .
Since the decomposition is nice, we only need to consider
three cases. If t is an introduce node with a child t′, we
enumerate certificates C for I[X(t)] and add C to R(t) if
C[X(t′)] is in R(t′). If t forgets a variable w and has a child
t′, thenR(t) is obtained by enumerating certificates inR(t′)
and removing w together with all constraints involving it
from the certificate. Finally, if t joins nodes t1 and t2, then
set R(t) = R(t1) ∩R(t2).

Towards showing correctness, we prove the following:

Claim 1. C is a certificate for I[Vt] if and only if C[X(t)] ∈
R(t).

We prove the claim by induction. In the base case,R(`) =
{(∅,∅)} is indeed the set of all certificates for I[V`] for all
leaves ` in T , since V` = X(`) = ∅.

If t is an introduce node with child t′, consider a certifi-
cate C for I[Vt]. Note that C[Vt′ ] is a certificate for I[Vt′ ]
so I[X(t′)] ∈ R(t′) by the inductive hypothesis. Further-
more, C[X(t)] is a certificate for I[X(t)], thus the algorithm
adds it to R(t). In the opposite direction, consider K ∈ R(t)
and observe that, by construction, there is a certificate C′
to I[Vt′ ] such that K[X(t′)] = C′[X(t′)]. Since K is a cer-
tificate for X(t) and X(t) ∩ Vt′ = X(t′), the union of K
and C′ is a certificate for I[Vt] by the patchwork property,
and K is precisely its projection onto X(t).

If t is a forget node with a child t′, consider a certificate C
for I[Vt′ ] and note that, since Vt = Vt′ , it is also a certificate
for I[Vt]. By the inductive hypothesis, C[X(t′)] ∈ R(t′),
hence, the algorithm adds C[X(t)] to R(t). In the opposite
direction, consider K[X(t)] ∈ R(t) where K ∈ R(t′) and
note that the inductive hypothesis implies that K and, subse-
quently, K[X(t)] are projections of a certificate for I[Vt].

If t joins nodes t1 and t2, consider a certificate C for I[Vt].
Note that it is also a certificate for I[Vt1 ] and I[Vt2 ], since
Vt1 , Vt2 ⊆ Vt. By the inductive hypothesis, C[X(t1)] =
C[X(t2)] = C[X(t)] ∈ R(t1) ∩ R(t2) and the algorithm
adds it to R(t). In the opposite direction, consider K ∈
R(t) = R(t1) ∩ R(t2). By the inductive hypothesis, there
are certificates C1 for I[Vt1 ] and C2 for I[Vt2 ] such that
C1[X(t)] = C2[X(t)] = K. By the property of tree decom-
positions, Vt1 ∩ Vt2 ⊆ X(t), thus the the union of C1 and C2
is a certificate for I[Vt] by the patchwork property, and K is
precisely its projection onto X(t).

We continue with the time complexity of the algorithm.
Let w denote the width of the decomposition (T,X) and
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assume that τ(m) is the time required to enumerate certifi-
cates for an instance of CSP(Γ) with m variables. Note that
since A and Γ are finite, the function τ depends only on the
number of variables. Furthermore, τ(m) is an upper bound
on the number of complete satisfiable instances of CSP(A)
with m variables.

Claim 2. R(t) is computed in τ(w + 1)2 ·O(wk) time.

First, note that τ(|X(t)|) is an upper bound on |R(t)|. Fur-
ther, taking a projection of a certificate onto U ⊆ V requires
O(|U |k) time. If t is an introduce node, the computation
of R(t) requires at most τ(w + 1)|R(t′)| · O(|X(t′)|k) ≤
τ(w + 1)2 · O(wk) time. If t is a forget node, the computa-
tion requires at most |R(t′)|·O(|X(t)|k) ≤ τ(w+1)·O(wk)
time. Finally, if t joins nodes t1 and t2, the computation of
R(t) takes at most |R(t1)||R(t2)|·O(|X(t)|k) ≤ τ(w+1)2 ·
O(wk) time, where O(wk) accounts for the comparison of
two certificates.

There are O(n) nodes in the tree T , so the algorithm
solves CSP(Γ) in τ(w + 1)2 · O(wk) · O(n) time. The
τ(w + 1)2 · O(wk) term depends only on the parameter w,
hence CSP(Γ) is fpt.

We continue by taking a closer look at some CSPs for
qualitative spatial and temporal reasoning.

Corollary 6. CSP(B∨=) is solvable in 2O(w2) · O(n) time
if B is BRCC5 or BRCC8, and 2O(w logw) · O(n) time if B
is BIA, BBAd

or BCDC.

Proof. Consider Claim 2 in Theorem 5. Since the languages
under consideration are JEPD and binary, the total number
of instances of CSP(B) withw variables is |B|w

2

= 2O(w2),
since |B| is constant. Solving instances of these CSPs takes
polynomial time, so τ(w) = 2O(w2). This yields the result
for RCC5 and RCC8.

For the remaining cases, we need a tighter bound on τ(w).
We show that the number of complete certificates for these
problems is at most 2O(w logw). Recall that an ordered par-
tition of a set S of size n is a surjective function π : S →
{1, . . . , r} for some r ∈ {1, . . . , n}. Any two elements of S
can be compared with the usual relations {<,=, >} accord-
ing to the values assigned to them by π. Observe that that
there are at most nn = 2O(n logn) ordered partitions of S.

Every complete satisfiable instance of CSP(BIA) corre-
sponds to a unique ordered partition of the endpoints of the
intervals (see e.g. (Stockman 2016)). For an instance with w
variables (i.e. 2w endpoints), there are at most 2O(w logw)

such partitions. Thus, an instance of CSP(B∨=IA ) with w

variables admits at most 2O(w logw) complete certificates.
Given an ordered partition on the endpoints of the intervals,
a polynomial-time procedure can recover the corresponding
complete satisfiable instance of CSP(BIA), if one exists: for
every variable, check that its left endpoint precedes its right
endpoint – if not, then there is no corresponding instance;
otherwise, deduce the relation between every pair of vari-
ables according to the ordered partition of their endpoints.
The last step works since BIA is JEPD. Finally, observe

that generating all (unordered) partitions of a set takes O(1)
amortized time per partition (Ichiro 1984) and generating all
permutations takes O(1) time per permutation (Sedgewick
1977). Thus, τ(w) = 2O(w logw) for CSP(B∨=IA ).

The Block Algebra BAd can be viewed as an extension
of Allen’s Interval Algebra to d dimensions, and the com-
plete certificates correspond to d ordered partitions of the
endpoints. We have ((2w)2w)d = 2O(w logw) since d is fixed
so τ(w) = 2O(w logw) for CSP(B∨=BAd

).
Every satisfiable instance of the CSP(BCDC) corresponds

to two ordered partitions, one for each coordinate. There are
(ww)2 = 2O(w logw) such pairs of partitions, so τ(w) =
2O(w logw) for CSP(B∨=CDC).

Applicability of the Algorithm
We analyse the applicability of our fpt result (Theorem 5) in
this section. The patchwork property has not been directly
verified for many formalisms—the list in Corollary 6 is quite
meager. However, it has been verified implicitly for wide
classes of relations. We make this explicit by connecting the
patchwork property with the amalgamation property. This
allows us to use model-theoretical concepts and results to
identify interesting classes of relations that have the patch-
work property. In the final step, we demonstrate how these
ideas can be used on concrete examples — we study con-
straint languages that are definable in Q = (Q;<,=, >)
and phylogeny languages.

Patchwork and Amalgamation
When analysing PP from a model-theoretic angle, it is
convenient to view CSPs in terms of homomorphisms.
A homomorphism for τ -structures A,B is a mapping
h : A → B that preserves each relation of A, i.e. if
(a1, . . . , ak) ∈ RA for some k-ary relation symbol R ∈ τ ,
then (h(a1), . . . , h(ak)) ∈ RB. Let B be a structure with a
(not necessarily finite) signature τ . CSP(B) is then the fol-
lowing decision problem:
INSTANCE. A finite τ -structure A.
QUESTION. Is there a homomorphism from A to B?

This definition coincides with the definition given earlier.
We will use an analogue of subinstances for τ -structures: a
τ -structure A is a substructure of a τ -structure B if and only
if (1) the domain of A is a subset of the domain of B and
(2) for each R ∈ τ , the tuple a is in RA if and only if a is
in RB. We need various types of homomorphisms in what
follows. A strong homomorphism additionally satisfies the
only if direction in the definition of a homomorphism, i.e. it
also preserves the complements of relations. An embedding
is an injective strong homomorphism. An isomorphism is a
surjective (and thus bijective) embedding, and an automor-
phism is an isomorphism from A to A.

We connect the definition of patchwork with the amal-
gamation property (AP). A class K of τ -structures has AP if
for every B1,B2 ∈ K such that their maximal common sub-
structure A contains all elements that are both in B1 and B2,
there exists C ∈ K (called an amalgam) and embeddings
f1 : B1 → C and f2 : B2 → C such that f1(a) = f2(a)
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for every a ∈ A. Let D be a countable τ -structure. Age(D)
denotes the class of all finite τ -structures that embed into
D. Various connections between patchwork and amalgama-
tion concepts have been hinted upon in the literature many
times (see e.g. Bodirsky and Jonsson (2017), Huang (2012),
and Li et al. (2008; 2009)) but the details have not been
clearly spelled out. Connections between PP and amalga-
mation were also studied by Baader & Rydval (2020), but
their results do not apply directly to structures that are k-ary
(which is required by Theorem 5). Thus, we prove:
Theorem 7. Let D be a k-ary JEPD τ -structure with do-
main D and assume that the k-ary equality relation Eqk =
{(d, . . . , d) ∈ Dk | d ∈ D} is in D. If Age(D) has the
amalgamation property, then D has the patchwork property.

Proof. Consider the instances I1 = (V1, C1), I2 = (V2, C2)
of CSP(D) in Definition 3 as τ -structures I1, I2. Note that
the intersection I1[V1 ∩ V2] = I2[V1 ∩ V2] viewed as a τ -
structure A is the maximal common substructure of I1, I2
and contains all elements that appear in both of them. To ap-
ply AP, we need to show that I1 and I2 embed into D. Recall
that an embedding is an injective strong homomorphism.

The remainder of the proof applies for all i ∈ {1, 2}.
Since Ii is satisfiable, there is a homomorphism hi : Ii →
D. Additionally, Ii is complete and D has JEPD relations, so
for all R ∈ τ , (hi(x1), . . . , hi(xk)) ∈ RD implies that the
constraint R(x1, . . . , xk) is in Ci and it is satisfied. Hence,
hi is a strong homomorphism. To show that it is injective, we
observe that for all x, y ∈ Ii, if Eqk(x, y, . . . , y) ∈ Ci, then
x = y. Otherwise, by completeness, there is another R ∈ τ
such that R(x, y, . . . , y) ∈ Ci. By PD, R ∩ Eqk = ∅, so
x 6= y. Thus, hi is injective, and ergo, an embedding.

We know that I1, I2 ∈ Age(D) so the amalgam of I1
and I2 is in Age(D) by AP. Note that the structure C defined
by (V1∪V2, C1∪C2) embeds into the amalgam. Hence, it is
homomorphic to D and (V1∪V2, C1∪C2) is satisfiable.

Homogeneity
Theorem 7 allows us to relate PP to some properties and
results that have been important in the study of CSPs. To
this end, we will use homogeneity. A homogeneous structure
A is a countable structure such that for every isomorphism
f : B→ C between finite substructures B,C of A, there is
an automorphism f ′ of A extending f . The following result
is part of the classical Fraı̈ssé’s Theorem (1953).
Theorem 8. Age(A) has AP when A is a countable homo-
geneous structure with a countable signature.

Fraı̈ssé’s Theorem is explained in most textbooks on
model theory, e.g. Hodges (1997). Combining Theorems 7
and 8 gives us the next result.
Corollary 9. Let A be a k-ary structure with a countable
domain, a finite signature, and that contains the k-ary equal-
ity relation Eqk. Then, A has PP if A is homogeneous.

A large number of homogeneous structures are known
from the literature (see, for example, the survey by Macpher-
son (2011) and Hirsch (1997)) and they play an important
role in CSP research. In fact, after the Feder-Vardi conjec-
ture on finite-domain CSPs was settled (independently) by

Bulatov (2017) and Zhuk (2020), much of the complexity-
oriented work has concentrated on homogeneous infinite-
domain CSPs. We note that all examples in Corollary 6
can be formulated by homogeneous structures; for instance,
Hirsch (1996) has proven this for Allen’s algebra and
Bodirsky and Wölfl (2011) for RCC8.

Examples
The machinery presented above allows us to show fpt re-
sults for large families of CSPs. Our first example is the
set of CSPs T whose constraint languages consist of re-
lations that are in 〈Q〉b. Well-known CSPs in T are the
point algebra (Vilain and Kautz 1986), the ORD-Horn
class (Nebel and Bürckert 1995) and certain scheduling
problems (Möhring, Skutella, and Stork 2004) together with
basic problems in complexity theory such as BETWEEN-
NESS and CYCLIC ORDERING (Garey and Johnson 1979).
Clearly, T contains many different CSPs based on non-
binary relations and, in fact, the CSPs with binary rela-
tions are a subset of the point algebra and thus polynomial-
time solvable (Vilain and Kautz 1986). The CSPs in T
have been intensively studied in the literature: for instance,
Bodirsky and Kára (2010) proved that any CSP in T is either
polynomial-time solvable or NP-complete.

Arbitrarily choose CSP(Γ) in T . It is folklore that the
structure Q is homogeneous (see, for instance, Example
2.1.2 in Macpherson (2011) for a proof sketch). The struc-
ture Q is obviously JEPD and it contains the binary equality
relation, so it has PP by Corollary 9. Since CSP(Q) is de-
cidable, it follows from Theorem 5 that CSP(Γ) is fpt.

Proposition 10. Every problem in T is fpt.

Hirsch (1997) points out and discusses interesting homo-
geneous structures whose CSP can be solved with the same
approach as for T . Moreover, Hirsch (1996) proposed study-
ing the computational complexity of CSPs for relation alge-
bras, with obvious applications in AI. Inspired by this re-
search programme, Bodirsky and Knäuer (2021) recently
identified sufficient conditions for homogeneity of relation
algebras. Their results provide further examples of CSPs that
are covered by Theorem 5.

We continue with a more elaborate example that demon-
strates usefulness of Theorem 5 beyond CSPs. Phylogeny
problems are used for phylogenetic reconstruction in bioin-
formatics, but also in areas such as database theory, compu-
tational genealogy, and computational linguistics. A recent
overview can be found in Warnow (2017). The problem is
intuitively the following: given a partial description of a tree,
is there a tree that is compatible with the given information?
Many problems of this kind are NP-hard: concrete exam-
ples include the subtree avoidance problem (Ng, Steel, and
Wormald 2000), the forbidden triple problem (Bryant 1997),
and the quartet consistency problem (Steel 1992). Fpt algo-
rithms are thus an interesting option for solving phylogeny
problems. Our basic idea is to rephrase phylogeny problems
as CSPs and then apply Theorem 5. We formalise this below,
mostly following Bodirsky et al. (2017).

Let T be a tree, i.e. an undirected, acyclic, connected
graph, and let r be the root of T . We only consider binary
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trees, i.e. all vertices except for the root have either degree 3
or 1, and the root has either degree 2 or 0. The vertices of T
are denoted by V (T ) and the leaves L(T ) ⊆ V (T ) are the
vertices of degree 1. For arbitrary u, v ∈ V (T ), we say that
u lies below v if the path from u to the root r passes through
v. We say that u lies strictly below v if u lies below v and
u 6= v. The youngest common ancestor (yca) of S ⊆ V (T )
is the vertex u that lies above all vertices in S and has max-
imal distance from r; this vertex is uniquely determined by
S. The leaf structure of T is the {C}-structure (L(T );C)
where (x, y, z) ∈ C if and only if yca({y, z}) lies strictly
below yca({x, y, z}). Following the literature on phylogeny
problems, we write x|yz instead of C(x, y, z).

An atomic phylogeny formula φ is a conjunction of for-
mulas of the form x|yz and x = y. We say that φ with vari-
ables V is satisfiable if there exists a rooted binary tree T
and a mapping s : V → L(T ) such that φ is satisfied by T
under s. The atomic phylogeny problem APHYL is the com-
putational problem with atomic phylogeny formulas as in-
stances and the question is whether the formula is satisfiable
or not. APHYL is connected to CSPs as follows.
Theorem 11 (Prop. 2 in Bodirsky et al. (2017)). There exists
a homogeneous {|,=}-structure A with a countable domain
and the following property: an instance I of APHYL is satis-
fiable if and only if I (viewed as an instance of CSP({|,=}))
homomorphically maps to A.

The relation x|yz will be a basic relation in the CSP we
are aiming for. Since we need a JEPD set of relations as
the basis for Theorem 5, the following observation (see, for
instance Bodirsky et al. (2017, Sec. 2.1)) is useful.
Observation. Let x, y, z be arbitrary leaves in an arbitrarily
chosen rooted binary tree. If x|yz, then it may be the case
that y = z. However, x|yz implies that x 6= y and x 6= z.
Hence, we either have x|yz, y|xz, z|xy, or x = y = z.

Assume that the structure A in Theorem 11 has do-
main A and contains the relations |′ and =′. Let P de-
note the structure (A;R1, R2, R3, R4) where R1(x, y, z)⇔
x|′yz, R2(x, y, z) ⇔ y|′xz, R3(x, y, z) ⇔ z|′xy, and
R4(x, y, z)⇔ (x =′ y =′ z).
Proposition 12. Let Γ ⊆ 〈P〉b. Then CSP(Γ) is fpt.

Proof. We know that P ⊆ 〈(A; |′,=′)〉b and it is straight-
forward to verify that P is homogeneous since (A; |′,=′) is
homogeneous—all relations in P can be obtained by per-
muting the arguments of relations in (A; |′,=′). The struc-
ture P is JEPD by the Observation and it contains the ternary
equality relation. Thus, P has PP by Corollary 9. Finally,
CSP(P) is solvable in polynomial time (Aho et al. 1981)
and the proposition follows from Theorem 5.

This proves that the three examples of NP-hard phy-
logeny problems that were discussed earlier are fpt: the
essence of Theorem 11 and Proposition 12 is that there ex-
ist relations in 〈P〉b that capture the underlying formulas.
The exact problem formulations can be found in Bodirsky
et al. (2017, Sec. 2.2). The disequality relation neq is used
for defining relations in some of these examples—note that
neq(x, y) ⇔ ¬R4(x, x, y) ⇔ R1(x, x, y) ∨ R2(x, x, y) ∨
R3(x, x, y) so it is a member of 〈P〉b.

Discussion and Future Research

Huang et al. (2013) proved that CSP(A) is in XP when-
ever A is a binary constraint language with aNAP. This
property is PP restricted to binary relations with the com-
pleteness condition replaced by the algebraic closure condi-
tion. aNAP is less restrictive than PP, so it might be preferred
in practical implementations for some constraint languages.
However, in the worst case, using aNAP yields no advantage
over using PP, and it is only defined for binary languages.
We can thus conclude that our algorithm has a larger scope
of applicability than the algorithm by Huang et al.

Bodirsky & Dalmau (2013) show that CSP(A) is in XP
whenever A is a countable structure that is ω-categorical.
While our results improve this to fixed-parameter tractabil-
ity in many cases, there are interesting examples of ω-
categorical structures A that do not have PP. An emi-
nent ω-categorical example is the branching time alge-
bra (BTA) which has been used, for example, in plan-
ning (Dean and Boddy 1988) and as the basis for tempo-
ral logics (Emerson and Halpern 1986). One may formu-
late BTA as a CSP(BBTA) where BBTA is JEPD and ω-
categorical (Adeleke and Neumann 1998), However, one
cannot formulate this problem as a CSP with PP; this fol-
lows from adapting an argument by Hirsch (1997, Sec. 4.1).
Both CSP(BBTA) and CSP(B∨=BTA) are solvable in poly-
nomial time (Hirsch 1997, Sec. 4.2), but there are finite
Γ ⊆ 〈BBTA〉b such that CSP(Γ) is NP-hard (Broxvall and
Jonsson 2003). It is thus natural to ask whether CSP(Γ) is fpt
when Γ contains higher-arity relations defined over BBTA.

There are many relevant CSP(Γ) where Γ is not ω-
categorical. Well-known examples include the unit inter-
val algebra (i.e. Allen’s algebra restricted to intervals of
equal length (Pe’er and Shamir 1997)) and temporal prob-
lems that can express metric time such as the simple tempo-
ral problem, various disjunctive temporal problems and ex-
tended variants of Allen’s algebra (Dechter, Meiri, and Pearl
1991; Krokhin, Jeavons, and Jonsson 2004; Oddi and Cesta
2000). It is known that some of these problems are in XP
(Dabrowski et al. 2021) but a more complete picture is lack-
ing. Studying this is an obvious future research direction.

We know from Corollary 6 that Allen’s Algebra can be
solved in 2O(w logw) ·nO(1) time. Recall that a primal graph
of a CSP(B∨=) instance with n variables has treewidth at
most n. A 2o(w logw) · nO(1) time algorithm would thus
lead to the fastest known algorithm for Allen’s Algebra by
beating the 2O(n logn) time algorithm pointed out by Stock-
man (2016). Improving dependence on w is an interesting
research direction, but it may be a difficult problem given
this observation.

One way of attacking computationally hard CSPs is to
analyse parameters other than primal treewidth. Examples
that come to mind are the treewidth of the dual graph or the
incidence graph and variants of hypertree width, since they
have been successfully used for efficiently solving CSPs as
well as other combinatorial problems. These parameters are
not so interesting for finite constraint languages since they
are within a constant factor of the primal treewidth.
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Fraı̈ssé, R. 1953. Sur Certaines Relations qui Généralisent
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