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Abstract

Adding constraint support in Machine Learning has the poten-
tial to address outstanding issues in data-driven AI systems,
such as safety and fairness. Existing approaches typically ap-
ply constrained optimization techniques to ML training, en-
force constraint satisfaction by adjusting the model design, or
use constraints to correct the output. Here, we investigate a dif-
ferent, complementary, strategy based on “teaching” constraint
satisfaction to a supervised ML method via the direct use of a
state-of-the-art constraint solver: this enables taking advantage
of decades of research on constrained optimization with lim-
ited effort. In practice, we use a decomposition scheme alter-
nating master steps (in charge of enforcing the constraints) and
learner steps (where any supervised ML model and training
algorithm can be employed). The process leads to approximate
constraint satisfaction in general, and convergence properties
are difficult to establish; despite this fact, we found empirically
that even a naı̈ve setup of our approach performs well on ML
tasks with fairness constraints, and on classical datasets with
synthetic constraints.

Introduction
Techniques to deal with constraints in Machine Learning
(ML) have the potential to address outstanding issues in data-
driven AI methods: they can boost generalization (e.g. if
they represent physical laws), encode negative patterns (e.g.
excluded classes) and relational information (e.g. involving
multiple examples); they can ensure the satisfaction of de-
sired properties, such as fairness, safety, or lawfulness.

To the best of the authors’ knowledge, existing approaches
for taking into account constraints in ML typically work
by adapting ideas from constrained optimization to train-
ing algorithms/loss functions, or adjusting the model design,
or by correcting the model output. Here we propose a dif-
ferent, complementary, strategy that enforces constraints in
supervised ML by making direct use of any state-of-the-art
constraint solver: this enables taking advantage of decades
of research on constraint optimization with limited effort.

Our method, referred to as Moving Targets, is
decomposition-based and alternates master and learner steps.
The master step (addressed with the constraint solver) handles
constraint satisfaction by adjusting the targets; the learner

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

step trains a supervised ML model. Master and learner are
isolated and communicate only via the vector of targets, so
that: 1) any ML method can be used for the learner, with no
modifications; 2) the master can rely on techniques such as
Mathematical or Constraint Programming, which natively
support complex constraints (including discrete and non-
differentiable ones). Our method is also well suited to deal
with relational constraints over large populations (e.g. fair-
ness indicators).

When constraints conflict with the data, the present ap-
proach prioritizes constraint satisfaction over accuracy: for
this reason, it is not well suited for exploiting fuzzy sym-
bolic knowledge, unlike many approaches in the literature.
Due to our open setting it is hard to determine convergence
properties; despite this, we found that even a naı̈ve setup
of the approach performs well (compared to state-of-the-art
methods) on classification and regression tasks with fairness
constraints, and on classification problems with balance con-
straints.

Due to its combination of simplicity, generality, and the ob-
served empirical performance, Moving Targets can represent
a valuable addition to the arsenal of techniques for dealing
with constraints in Machine Learning. The paper is organized
as follows: in the following section we briefly survey related
works on the integration of constraints in ML; afterwards we
present our method and its empirical evaluation. Finally we
will draw some concluding remarks.

Related Works
Most approaches in the literature build on just a few key ideas.
One of them is using the constraints to adjust the output of a
trained ML model. This is done in DeepProbLog (Manhaeve
et al. 2018), where Neural Networks with probabilistic output
(mostly classifiers) are treated as predicates. (Rocktäschel
and Riedel 2017) presents a Neural Theorem Prover using
differentiable predicates and the Prolog backward chaining
algorithm. The original Markov Logic Networks (Richardson
and Domingos 2006) rely instead on Markov Fields defined
over First Order Logic formulas. As a drawback, with these
approaches the constraints have no effect on the model param-
eters, which complicates the analysis of feature importance.
Moreover, dealing with relational constraints (e.g. fairness)
requires access at prediction time either to a representative
population or to its distribution (Hardt, Price, and Srebro
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Loss Function Expression Target Space

Mean Squared Error
1

m
‖y − y∗‖22 Rm

Hamming Distance
1

m

m∑
i=1

I[yi 6= y∗
j ] {1..c}m

Cross Entropy
1

m

m∑
i=1

c∑
j=1

y∗
ij log yij [0, 1]m

Table 1: Notable losses (m = # examples, c = #classes)

2016; Fish, Kun, and Lelkes 2016).
Other approaches operate by using constraint-based ex-

pressions as regularization terms during training. In Seman-
tic Based Regularization (Diligenti, Gori, and Sacca 2017)
constraints are expressed as fuzzy logical formulas over dif-
ferentiable predicates. Logic Tensor Networks (Serafini and
Garcez 2016) focus on Neural Networks and replace the
entire loss function with a fuzzy formula. Differentiable Rea-
soning (van Krieken, Acar, and van Harmelen 2019) uses in
a similar fashion relational background knowledge to benefit
from unlabeled data. In the context of fairness constraints,
this approach has been taken in (Aghaei, Azizi, and Vayanos
2019; Dwork et al. 2012; Zemel et al. 2013; Calders and Ver-
wer 2010; Kamiran, Calders, and Pechenizkiy 2010). These
methods handle the constraints by adjusting the model param-
eters, and can therefore be used to analyze feature importance.
They can deal with relational constraints without additional
examples at prediction time; however, they require simulta-
neous access at training time to large groups of examples
linked by the constraints (which can be problematic when
using mini-batches). They often require properties on the
constraints (e.g. differentiability), which may force approxi-
mations; they may also be susceptible to numerical issues.

A third idea consists in enforcing constraint satisfaction in
the data via pre-processing. This is proposed in the context
of fairness constraints by (Kamiran and Calders 2009, 2012;
Luong, Ruggieri, and Turini 2011). The approach enables
the use of standard ML methods with no modification, and
can deal with relational constraints on large sets of exam-
ples. As a main drawback, the model/training algorithm may
have trouble approximating the revised labels, leading to
substantial degrees of infeasibility.

Multiple ideas can be combined: domain knowledge has
been introduced in differentiable Machine Learning (e.g.
Deep Networks) by designing their structure, rather than the
loss function: examples include Deep Structured Models in
(Lin et al. 2016) and (Ma and Hovy 2016). These approaches
can use constraints to support both training and inference.

Moving Targets
In this section we present our method, discuss its properties
and provide some convergence considerations.

The Algorithm Our goal is to adjust the parameters of a
ML model so as to minimize a loss function for supervised
learning, under a set of generic constraints. We acknowledge

Algorithm 1 MOVING TARGETS

input label vector y∗, scalar parameters α, β, n
y1 = l(y∗) # pretraining
for k = 1..n do

if yk /∈ C then
zk = mα(y

k) # infeasible master step
else
zk = mβ(y

k) # feasible master step
end if
yk+1 = l(zk) # learner step

end for

that any constrained learning problem must trade prediction
mistakes for a better level of constraint satisfaction, and we
attempt to control this process by carefully selecting which
mistakes should be made. This is similar in spirit to (Kamiran
and Calders 2009, 2012; Luong, Ruggieri, and Turini 2011),
but: 1) we consider generic constraints rather than focusing
on fairness; 2) we consider generic supervised learning rather
than just binary classification; 3) we rely on an iterative
process (which alternates “master” and “learner” steps) to
improve the results.

Let L(y, y∗) be the loss function, where y is the predic-
tion vector and y∗ is the target vector. We make the (non-
restrictive) assumption that the loss is a pre-metric – i.e.
L(y, y∗) ≥ 0 and L(y, y∗) = 0 iff y = y∗. Examples of how
to treat common loss functions can be found in Table 1.

We then want to solve, in an exact or approximate fashion,
the following constrained optimization problem:

argmin
θ
{L(y, y∗) | y = f(X, θ), y ∈ C} (1)

where f is the ML model and θ its parameter vector. With
some abuse of notation we refer to f(X, θ) as the vector of
predictions for the examples in the training set X . Since the
model input at training time is known, constraints on both
the model input and output can be represented as a feasible
set C for the sole predictions y.

The problem can be rewritten in pure target space, without
loss of generality, by introducing a second set B = {y |
∃θ, y = f(X, θ)} corresponding to the ML model bias:

argmin
y
{L(y, y∗) | y ∈ B ∩ C} (2)

The Moving Targets method is described in Algorithm 1,
and starts with a learner step w.r.t. the original target vector
y∗ (pretraining). Each learner step, given a target vector as
input, solves approximately or exactly the problem:

l(z) = argmin
y
{L(y, z) | y ∈ B} (3)

Note that this is a traditional unconstrained learning problem,
since B is just the model/algorithm bias. The result of the
first learner step gives an initial vector of predictions y1.

Next comes a master step to adjust the target vector: this
can take two forms, depending on the current predictions. In
case of an infeasibility, i.e. yk /∈ C, we solve:

mα(y) = argmin
z

{
L(z, y∗) +

1

α
L(z, y) | z ∈ C

}
(4)
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Figure 1: A sample run of our algorithm

I.e., we try to find a feasible label vector z that balances the
distance (in terms of loss) to both the original labels y∗ and
the current prediction y. A parameter α ∈ (0,∞) controls
the trade-off. If the input vector is feasible we instead solve:

mβ(y) = argmin
z
{L(z, y∗) | L(z, y) ≤ β, z ∈ C} (5)

i.e. we look for a feasible label vector z that is 1) not too far
from the current predictions (in the ball defined by L(z, y) ≤
β) and 2) closer (in terms of loss) to the true labels y∗. The
differences from mα(y) are needed to handle some corner
cases (e.g. classification with accuracy loss).

We then make a learner step trying to reach the adjusted
labels; the new predictions will be adjusted at the next itera-
tion and so on. In case of convergence, the predictions yk and
the adjusted labels zk become stationary (but not necessarily
identical). An example run, for a Mean Squared Error loss
and convex constraints and bias, is in Figure 1.

Discussion The learner problem is unconstrained, thus en-
abling the use of arbitrary ML approaches. The master prob-
lems do not need to deal with the ML model, making them
far easier to solve for constrained optimization approaches.
Since we make no explicit use of mini-batches, we can deal
well with relational constraints on large groups (e.g. fairness).
The master step can be addressed via any suitable solver, so
that discrete variables and non-differentiable constraints can
be tackled via (e.g.) Mathematical Programming, Constraint
Programming, or SAT Modulo Theories.

Due to the very open setting, convergence properties are
difficult to establish. Equation (2) is the Best Approximation
Problem, while the learner step in Equation (3) is a projec-
tion problem: this relates Moving Targets to the Alternating
Projections (AP) method, Douglas-Rachford splits – see e.g.
(Boyd, Dattorro et al. 2003) –, or the algorithm from (Artacho
and Campoy 2018). Unfortunately, none of these approaches
can be used directly, unless we introduce strong assumptions
(e.g. convexity, lack of discrete predictions). Both forms of
the master step are loosely derived from the Proximal Gradi-
ent Method (Parikh, Boyd et al. 2014), and under restrictive
assumptions should inherit its convergence properties. In
practice, however, we are mostly concerned with non-convex
ML models and complex constraints, meaning that at least

the learner problem will be solved to local optimality. This
limits our interest in a formal convergence analysis.

Constraint satisfaction guarantees cannot be provided in
general, since the intersection B ∩ C in Equation (2) could
be empty. Even if that is not the case, as a side effect of using
a decomposition and relying (in most practical cases) to a
non-exact learner, our method may fail to reach constraint
satisfaction. In practice, Moving Targets usually reaches fea-
sibility or near-feasibility in our empirical evaluation.

Depending on the constraints, loss, and the target space the
master problems may be NP-hard. Even in this case, state-of-
the-art solvers may find exact solutions for datasets of practi-
cal size. Moreover, for separable loss functions (e.g. all those
from Table 1), the master problems can be defined over only
the constrained examples, with a possibly significant size
reduction. If scalability is still a concern, the master step can
be solved to near-optimality via heuristics, meta-heuristics
or truncated exact algorithms. Given that the learner prob-
lem is also likely solved to local optimality, using non-exact
methods in the master is not in principle a critical concern.

Empirical Evaluation
Here we describe our experimentation, which is designed
around a few main questions: 1) How does the method work
on a variety of constraints, tasks, and datasets? 2) What is
the effect of the α, β parameters? 3) How does the approach
scale? 4) How different is the behavior with different ML
models? 5) How does the method compare with alternative
approaches? Our code and results are publicly available1.

Tasks and Constraints We experiment on three case stud-
ies. First, we consider a (synthetic) classification problem
augmented with a balance constraint, which forces the dis-
tribution over the classes to be approximately uniform. The
loss function is the Hamming distance (accuracy) and the
target space is {1..c}m. The mα(y) problem is formulated
as a Mixed Integer Linear Program (MILP) with binary vari-
ables zij such that zij = 1 iff the adjusted class for the i-th
example is j. Formally:

min
1

m

m∑
i=1

(1− zi,y∗i ) +
1

αm

m∑
i=1

(1− zi,yi) (6)

s.t.
c∑
j=1

zij = 1 ∀i = 1..m (7)

m∑
i=1

yij ≤
⌈
(1 + ξ)m

c

⌉
∀j = 1..c (8)

zij ∈ {0, 1} ∀i = 1..m, j = 1..c (9)

The summations in Equation (6) encode the Hamming dis-
tance w.r.t. the true labels y∗ and the predictions y. Equa-
tion (7) prevents assigning two classes to the same example.
Equation (8) requires an equal count for each class, with
tolerance defined by ξ (ξ = 0.05 in all our experiments);
the balance constraint is stated in exact form, thanks to the

1Code available at: github.com/fabdet/moving-targets
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discrete labels. Themα formulation generalizes the knapsack
problem and is hence NP-hard; since all examples appear in
Equation (8), no problem size reduction is possible. The mβ

problem can be derived from mα by changing the objective
function and by adding the ball constraint as in Equation (5).

Our second use case is a classification problem with real-
istic fairness constraints, based on the DIDI indicator from
(Aghaei, Azizi, and Vayanos 2019):

DIDI c(X, y) =
∑
k∈K

∑
v∈Dk

c∑
j=1

dkvj (10)

dk,v,j =

∣∣∣∣∣∣ 1m
m∑
i=1

I[yi = j]− 1

|Xk,v|
∑

i∈Xk,v

I[yi = j]

∣∣∣∣∣∣
where K contains the indices of “protected features” (e.g.
ethnicity, gender, etc.). Dk is the set of possible values for
the k-th feature, and Xk,v is the set of examples having value
v for the k-th feature. The DIDI indicator measures whether
there exists a disparate outcome for examples belonging to
protected groups; this gap is null for unbiased models. The
mα(y) problem can be defined via the following Mathemati-
cal Program:

min
1

m

m∑
i=1

(1− zi,y∗i ) +
1

αm

m∑
i=1

(1− zi,yi) (11)

s.t. Equation (7)∑
k∈K

∑
v∈Dk

c∑
j=1

dkvj ≤ ε ∀j = 1..c (12)

dkvj =

∣∣∣∣∣∣
m∑
i=1

yij
m
−
∑

i∈Xk,v

yij
|Xk,v|

∣∣∣∣∣∣ (13)

zij ∈ {0, 1} ∀i = 1..m, j = 1..c (14)

where Equation (12) is the constraint on the DIDI value
and Equation (13) is then linearized using standard MILP
methods. The DIDI scales with the number of examples and
has an intrinsic value due to the discrimination in the data.
Therefore, we compute DIDI tr for the training set, then in
our experiments we have ε = 0.2DIDI tr. This is again an
NP-hard problem defined over all training examples. The mβ

formulation can be derived as in the previous case.
Our third case study is a regression problem with fair-

ness constraints, based on a specialized DIDI version from
(Aghaei, Azizi, and Vayanos 2019):

DIDI r(X, y) =
∑
k∈K

∑
v∈Dk

dkv (15)

dk,v,j =

∣∣∣∣∣∣ 1m
m∑
i=1

yi −
1

|Xk,v|
∑

i∈Xk,v

y

∣∣∣∣∣∣ (16)

In this case, we use the Mean Squared Error (MSE) as a loss
function, and the label space is Rm. The mα problem can be

defined via the following Mathematical Program:

min
1

m

m∑
i=1

(y∗i − zi)2 +
1

αm

m∑
i=1

(zi − yi)2 (17)

s.t.
∑
k∈K

∑
v∈Dk

dkv ≤ ε ∀j = 1..c (18)

dkv =

∣∣∣∣∣∣
m∑
i=1

yi
m
−
∑

i∈Xk,v

yi
|Xk,v|

∣∣∣∣∣∣ (19)

zi ∈ R ∀i = 1..m (20)

After a standard reformulation of Equation (19), this is a lin-
early constrained, convex, Quadratic Programming problem
that can be solved in polynomial time. The mβ problem can
be derived as in the previous cases: while still convex, mβ is
in this case a Quadratically Constrained Problem.

Datasets, Preparation, and General Setup We test our
method on seven datasets from the UCI Machine Learning
repository (Dua and Graff 2017), namely iris (150 exam-
ples), redwine (1,599), crime (2,215), whitewine (4,898),
adult (32,561), shuttle (43,500), and dota2 (92,650). We
use adult for the classification/fairness case study, crime for
regression/fairness, and the remaining datasets for the classi-
fication/balance case study.

For each experiment, we perform a 5-fold cross validation
(with a fixed seed). Hence, the training set for each fold will
include 80% of the data. All our experiments are run on an
Intel Core i7 laptop with 16GB RAM and no GPU acceler-
ation, and we use Cplex 12.8 to solve the master problems.
For sake of simplicity, we opted for straightforward setup of
the constraint solver (default parameters, exact solution of
even NP-hard problems).

All the datasets for the classification/balance case study
are prepared by standardizing all input features (on the train-
ing folds) to have zero mean and unit variance. The iris
and dota2 datasets are very balanced, while the remaining
datasets are quite unbalanced. In the adult (also known as
“Census Income”) dataset the target is “income” and the pro-
tected attribute is “race”. We remove the features “education”
(duplicated) and “native country” and use a one-hot encoding
on all categorical features. Features are normalized between
0 and 1. Our crime dataset is the “Communities and Crime
Unnormalized” table. The target is “violentPerPop” and the
protected feature is “race”. We remove features that are empty
almost everywhere and features trivially related to the target
(“murders”, “robberies”, etc.). Features are normalized be-
tween 0 and 1 and we select the top 15 ones according to the
SelectKBest method of scikit-learn (excluding “race”).
The protected feature is then reintroduced.

Parameter tuning We perform an investigation of the im-
pact of α and β by running the algorithm for 15 iterations
(used in all experiments), with different parameter values. As
a ML model, we use a fully-connected, feed-forward Neu-
ral Network (NN) with two hidden layers with 32-Rectifier
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NN (α, β) Ptr α = 1 α = 1 α = 1 α = .1 α = 0+ Ideal case
β = .01 β = .05 β = .1 β = .01 β = 0.1

Iris S .970± .002 .99± .01 .997± .004 .997± .004 .99± .02 0.995± 0.008 .9968± .0004
C .23± .08 .08± .3 .0± .3 .0± .3 .15± .4 .0± .3 .0± .3

Redwine S .709± .005 .508± .006 .511± .009 .506± .006 .484± .007 .50± .01 .525± .002
C .05± .05 .0± .05 .0± .03 .0± .04 .0± .02 .0± .05 .0± 0

Whitewine S .644± .002 .446± .006 .437± .009 .439± .009 .40± .02 .401± .009 .524± .002
C 1+ ± .2 .0± .1 .0± .3 .0± .2 .0± .3 .0± .3 .0± .1

Shuttle S .999± 0 .39± .04 .37± .01 .375± .007 .37± .03 .37± .03 .3608± .0008
C 1+ ± 0 1+ ± 1 .7± .2 .6± .4 1+ ± 1 1+ ± 1 0± 0

Dota2 S .686± .002 .666± .007 .661± .002 .66± .01 .672± .004 .656± .006 .9984± .0009
C 1+ ± .3 .6± 1 .6± 1 1+ ± 1 .0± .2 1+ ± 1 .0± 0

Adult S .867± 0.001 .818± .005 .86± .02 .841± .006 .852± .004 .84± .02 0.992± .0005
C 1+ ± .2 .0± .2 .0± .1 .1± .4 .1± .2 .1± .2 0.± 0

Crime S .56± .02 .49± .01 .46± .04 .48± .03 .45± .05 .46± .06 .910± .007
C 1+ ± .1 .1± .4 .0± .4 .0± .5 .0±.1 .05± .2 .0± 0

Table 2: Effect of parameters α and β on different datasets

Linear Units. The last layer has either a SoftMax activa-
tion (for classification) or Linear (for regression). The loss
function is respectively the categorical cross-entropy or the
MSE. The network is trained with 100 epochs of RMSProp
in Keras/Tensorflow 2.0 (default parameters, batch size 64).

The results are in Table 2. We report a score (row S, higher
is better) and a level of constraint violation (row C, lower is
better). The S score is the accuracy for classification and the
R2 coefficient for regression. For the balance constraint, the
C score is the standard deviation of the class frequencies; in
the fairness case studies, we use the ratio between the DIDI of
the predictions and that of the training data. Both indicators
are then normalized over the constraint satisfaction threshold,
and capped at 1 for readability (capped values are marked as
1+). Cells report mean and standard deviation for the 5 runs.

All columns labeled with α and β values refer to our
method with the specified parameters. The ideal case refers to
a simple projection of the true target y∗ on the feasible space
C. This corresponds to an upper bound on the performance
of a constrained learner: it exactly matches the constraint
threshold while minimizing the loss function. The ptr col-
umn reports the results of the pretraining step, as defined in
algorithm 1, i.e. a constraint-agnostic behavior. Our method
lies inbetween the two extreme cases. Accuracy comparisons
are fair only for similar constraint violation scores.

The Moving Targets algorithm can significantly improve
the satisfaction of non-trivial constraints: this is evident for
the unbalanced datasets redwine, whitewine, and shuttle and
all fairness use cases, for which feasible (or close) results
are almost always obtained. As one can expect, satisfying
very tight constraints (e.g. in the unbalanced dataset) comes
at a steep cost in terms of accuracy. Finally, reasonable pa-
rameter choices have only a mild effect on the algorithm
behavior, thus simplifying its configuration. Empirically,
α = 1, β = 0.1 seems to works well and is used for all
subsequent experiments.

Figure 2: Average master step time, compared to NN training

Scalability We next turn to investigating the method scala-
bility. Our examples can be considered worst cases, since all
examples appear in the single constraints and in some case
involve NP-hard problems. We report the average time for
a master step in Figure 2, with average time for a learner
step (100 epochs of our NN) for reference. At least in our
experimentation, the time for a master step is always very
reasonable, even for the dota2 dataset for which we solve
NP-hard problems on 74,120 examples. This is mostly due to
the clean structure of the mα and mβ problems. Of course,
for sufficiently large training sets, exact solutions will be-
come impractical and non-exact optimization will need to be
considered (e.g. meta-heuristics or matheuristics).

Setup of Alternative Approaches Here we describe the
setup of alternative approaches that will be used for compar-
ison. Namely, we consider the regularized linear approach
from (Berk et al. 2017), referred to as RLR, a Neural Net-
work with Semantic Based Regularization (Diligenti, Gori,
and Sacca 2017), referred to as SBR, and the Lagrangian
approach from (Cotter et al. 2019), referred to as TFCO. The
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µ 0.01 0.1 1

SBR Iris S 0.984 0.97 0.4
C 0 1 1+

Redwine S 0.15 0.15 0.17
C 1+ 1+ 1

Whitewine S 0.17 0.15 0.14
C 1+ 0.3 1

Shuttle S 0.7 0.31 0.14
C 1+ 0.8 0.8

Dota2 S 0.61 0.48 0.49
C 1+ 1+ 1+

RLR Adult S .83 .75 .75
C 1+ 1+ 1+

Crime S .39 0.30 0.30
C 1 0 0

Table 3: Effect of parameter µ in regularization methods

first two approaches introduce constraints as regularizers at
training time. Their loss function is in the form:

L(f(X; θ), y∗) + µg(f(X; θ)) (21)

The regularization term must be differentiable and the mul-
tiplier µ needs to be hand-tuned. The TFCO approach is
similar, but it optimizes both the model parameters and the
multipliers by alternating loss minimization and constraint
satisfaction.

We use SBR only for the case studies with the balance
constraint, which we are forced to approximate to obtain
differentiability:

g(f(X; θ)) = max
j=1..c

m∑
i=1

f(X; θ) (22)

i.e. we use the sums of the NN output neurons to approximate
the class counts and the maximum as a penalty; this proved
superior to other attempts in preliminary tests. The L term is
the categorical cross-entropy.

Our SBR approach relies on the NN model from the pre-
vious paragraphs. Since access to the network structure is
needed to differentiate the regularizer, SBR works best when
all the examples linked by relational constraints can be in-
cluded in the same batch. When this is not viable the regular-
izer can be treated stochastically (via subsets of examples),
at the cost of additional approximation. We use a batch size
of 2,048 as a compromise between memory usage and noise.
The SBR method is trained for 1,600 epochs.

The RLR approach relies on linear models (Logistic or Lin-
ear Regression), which are simple enough to consider large
group of examples simultaneously. We use this approach for
the fairness use cases. In the crime (regression) dataset L
is the MSE and the regularizer is simply Equation (16). In
the adult (classification) dataset L is the cross-entropy; the
regularizer is Equation (10), with the following substitution:

dk,v,j =

∣∣∣∣∣∣ 1m
m∑
i=1

θ>xi −
1

|Xk,v|
∑

i∈Xk,v

θ>xi

∣∣∣∣∣∣

This is an approximation obtained according to (Berk et al.
2017) by disregarding the sigmoid in the Logistic Regressor
to preserve convexity. We train this approach to convergence
using the CVXPY 1.1 library (with default configuration). In
RLR and SBR classification, the introduced approximations
permit to satisfy the constraints by having equal output for all
classes, i.e. completely random predictions. This undesirable
behavior is countered by the L term.

The results of a hand-tuning process for SBR and RLR
are reported in Table 3. In most cases, larger µ values tend
as expected to result in better constraint satisfaction, with
a few notable exceptions for classification tasks (iris, dota,
and adult). The issue is likely due to the approximations in-
troduced in the regularizers, since it arises even on small
datasets that fit in a single mini-batch (iris). Further analysis
will be needed to confirm this intuition. The accuracy de-
creases for a larger µ, as expected, but at a rather rapid pace.
In the subsequent experiments, we will use for each dataset
the RLR and SBR that offer the best accuracy while being as
close to feasible as possible: these are the cells in bold font in
Table 3. For the TFCO approach, we use again the NN from
previous paragraphs, a minibatch of size 200 and 100 itera-
tions with 200 iterations per loop. The optimizer is ADAM
with default parameters. The method is in principle able to
reach an optimal solution, but only in expectation, at the price
of having a stochastic classifier. To enable a fair comparison,
we obtain a single classifier using the “best” method from the
reference implementation.

Alternative Approaches and ML Models We can now
compare the performance of Moving Targets using different
ML models with that of the alternative approaches presented
above, plus a pre-processing approach adapted from (Kami-
ran and Calders 2009), referred to as NNpp and obtained by
setting α, β →∞ in our method.

For our method, we consider the following ML models: 1)
the NN from the previous section with α = 1, β = 0.1; 2a) a
Random Forest Classifier with 50 estimators and maximum
depth of 5 (used for all classification case studies); 2b) a
Gradient Boosted Trees model, with 50 estimators, maximum
depth 4, and a minimum threshold of samples per leaf of 5
(for the regression case study); 4a) a Logistic Regression
model (for classification); 4b) a Linear Regression model
(for regression). All models except the NN are implemented
using scikit-learn (Pedregosa et al. 2011). In Table 4, the
tree ensemble method are reported on a single column, while
another column (LR) groups Logistic and Linear regression.

Our algorithm seems to work well with all the considered
ML models: tree ensembles and the NN have generally better
constraint satisfaction (and higher accuracy for constraint sat-
isfaction) than linear models, thanks to their larger variance.
The preprocessing approach is effective when constraints are
easy to satisfy (iris and dota2) and on all the fairness case
studies, though less so on the remaining datasets. All Moving
Targets approaches tend to perform better and more reliably
than RLR and SBR. The case of RLR and LR is particular,
since in principle the two approaches can be expected to
behave identically (convex problem and same constraint for-
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Regularized methods TFCO NN LR Ensemble trees NNpp
Iris S .984± .006 .95± .003 .997± .004 .96± .02 .995± .004 .96± .01

C .0± 0.2 1+ ± 1 .0± 0.3 .1± .4 .0± .2 .07± .4
Redwine S .17± .05 .3± .2 .506± .006 .32± .01 .40± .02 .480± .001

C .1+ ± .5 1+ ± 1 .0± .05 .6± .2 1+ ± .5 1+ ± .3
Whitewine S .15± .03 .3± .1 .439± .009 .025± .009 .37± .04 .47± .02

C .3± .3 1+ ± 0 .0± .2 .8± .2 1+ ± 1 1+ ± 1
Shuttle S .31± .04 .2± .3 .375± .007 .332± .007 .51± .05 .5± .1

C 1± 1 1+ ± 0 .6± .3 .4± .4 1+ ± .6 1+ ± 1
Dota2 S .61± .02 .53± .01 .66± .01 .592± .005 .53± .01 .689± .003

C 1+ ± 1 1+ ± 0 1+ ± 1 .5± 0 1+ ± 1 .0± .8
Adult S .834± .001 .87± .01 .841± .006 .805± .006 .76± .01 .865± .003

C 1+ ± .2 1+ ± .05 .1± .4 .0± .2 .0± .2 .0± .4
Crime S .30± .01 .58± .05 .48± .03 .369± .008 .49± .01 .484± .008

C 0± 0 .0± .1 .0± .5 .0± 0 .2± .05 .0± .1

Table 4: Benchmarks with different ML models and alternative approaches

mulation): the gap is due to an incomplete exploration of the
space of the multiplier µ. The example emphasizes a practical
problem that often arises when dealing with regularized loss
functions: the value of the multiplier has to be thoroughly
calibrated by hand, while Moving Targets allows to directly
define the desired constraint threshold and is quite robust to
different parameter values.

Generalization Since our main contribution is an optimiza-
tion algorithm, we have focused so far on evaluating its per-
formance on the training data, as it simplifies its analysis. We
now assess its performance on the test data. In addition to
the models of the previous paragraphs, we consider a Ran-
dom Forest with very low bias (100 estimators with no depth
limit), denoted as LBRF, simply trained over the ideal case
results. Due to the low bias, even this simpler training method
obtains feasibility and matches closely the accuracy of the
ideal case on the training set.

The results of this evaluation are reported in Table 5, in
the form of average ratio between the scores and the level of
constraint satisfaction in the test and the train data. With a few
exceptions (e.g. satisfiability in iris), the models generalize
well in terms of both accuracy and constraint satisfaction.
Given the tightness of some of the original constraint and the
degree to which the target were altered, this is a remarkable
result. The simpler LBRF approach performs poorly on the
test set: while the low bias simplifies training, the price to
pay in terms of lack of generalization is quite steep.

Conclusion
In this paper we have introduced Moving Targets, a decom-
position approach to augment a generic supervised learning
algorithm with constraints, by iteratively adjusting the exam-
ple labels. The method is designed to prioritize constraint
satisfaction over accuracy, and proved to behave well on a
selection of tasks, constraints, and datasets. Its relative sim-
plicity, reasonable scalability, and the ability to handle any
classical ML model and any state-of-the-art constraint solver

NN Ens. Trees LR LBRF

Iris Sts/Str 0.96 0.96 0.99 0.96
Cts/Ctr 5.68 5.17 4.31 5.16

Redwine Sts/Str 0.62 0.92 0.94 0.72
Cts/Ctr 1.22 1.04 1.35 2.68

Whitewine Sts/Str 0.70 0.96 1.00 0.71
Cts/Ctr 1.11 1.00 0.99 2.92

Shuttle Sts/Str 0.99 1.00 0.99 1.02
Cts/Ctr 0.97 1.00 1.01 1.35

Dota2 Sts/Str 0.83 1.00 0.99 0.58
Cts/Ctr 1.10 1.00 1.03 2.79

Adult Sts/Str 0.99 1.00 1.00 0.86
Cts/Ctr 1.55 1.92 0.98 4.21

Crime Sts/Str 0.75 0.73 0.93 0.50
Cts/Ctr 0.74 1.05 1.03 1.53

Table 5: Generalization of various models in the test scenario

make it well suited for use in real world settings.
Many open questions remain: we highlighted limitations of

regularization based techniques that deserve a much deeper
analysis. The convergence properties of our method still need
to be characterized. The method scalability should be tested
on larger datasets (for which using approximate master steps
will be necessary), so as to assess the effect of using meta-
heuristics or matheuristics. Given the good performance of
the pre-processing approach in some cases Table 4, it may
be interesting to skip the pretraining step in our method.
Moreover, since since we allow the use of any ML model,
it may be interesting to combine Moving Targets with other
approaches for constraint injection in ML.
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