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Abstract
Electrical Muscle Stimulation (EMS) has become a popu-
lar interaction technology in Human-Computer Interaction;
allowing the computer to take direct control of the user’s
body. To date, however, the explorations have been limited
to coarse, generalised examples, due to the low resolution
of achievable control. To increase this resolution, the EMS
needs to increase significantly in complexity - using large
numbers of electrodes in complex patterns. The calibration
of such a system remains an unsolved challenge. We present
a new SAT-based black-box calibration method, which re-
quires no spatial information about muscular or electrode po-
sitioning. The method encodes domain knowledge and ob-
servations in a constraint model, and uses these to prune the
space of feasible control signals. In a simulated environment
we find this method can scale reliably to large arrays while re-
quiring only a modest number of trials, and preliminary tests
on real hardware show we can effectively calibrate an elec-
trode array in a few minutes.

Introduction
Functional Electrical Stimulation (FES) has long been used
and explored for the upper limb rehabilitation of stroke and
spinal cord injury patients (e.g., (Usman et al. 2020; Bouton
et al. 2016; De Marchis et al. 2016)). More recently, FES
has also been adopted (under the guise of Electric Muscle
Stimulation - EMS) as a popular input-output modality in
Human Computer Interaction (HCI), affording the computer
physical control of the user. Through EMS, the computer can
dynamically alter the user’s physical actions, such as to im-
prove drawing (Lopes et al. 2016), teach the use of new ob-
jects (Lopes, Jonell, and Baudisch 2015), or provide ’forced’
walking directions (Pfeiffer et al. 2015).

To date, EMS use in HCI has remained predominantly
conceptual, considering themes of opportunities within the
space of computer-human control (e.g., for ’proprioceptive
interaction’ or as haptics for VR (Lopes et al. 2015, 2017)),
rather than presenting real world, deployable systems with
tangible performance gains, per more traditional HCI. One
reason for this, we suggest, is the challenge of achieving
high-resolution and fine-grained control.
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The bio-medical literature, however, reveals that more
complex movement patterns (i.e., non-ballistic, combining
agonist and antagonist muscles) can be achieved through
dense electrode arrays and combinations of complex sig-
nals (Popović-Bijelić et al. 2005; Popović and Popović
2011). As electrode numbers increase, however, so too does
the complexity of calibrating the system - determining what
electrode patterns and signal parameters will achieve the
desired movement. This is not prohibitive in the medical
and rehabilitation domain, where practitioners can take their
time to optimally calibrate bespoke electrode arrays for the
best outcomes for the patient (Bouton et al. 2016). The move
to HCI and interaction design, however, necessitates a sim-
plified, general-purpose approach to system calibration.

Currently, the calibration problem remains un-
solved (Knibbe et al. 2017). Previous work has explored
automated calibration techniques that demonstrate only
limited success (Knibbe et al. 2017), or don’t scale to
support complex stimulation patterns across multiple elec-
trodes (Usman et al. 2020). Without a calibration solution,
the further exploration and use of EMS for human-machine
interaction remains heavily constrained. Such an automated
calibration system should be adaptable to different users,
and electrode configurations, with minimal effort. As
such we cannot rely on spatial information about muscle
positions or electrode layouts. However, a blind exploration
of O(2|E|

2

) activation patterns (for E electrodes) is also
clearly impractical. Instead, we need a calibration procedure
which carefully explores the search space, learning as much
as possible from its previous attempts.

We present a novel approach to auto-calibration of high-
density EMS systems. We use a fast, intelligent walk-
through of a sub-set of possible configurations, to identify
the total resolution of an EMS system. Through a subsequent
reduction of the walked-through space, we identify the spe-
cific patterns that trigger a given movement; both the agonist
and antagonist muscles involved. We report on a technical
evaluation of our calibration.

Background
We contribute a new automatic calibration technique for
Electric Muscle Stimulation (EMS) for interaction design.
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We begin by introducing current approaches to calibration
in HCI and beyond, before discussing relevant related work
around propositional inference.

Calibrating EMS
EMS systems require both spatial calibration, determining
the correct electrode placement, and signal calibration, de-
termining the correct signal parameters. EMS practitioners
typically begin by choosing an initial placement for the 2-8
electrodes being used, selecting stimulation parameters (for
pulse width - µs, frequency - Hz, and amplitude - mA),
and then engaging in a trial-and-error led procedure, where
electrodes are placed, tested, repositioned, tested, and so on.
This process can easily take a few minutes for a pair of elec-
trodes (Lopes, Jonell, and Baudisch 2015), scaling linearly
as more electrodes are added.

As we look to achieve higher-resolution movement con-
trol (such as individual finger actuation, for example), and
increase the numbers of electrodes in use, manual calibra-
tion quickly becomes impractical and an automated process
is required. Knibbe et al. (Knibbe et al. 2017), for exam-
ple, coupled EMS to electromyography (EMG - reading sig-
nals from muscles during actuation), to facilitate a read-and-
write approach to calibration, where participants perform a
movement that the computer seeks to replicate. While this
technique scales easily to many electrodes, initial results
only achieved limited accuracy ( 60%). Furthermore, even
assuming perfect calibration, we argue that there are concep-
tual flaws that limit this idea. Namely, the system learns to
produce certain gestures, rather than determining anything
about the joint-level control, which would facilitate the per-
formance of any gesture.

More recently, research has considered sequential explo-
rations of electrode combinations (e.g., (Usman et al. 2020;
Popović and Popović 2009)). These works calibrated arrays
of 20-60 small electrodes, for individual finger actuation,
testing all pairs of electrodes until individual finger config-
urations were found. Another similar approach is the twitch
protocol (Malešević et al. 2010, 2012), wherein individual
pulses across electrodes are repeated multiple times, and any
resultant finger movement is measured. Whilst promising,
these processes scale linearly with electrode count, and only
consider simple configurations of electrode pairs.

We look to optimise the auto-calibration of complex
electrode arrays, facilitating multi-electrode pairings, whilst
constraining the search space that needs to be explored.

SAT and Inference
To guide our automatic calibration, we will rely on auto-
mated reasoning techniques based on Boolean satisfiability
(SAT) to draw inferences from our observations. Given a fi-
nite universe V of Boolean variables, a SAT problem asks
whether there exists an assignment of each v ∈ V such that
a formula ϕ (in conjunctive normal form) is satisfied.

Modern conflict-directed clause learning (CDCL) (Zhang
et al. 2001)-based SAT solvers are impressively scalable,
and frequently used as oracles for inference and verification
tasks. Many solvers offer an assumption (Eén and Sörensson
2003) interface: given a set A of literals (variables, or their

Algorithm 1 Pseudocode for QuickXplain

function QUICKXPLAIN(oracle, S)
return QX(oracle, S, ∅,⊥)

function QX(oracle, F,B, δB)
if δB = > then

if oracle(B) then return ∅
if F = {x} then

return {x}
Choose F1 ⊂ F with |F1| = |F |

2
F2 ← F − F1

F ′1 ← QX(oracle, F1, B ∪ F2,>)
F ′2 ← QX(oracle, F2, B ∪ F ′1, F ′1 6= ∅)
return F ′1 ∪ F ′2

negations), the user may ask whether ϕ ∧ A is satisfiable.
If not, the solver will return an unsatisfiable core: a small
subset A′ of A such that ϕ∧A′ is unsatisfiable. Lazy clause
generation (LCG) (Ohrimenko, Stuckey, and Codish 2009)
constraint solvers extend SAT techniques with support for
integer variables and complex constraints. In this paper, we
shall be using an LCG solver to maintain and answer queries
over a propositional knowledge base. We encode knowledge
by adding new constraints to the solver. To check whether
Q |=E x (that is, does Q entail x given knowledge-base E),
we check satsfiability of repr(E) ∧A ∧ ¬x. The entailment
holds if this is unsatisfiable (there is no assignment consis-
tent with E where Q holds, and x does not). Similarly, if we
want to find Q such that Q 6|=E x, we ask for an assignment
satisfying repr(E) ∧ ¬x, and read Q out of the result.

Minimizing Powersets
A common task when reasoning about powersets is, given
a set S satisfying some monotone property p, to identify
some subset-minimal set S′ ⊆ S satisfying p. A classic al-
gorithm for this problem is QUICKXPLAIN (Junker 2004).
Given some oracle for testing p, QUICKXPLAIN identifies a
minimal subset of S in O(k log|S|) queries, where k is the
size of the identified subset.

Pseudo-code for QUICKXPLAIN is given in Algorithm 1.
Each call identifies the minimum subset of a foreground set
F given an assumed (background) It operates by splitting the
foreground set S into equal-size subsets F1, F2, then recur-
sively computes first a minimal subset of F1 given F2 ∪ B,
then a minimal subset of F2 given the remaining elements
of F1 (with B).

Formulating the Calibration Problem
We consider a setting where we have a set of actions A =
{a1, . . . , an}, responses R = {r1, . . . , rn}. Responses can
be activated by (initially unknown) sets of actions. We as-
sume activation is monotone: so if A activates response r,
A ∪A′ also activates r.

However, each response ri has a (possibly unknown) set
of antagonists Si ⊆ R − {ri}. If ri is activated without
any antagonists, response ri will be observed. But if both ri
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variable D meaning
selected(a) {0, 1} Is action a ∈ P ?
seen {0, 1} Has P already been observed?
activated(r) {0, 1} Is P known to activate r?
suppressed(r) {0, 1} Is P known to suppress r?
pattern(r) {0, 1} Does P contain a pattern for r?
pattern id(r) Z+ Which pattern for r is in P ?

Table 1: Variables introduced to represent knowledge about
the calibration process when choosing a set of actions P to
observe. D indicates the domain of each variable.

and some antagonist are activated, the observed response is
indeterminate: ri may or may not be observed.

Let a goal pattern G be a pair (T, F ) of target responses
T , and forbidden responses F . Given a set of goal patterns
G ⊆ P(A) × P(A) and oracle O, we wish to find for each
(T, F ) ∈ G a set AT such that T ⊆ O(AT ) ⊆ R− F .

Observations and Inferences
Given that each observation involves activating a pattern of
electrodes and physically observing the response, it is essen-
tial that we infer as much as possible from our observations.

To this end, we will maintain our knowledge base as con-
straints in the LCG solver geas (Gange et al. 2020) – we
will refer to this, together with the history of past observa-
tions, as the environment E . Table 1 summarizes the vari-
ables appearing in the constraint model. Each time we make
an observation, we add new constraints to the model relat-
ing the selected(ai) variables (for the pattern we observed)
to the other variables. For example, if O(P ) = R, we add∧

a∈P selected(a) → activated(r) for r ∈ R. If a strict
subset of P is known to activate r′ /∈ R, we also add∧

a∈P selected(a) → suppressed(r′). We may augment
this knowledge-base with additional background knowledge
(e.g. activated(r) → suppressed(r′) for a known antago-
nist). We query E by asking the solver for solutions to the
constraint problem which satisfy additional constraints. In
a slight abuse of notation, the following sections will use
A |=E x to denote the query

∧
a∈A selected(a) |=E x.

Achieving a Goal Pattern
To achieve a goal (T, F ), we need to find action setAwhich:

• Contains some activation set for each r ∈ T
• Activates no (observed) antagonist for any r ∈ T
• Does not contain any (observed) activation set for r ∈ F .

Activation sets for elementsR−T can manifest in two ways:
if we evaluate query Q and observe r′ ∈ R − T , then Q
necessarily contains an activation set for r′. But if query Q
produces response r, and query Q∪A does not, then Q∪A
must contain an activation set for some antagonist of r.

Our calibration procedure works by building up a pool
of known sub-patterns, which we have observed activating
subsets of the target responses. It then attempts obtain the
overall goal by combining previously observed patterns.

The procedure alternates among three phases:

Exploration Attempting to quickly find action-sets which
cover all target responses.

Contraction Shrinking action sets to eliminate unwanted
responses.

Aggregation Attempt to achieve the target by combining
sub-patterns.

Throughout this process, we update our constraint
knowledge-base with the results of any observations
we have made. Pseudo-code for the overall calibration
procedure is given in Figures 2 and 3.

Aggregation Given known patterns P and current envi-
ronment E , the aggregation phase we attempt to select some
subset PT of P which (a) covers target T , and (b) is not
known to contain forbidden patterns. If we find a candidate,
we query the oracle with PT . There are three possiblities:
• T ⊆ OBSERVE(E , PT ) ⊆ R− F , so we have succeeded.
• OBSERVE(E , PT ) produced a response r′ ∈ F , thus we

find a minimal activation set for r′, which we then forbid.
• OBSERVE(E , PT ) failed to produce a response r ∈ T .

Since there was some subset Pr which did activate r, we
search for a minimal superset of Pr which does not acti-
vate r. If, during this step, we make an observation which
instead activates a forbidden response r′, we switch to
finding a minimal activation for r′.
In the first case, we return the successful pattern. Other-

wise, we update our knowledge base with the new obser-
vations – which blocks the current combination of patterns
– then ask the solver for a new candidate pattern. Eventu-
ally, we either successfully achieve the target pattern, or the
solver returns failure, and a core indicating which subset Tf
of targets could not be simultaneously achieved. Tf is used
to guide the exploration process: there is no point resum-
ing aggregation until we have found a new pattern for some
r ∈ Tf which does not activate any responses in F .
Example 1 Consider a case with five actions
{a1, . . . , a5} and responses {r1, . . . , r4}, with goal
(T = {r1, r2, r3}, F = {r4}) After making several
observations, we have discovered the following patterns:

{a1, a2} ` r1, {a3, a4} ` r2, {a5} ` r3
and have made the additional observations:

{a1, a2, a5} ` {r1, r3}, {a1, a3, a5} ` {r1, r3}
In addition, there are as-yet unidentified patterns:

{a1, a5} ` r1, {a2, a4} ` r4
Given these observations, AGGREGATE will choose candi-
date pattern S = {a1, . . . , a5}. Which we then observe.

If we observe S ` {r1, r2, r3}, we are done: while S con-
tains a subset which activates a forbidden response, we still
successfully achieved the goal response. But if instead we
find S ` {r1, r2, r3, r4}, we will call REFINE-PAT to isolate
the sub-pattern that produced r4.

Once REFINE-PAT isolates {a2, a4}, we add this informa-
tion to the knowledge-base. Then AGGREGATE attempts to
find a replacement candidate. It fails, returning {r1, r2} as
a conflict: indicating that every known combination of pat-
terns for r1 and r2 activates some forbidden response.
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Algorithm 2 The aggregation phase: attempting to trigger
goal (T, F ) by combining some collection of existing pat-
terns.

function CALIBRATE(E , T, F )
while true do

match AGGREGATE(M,P, T ) with
case OKAY(A): . Found candidate total pattern.

if CHECK-PAT(E , T, F,A) then
return OKAY(A)

case FAILED(T ′): . No consistent candidates yet
match SEEK(E , T ′, F ) with
case OKAY(A,R):

(A,R)← SEEK(E , T ′, F )
(AT , RT )← REFINE-PAT(E , T ′, A,R)
if RT ∩ F 6= ∅ then

(AF , RF )← REFINE-PAT(E , F,AT , RT )
RECORD-PAT(E , AF , RF )

RECORD-PAT(E , AT , RT )
case FAILED: . Search space exhausted

return FAILED

Algorithm 3 Given a candidate query, check whether it
achieves current goal. If not, identify what went wrong and
update the knowledge-base.

function CHECK-PAT(E , T, F,A)
R← OBSERVE(E , A)
if T ⊆ R ∧R ∩ F 6= ∅ then

return True
if R ∩ F 6= ∅ then

(A′, R′)← REFINE-PAT(E , F,R′, A′)
RECORD-PAT(E , A′, R′)

else . T −R 6= ∅
Let r ∈ T −R, and Ar be the corresponding acti-

vation set.
(As, Rs)← REFINE-SUP(r, F,R,A−Ar, Ar)
if Rs ∩ F 6= ∅ then

(Af , Rf )←REFINE-PAT(E , F,Rs, Ar, Rf )
RECORD-PAT(E , As ∪Af , Rf )

else
RECORD-SUP(E , r, As ∪Ar)

return False

Exploration If aggregation fails, we must find a new pat-
tern for at least one of the failed responses Tf . But the space
of action-sets is extremely large, so we wish to – as far as
possible – avoid blindly trying sets of actions. During pre-
vious steps (finding or minimizing patterns for other goals),
we may already have found, but not refined into a pattern,
action-sets triggering the desired response.

When aggregation fails, then, we first search our history
of observations. If we find some previous observation that
(a) triggers some response r ∈ Tf , and (b) is not a super-
set of some already-registered pattern for r, we return that
pattern for refinement.

Example 2 In Example 1, AGGREGATE failed with conflict
{r1, r2}. Looking at our previous observations, we see both

Algorithm 4 SEEK is called when there is no feasible com-
bination of patterns for a subset T of the current targets. It at-
tempts to identify a set of actions which activate some r ∈ T
which is not already covered by a pattern for r.

function SEEK(E , T, F )
if ∃ r ∈ T, (A,R) ∈ observed(E). r ∈ R,A 6|=E

pattern(r) then
return (A,R)

while SAMPLE(E , T, F ) = OKAY(A,R) do
R← OBSERVE(E , A)
if R ∩ T 6= ∅ then

return (A,R)

return FAILED

{a1, a2, a5} and {a1, a3, a5} activated r1.
{a1, a2, a5} already contains a known pattern for r1, so

is ignored. However {a1, a3, a5} contains a known pattern
for r3, but not r1: thus SEEK return {a1, a3, a5} as the next
pattern to refine.

pattern id(r) is unconstrained in this phase (and the next),
allowing the solver to choose an unspecified ’future’ pattern
for responses.

Sampling Eventually, SEEK may exhaust the set of previ-
ously observed responses. At this point, the algorithm must
choose a new set of actions to test, in the hopes of activating
a target response.

Due to the impact of antagonists, we can only draw weak
inferences from failed queries: if A fails to activate r, we
cannot tell whether we need more actions, or fewer. How-
ever, we can do better than blind guessing by exploiting our
previous observations. We consider only sets A satisfying:

A 6|=E seen (1)
∀ r ∈ F. A 6|=E activated(r) (2)
∀ r ∈ T. A 6|=E suppressed(r) (3)
∃ r ∈ T. A 6|=E pattern(r) (4)

(1) prevents us from choosing any set we have already ob-
served, also indirectly ensuring we eventually terminate. (2–
3) ensures the selected subset is not known to contain any
forbidden activations. Finally, (4) restricts our search to sets
which are not covered by existing patterns.

Note that we cannot replace (4) with the simpler ∀ r ∈
T. A 6|=E activated(r) , as the minimum pattern for target
r may be a superset of an existing pattern for some other
target r′.

But it is also worth considering the cardinality of set A.
Consider the case where there is a single minimum set Pr

which activates response r, and a single antagonistQr. If we
choose very small sets (' |Pr|), it may take many queries
before we pick some A ⊇ Pr. But if we choose very large
sets (' |A|), it is very likely that A ⊇ Qr.

Unfortunately, if A fails to produce a response, we have
no way of determining whether A was too large, or too
small. As such, we adopt a simple approach: we use the
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Algorithm 5 Choosing a new subset to explore, given target
set T and forbidden set F .

function SAMPLE(E , T, F )
card ← SELECT-CARD(E)

ϕ←


¬seen

∧
∧

r∈T ¬suppressed(r)
∧

∧
r∈F ¬suppressed(r)

∧
∨

r∈T ¬pattern(r)
if ϕ |=E ⊥ then

return FAILED
while Asel 6= ∅ ∧ |A| ≤ card do

Choose a ∈ Asel uniformly.
Asel ← Asel − {a}
if ϕ ∧ (a ∈ A) 6|=E ⊥ then

A← A ∪ {a}
ϕ← ϕ ∧ a ∈ A

while Asel 6= ∅ do
Choose a ∈ Asel uniformly.
Asel ← Asel − {a}
if ϕ ∧ a /∈ A 6|=E ⊥ then

ϕ← ϕ ∧ a /∈ A
else

A← A ∪ {a}
R← OBSERVE(E , A)

if R ∩ T 6= ∅ then
REWARD-CARD(E , card )

return OKAY(A,R)

UCB1 (Auer, Cesa-Bianchi, and Fischer 2002) multi-armed
bandit algorithm to select a candidate subset size s (capped
at A

2 ), then use the knowledge-base to select a candidate set
of actions of the appropriate size. If the response R contains
any un-covered targets, the bandit receives reward 1

|R| (in
this stage, we prefer queries which yield fewer responses).

Pseudo-code for SAMPLE is given in Algorithm 5. Note
that the last component of ϕ, representing (4), is disjunctive
so cannot be directly imposed as an assumption. Instead, we
track a single witness rw which we post as an assumption. If
the formula is satisfiable assuming ¬pattern(rw), it is also
satisfiable under (4). Otherwise, we try remaining candidates
r ∈ T , and conclude unsatisfiability iff all candidates fail.
SAMPLE attempts to select card random actions to add toA.
But for each action, we first check that it can be added to A
without violating ϕ. If it cannot (e.g. action a′ is already se-
lected, and {a′, a} is a known pattern for the current target),
we skip a and try a different action. A consequence of this is
that the set returned by SAMPLE does not necessarily have
cardinality card .

Contraction
It is unlikely that the exploration phase will find a pattern
which activates only target responses. Instead, once we make
an observation with interesting behaviour, we will attempt
to prune irrelevant actions, to find a smaller set exhibiting
the same behaviour. There are two kinds of behaviour we
find interesting: observed target responses not covered by

Algorithm 6 Given F ∪B ` R, we wish to identify a min-
imal subset of F which still triggers something in T (having
R ∩ T 6= ∅).

function REFINE-PAT(E , T, R,A)
return REFINE-T(E , T, R,A, ∅, false)

function REFINE-T(E , T, R, F,B, δB)
if δB then

RB ← OBSERVE(E , B)
if RB ∩ T 6= ∅ then

return (∅, RB)

Select non-empty F1, F2 s.t. F = F1 ] F2

(F ′1, R
′
1)← REFINET(E , T, R, F1, B ∪ F2, true)

(F ′2, R
′
2)← REFINET(E , T, R′1, F2, B∪F ′1, |F ′1| > 0)

return F ′1 ∪ F ′2, R′2
function REFINE-SUP(E , r, T,R,A,Ar)

return REFINES(E , r, T,R,A,Ar,true)
function REFINES(E , r, T,R, F,B, δB)

if δB then
RB ← OBSERVE(E , B)
if r /∈ RB ∨RB ∩ T 6= ∅ then

return (∅, RB)

Select non-empty F1, F2 s.t. F = F1 ] F2

(F ′1, R
′
1)← REFINES(E , r, T,R, F1, B ∪ F2, true)

if R′1 ∩ T 6= ∅ then
(F ′2, R

′
2)

← REFINET(E , T, R′1, F2, B ∪ F ′1, F ′1 6= ∅)
else

(F ′2, R
′
2)

← REFINES(E , r, T,R′1, F2, B ∪ F ′1, F ′1 6= ∅)
return F ′1 ∪ F ′2, R′2

existing patterns, and missing responses known to contain
an existing pattern.

In the first case, we call REFINE-PAT(E , T, R,A) to gen-
erate a new pattern. Here A is the set of actions, R the ob-
served response to A, and T is the set of relevant targets
– those without known patterns covered by A. REFINE-PAT
is a direct implementation of QUICKXPLAIN, augmented to
return the observed responses to the returned actions.

In the second case, we know actions Ar produced re-
sponse r, but A = Ar ∪ A′ did not. However, we want
to generalise the cause of failure, to prune more infeasi-
ble candidates. But this negative information is weak: we
can only block supersets of Ar. We thus call REFINE-
SUP(E , r, F,Aex, Ar), another modified QUICKXPLAIN, to
identify a minimal subset Ar ⊆ Aex such that Ar ∪Ar does
not result in r. If, during this process, we observe some for-
bidden response r′ ∈ F , we switch to blocking r′ instead, in
hope of obtaining a more re-usable constraint. In either case,
after identifying a minimal subset we update the knowledge-
base, (indirectly) blocking the current aggregate pattern.

Example 3 In Example 1, we evaluated candidate S =
{a1, . . . , a4} and obtained forbidden response r4. AGGRE-
GATE must now block some subset of S.

Starting with foreground set F = S and empty back-
groundB = ∅, REFINE-TARGET splits F into two equal-size
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F = {a1, . . . , a5}, B = ∅

{a1, a2}, {a3, a4, a5}

���{a1}, {a2, a3, a4, a5}

{a2}, {a3, a4, a5}

{a3, a4, a5}, {a2}

{a4}, {a3, a5, a2}

����{a3, a5}, {a4, a2}

Figure 1: REFINET isolating a pattern for r4 in Example 3.

random subsets, say F1 = {a1, a2}, F2 = {a3, a4, a5}, then
recursively tries to find the minimum subset of F1 given F2.
F2 by itself only yields r2, so we need at least

one element from F1. We again split, choosing F11 =
{a1}, F12 = {a2}, and recurse. On the left branch, evaluat-
ing B{a2, a3, a4, a5} yields {r2, r4}: so we can discard all
of F11. On the right branch, we then minimize F12 = {a2}
given {a3, a4, a5}. We already know {a3, a4, a5} is not suf-
ficient by itself, and F12 contains only one element, so we
return {a2}.

Returning to the top-level, we now wish to minimize F2

given our (now reduced) F ′1 = {a2}. We observe {a2} ob-
taining no response, so partition F2 into F21 = {a4}, F22 =
{a3, a5}. On the left branch, B21 = {a2, a3, a5} yields
no response, so {a4} is kept. Then on the right branch,
B22 = {a2, a4} yields r4, so we return F ′2 = {a4}.

At the top level, we then return our newly identified pat-
tern {a2, a4} and the corresponding response {r4}.

Technical Evaluation
Calibration Ecalability
We evaluated calibration on a simulated arm/electrode array
system. We could have used a FEM model (per (Keller et al.
2006), for example), however this would not have been able
to separate the effects of signal- and spatial- calibration. As
such, we adopted a simplified response model. The anterior
side of our simulated forearm consists of 4 parallel strands of
muscle (fingers) on the anterior side, crossed by three other
strands (thumb flexor, and wrist flexor on each edge), laid
out as illustrated in Figure 2. The same arrangement is re-
flected on the posterior side. Each selected pair distributes 1
unit of energy uniformly along a line between its endpoints.
A joint is considered flexed (or extended) if all correspond-
ing muscles are receive at least 0.2 units of energy. If both
flexed and extended, the observed response is determined
randomly in proportion to the difference in activation level.

We calibrated simulated fixed arrays with 7 and 12 elec-
trodes on each side (configurations illustrated in Figure 2),
and random arrays with 20 and 30 electrodes on each side.
The set of possible actions are any (unordered) pair of elec-
trodes on the same side.

We calibrated three sets of target patterns:

Figure 2: Simulated forearm topology, with flexors for fin-
gers (solid), forearm (dashed) and thumb (dotted). Circles
show electrode positions in the 7- and 12-electrode arrays.

• joint: flexion of each joint (with others permitted).

• joint-only: flexion of each joint independently (all
others forbidden).

• gestures: a set of four gestures (derived from (Knibbe
et al. 2017)). A fist (all fingers and thumb flexed),
‘thumbs-up’ (fingers flexed, thumb extended), pointing
(one finger extended, three flexed, neutral wrist), and a
‘stop’ gesture (all fingers and wrist extended).

We conducted 200 tests for each array/target configuration,
different random seeds and permuted action numbering. The
tests are conducted with a budget of 200 queries for each tar-
get. Targets in a set are run with a shared knowledge base, so
observations and inferences made for a previous target can
be reused. If any target in a set exceeds its budget, we con-
tinue with the next target. Computational experiments were
performed on an AMD Ryzen 5 3600 with 16Gb memory
running Ubuntu 18.04. 1

Figure 3 reports the number of queries evaluated during
each test, and how successful we are at achieving target pat-
terns. We see that our method is very robust on the small
electrode array, achieving all target sets within the budget.
As the number of electrodes (hence search space) and tar-
get complexity grows, the number of queries required to
identify a pattern increases correspondingly. Nevertheless,
for the (20 + 20) electrode configuration, we remain able to
achieve complex gestures > 50% of the time.

The computation time for selecting queries unsurprisingly
also grows with the number of possible actions, but remains
quite modest. In practice we must wait for the muscles to
return to a neutral state between queries, so we expect the
introduced latency to be minimal.

Live Technical Evaluation
Following the simulated technical evaluation, we replicate
our evaluation on the second author, for two purposes: (1)
to verify the findings of our technical evaluation, and (2) to
enable reflection on the limitations and future opportunities
around this calibration approach.

Equipment We used a 24-channel EMS stimulation
board, with uniquely controllable parameters per channel. In
this case, we fix the stimulation parameters to 17V, 100Hz,
and 300µs. We calibrate an array of seven 2.5cm2 randomly
placed surface electrodes. We set a budget of 50 queries per

1Code is available at https://bitbucket.org/gkgange/stim-cal
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Figure 3: Query count during each run for simulated elec-
trode layouts (ordered by increasing queries). We also report
the number of complete successes (tests achieving all goals),
mean success rate per test, and max time (in s) for any test.

target. We use a Leap Motion controller to monitor and feed
back actuation results into the system. We consider a joint
actuated if it demonstrates > 30◦ angular change.

All joint patterns were found within 9 minutes. This in-
cludes the time taken to communicate with hardware and al-
low stimulation and actuation to occur. In that time, 35 elec-
trode combinations were tested (∼12s per test). A manual
calibration process would have taken similar total time. The
manual process would likely, however, stop at the first oc-

currence of a desired movement, where our technique seeks
to reduce co-activations. For example, by the time our ap-
proach settled on the stimulation pattern for the ring finger,
it had already observed that actuation ten times. In our 7-
electrode configuration, we were unable to locate individual
finger actuation (in the joint-only set, during 14 min-
utes of calibration and 74 tests) or two of the gestures (in
the gestures set, during 15 minutes of calibration and 82
tests). We would not expect to be able to achieve that level
of control from seven randomly-placed electrodes.

Next, we explored the stimulation resolution of an
untested custom 18-electrode fabric array. We configured the
query for wrist and finger abduction, following the joint
sets above. The procedure identified all movements other
than thumb abduction in 65 tests across 14 minutes. Anec-
dotally, as the participant, you become aware that a gesture
will not be achievable (based on proprioception and haptic
feedback), prior to the procedure reaching the same conclu-
sion. This provides an interesting opportunity for user input.

Our approach relies on a numerous query budget to re-
fine the electrode configuration for a joint, seeking to reduce
noise and electrodes used. This optimises calibration at the
expense of user fatigue. Whilst stimulation can be brief dur-
ing calibration (e.g., 1-2 seconds per test), fatigue co-occurs
with acclimation to the stimulation signal (Knibbe, Alsmith,
and Hornbæk 2018). This would require the signal to be ad-
justed over time, necessitating user input.

To operate akin to manual calibration and lessen fatigue,
the query budget could be reduced and the procedure con-
figured to more aggressively select electrode configurations
that fulfil the query criteria, rather than pruning towards
an optimum. However, for complex configurations of elec-
trodes and joint patterns, reducing the query budget will
likely lead to missed results. In turn, what is needed is a more
tightly-coupled human-in-the-loop approach, where users
can dynamically alter stimulation parameters, veto uncom-
fortable electrode pairings, and manually break out of cal-
ibration queries. Further HCI-centric work should explore
how best to couple the user to an auto-calibration approach.

Conclusion and Further Work
We have presented a novel automatic calibration procedure
for EMS electrode arrays. The calibration procedure makes
no assumptions about muscle position or electrode layout,
instead using a SAT-based constraint solver to draw infer-
ences from earlier observations and guide the search. In a
simulated evaluation, our method reliably achieves complex
gestures on electrode arrays of practical size using a mod-
est number of attempts; and the required number of attempts
scales reasonably with the number of electrodes. A live eval-
uation of the system shows the strength of our approach lies
in its ability to explore and reveal the capabilities of elec-
trode arrays, where complex stimulation patterns may re-
veal new joint control resolutions. Manual calibration ap-
proaches do not scale beyond the 8 electrodes currently seen
in the HCI literature. Our procedure can enable calibration
of higher-density arrays, where the calibration time require-
ments are dependent on the specifics of the hardware and the
desire for human-in-the-loop integration.
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