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Abstract

Mathematical modeling is a standard approach to solve many
real-world problems and diversity of solutions is an impor-
tant issue, emerging in applying solutions obtained from
mathematical models to real-world problems. Many stud-
ies have been devoted to finding diverse solutions. Baste
et al. (Algorithms 2019, IJCAI 2020) recently initiated the
study of computing diverse solutions of combinatorial prob-
lems from the perspective of fixed-parameter tractability.
They considered problems of finding r solutions that maxi-
mize some diversity measures (the minimum or sum of the
pairwise Hamming distances among them) and gave some
fixed-parameter tractable algorithms for the diverse version
of several well-known problems, such as VERTEX COVER,
FEEDBACK VERTEX SET, d-HITTING SET, and problems on
bounded-treewidth graphs. In this work, we further investi-
gate the (fixed-parameter) tractability of problems of finding
diverse spanning trees, paths, and several subgraphs. In par-
ticular, we show that, given a graph G and an integer r, the
problem of computing r spanning trees of G maximizing the
sum of the pairwise Hamming distances among them can be
solved in polynomial time. To the best of the authors’ knowl-
edge, this is the first polynomial-time solvable case for find-
ing diverse solutions of unbounded size.

Introduction
To solve real-world problems, we often formulate problems
as mathematical models and then develop algorithms work-
ing on these mathematical models. In this context, algo-
rithms are usually designed to find a single (near) optimal
solution by optimizing an objective function formulated in
a mathematical model. However, such a solution may be in-
adequate for original real-world problems since mathemati-
cal models “approximately” formulate them and some tacit
rules and ambiguous constraints inherent in real-world prob-
lems are usually ignored for taming mathematical models.
One possible (and straightforward) solution to this issue is
to find multiple solutions rather than a single solution. The
concept of k-best enumeration (Eppstein 2016) is a promis-
ing approach along this line. In this approach, given a pa-
rameter k, we compute a set of k distinct solutions, such
that every solution in the set is better than any solutions not
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in the set. This is a natural extension of usual optimization
problems, and many algorithms for finding k-best solutions
have been developed for classical combinatorial optimiza-
tion problems (Murty 1968; Lawler 1972; Gabow 1977) and
other problems arise in several fields (Hara and Maehara
2017; Lindgren, Dimakis, and Klivans 2017).

However, solutions obtained by k-best enumeration algo-
rithms might be similar to each other since those solutions
are essentially made by some local modifications. The ba-
sic strategy of k-best enumeration algorithms is that we first
find a single optimal solution S = {x1, . . . , xt} and then,
for each 1 ≤ i ≤ t, compute an optimal solution that in-
cludes {x1, . . . , xi−1} but excludes xi. The entire algorithm
recursively computes k solutions in this way. Since the sub-
sequent solution must contain {x1, . . . xi−1} and also tends
to contain {xi+1, . . . , xt}, these solutions would be similar,
which would not fit for our original purpose.

To address this issue, diversity among solutions is an im-
portant factor, and a substantial effort is dedicated to finding
multiple solutions that optimize diversity measures in the lit-
erature (Hebrard et al. 2005; Danna and Woodruff 2009; Pe-
tit and Trapp 2015; Baste et al. 2019, 2020; Ingmar et al.
2020). Let U be a finite set and let S ⊆ 2U be the set of so-
lutions in a combinatorial optimization problem. Several di-
versity measures have been proposed. Among others, many
existing studies focus on maximizing the pairwise Hamming
distances among solutions. In particular, the following two
diversity measures are widely used.

dsum(U1, . . . , Ur) =
∑

1≤i<j≤r

(|Ui \ Uj |+ |Uj \ Ui|),

dmin(U1, . . . , Ur) = min
1≤i<j≤r

(|Ui \ Uj |+ |Uj \ Ui|),

where U1, . . . , Ur ∈ S are not necessarily distinct.
Baste et al. (Baste et al. 2019, 2020) initiated the study

of finding diverse solutions from the perspective of fixed-
parameter tractability. Fixed-parameter tractability is the
central notion in parameterized complexity theory, which
extends the notion of tractability (i.e., polynomial-time solv-
ability) in classical complexity theory. In this context, we
consider problems that take an instance I and a parameter
k, and analyze the complexity of those problems in terms of
the input size |I| and parameter k. We say that a problem
is fixed-parameter tractable (FPT) parameterized by k if it
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admits an algorithm that runs in time f(k)|I|O(1), where f
is a computable function. See (Downey and Fellows 2013;
Cygan et al. 2015) for more information.

Baste et al. (Baste et al. 2019, 2020) studied the diverse
version of several problems that have been intensively stud-
ied in the parameterized complexity community. They show
that DIVERSE VERTEX COVER and MIN-DIVERSE VER-
TEX COVER are fixed-parameter tractable parameterized by
k+r, where DIVERSE VERTEX COVER and MIN-DIVERSE
VERTEX COVER asks for r vertex covers C1, . . . , Cr of
G with size at most k that maximize dsum(C1, . . . , Cr)
and dmin(C1, . . . Cr), respectively. More specifically, they
gave 2krr2nO(1)-time algorithms for both problems (Baste
et al. 2019). They also gave fixed-parameter algorithms
for (MIN-)DIVERSE FEEDBACK VERTEX SET and (MIN)-
DIVERSE d-HITTING SET (Baste et al. 2019) parameterized
by k + r and k + r + d, respectively (See (Baste et al.
2019) for details). Baste et al. (Baste et al. 2020) gave a
general framework to maximize dsum for bounded-treewidth
graphs. Roughly speaking, on n-vertex graphs of treewidth
t, they showed that if a single solution can be found in time
f(t)nO(1), then one can find r solutions U1, . . . , Ur maxi-
mizing dsum(U1, . . . , Ur) in time f(t)rnO(1).

Our Contributions In this paper, we further investigate
the fixed-parameter tractability of problems of finding di-
verse solutions for several combinatorial problems. In par-
ticular, we consider the following problems:
• DIVERSE SPANNING TREE: Given a graph G and an in-

teger r, the problem asks for r spanning trees T1, . . . , Tr
in G maximizing dsum(E(T1), . . . , E(Tr)).

• DIVERSE k-PATH and MIN-DIVERSE k-PATH: Given
a graph G and integers k and r, the problem asks for
r paths P1, . . . , Pr of length k − 1 in G maximizing
dsum(E(P1), . . . , E(Pr)) and dmin(E(P1), . . . , E(Pr)),
respectively.

• DIVERSE MATCHING and MIN-DIVERSE MATCHING:
Given a graph G and integers k and r, the problems ask
for r matching M1, . . . ,Mr of size k in G maximizing
dsum(M1, . . . ,Mr) and dmin(M1, . . . ,Mr), respectively.

• DIVERSE SUBGRAPH ISOMORPHISM and MIN-
DIVERSE SUBGRAPH ISOMORPHISM: Given
graphs G,H and an integer r, the problems ask
for r subgraphs H1, . . . ,Hr isomorphic to H
in G maximizing dsum(E(H1), . . . , E(Hr)) and
dmin(E(H1), . . . , E(Hr)), respectively.
We show that DIVERSE SPANNING TREE is polynomial-

time solvable. The result can be extended to arbitrary ma-
troids: we give a polynomial-time algorithm that, given
a matroid M with an independence oracle and an inte-
ger r, computes r bases B1, . . . , Br of M maximizing
dsum(B1, . . . , Br). It is worth mentioning that several stud-
ies (e.g. (Abbassi, Mirrokni, and Thakur 2013; Borodin et al.
2017)) consider diversity maximization problems under ma-
troid constraints and gave approximation algorithms for
them. However, our problems, DIVERSE SPANNING TREE
and its generalization, are essentially different from those

problems. We also give a general framework to obtain di-
verse r solutions of size k. An illustrative example of this
result is DIVERSE k-PATH. The problem of finding a k-path
(that is, a path of length k − 1) is one of the best-studied
problems in parameterized algorithms. The seminal work
of Alon et al. (Alon, Yuster, and Zwick 1995) showed this
problem can be solved in time (2e)knO(1), where e is the
base of the natural logarithm. Their technique, color-coding,
is of great importance for finding “patterns” of size k. We
exploit this technique to find diverse solutions. Our general
framework states that if we can find a single “colorful pat-
tern” in time f(k)nO(1), then we can find diverse solutions
in time f(k, r)nO(1) as well. As applications, we show sev-
eral fixed-parameter tractable algorithms for diverse prob-
lems, including (MIN-)DIVERSE k-PATH, (MIN-)DIVERSE
MATCHING, (MIN-)DIVERSE SUBGRAPH ISOMORPHISM
of bounded-treewidth pattern graphs.

Very recently, Fomin el al. (Fomin et al. 2020) studied the
problem of finding a pair of maximum matchings M1 and
M2 with dsum(M1,M2) ≥ k and showed that this problem
is solvable in polynomial time for an arbitrary k on bipartite
graphs and fixed-parameter tractable parameterized by k on
general graphs. Although their problem is restricted to the
case r = 2, the size of matchings is not considered as a
parameter.

Due to the space limitation, some contents are deferred to
the full version (Hanaka et al. 2020).

Preliminaries
For an integer k ≥ 1, we use [k] to denote {1, 2, . . . , k}.

LetG be an undirected graph. We denote by V (G) and by
E(G) the sets of vertices and edges of G, respectively. For
a vertex v ∈ V (G), the set of neighbors of v is denoted by
NG(v) (i.e., NG(v) = {w ∈ V (G) : {v, w} ∈ E(G)}). For
F ⊆ E(G), we denote by G[F ] the subgraph of G consist-
ing of edges in F : G[F ] = (V (F ), F ), where V (F ) is the
set of end vertices of F .

Let U be a finite set and let k be a positive integer. A
function c : U → [k] is called a coloring of U and each
integer in [k] is called a color. For a set of colors C ⊆ [k],
a subset of U is said to be C-colorful (with respect to c)
if every element in the subset has a distinct color and the
set of colors used in the subset is exactly C. We frequently
consider vertex-colorings on graphs. LetH be a subgraph of
G = (V,E). Consider a coloring c : V → [k] on vertices.
Note that c is not necessarily proper, which means there may
be two adjacent vertices with the same color. For C ⊆ [k],
we say that H is C-colorful if V (H) is C-colorful. We also
say that H is colorful if it is C-colorful for some C ⊆ [k].

LetE be a finite set and let I ⊆ 2E be a collection of sub-
sets of E. A pair (E, I) is called a matroid if the following
three axioms hold: (M1) ∅ ∈ I, (M2) for X,Y ⊆ E with
X ⊆ Y , Y ∈ I impliesX ∈ I, and (M3) forX,Y ∈ I with
|X| < |Y |, there is e ∈ Y \X such that X ∪ {e} ∈ I. Each
set in I is called an independent set and each inclusion-wise
maximal set in I is called a base of I. It is easy to see that
all bases of a matroid have the same cardinality. The rank
of a matroid is the cardinality of a base of the matroid. Note
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that I may have exponentially many subsets ofE in general.
However, algorithms described in this paper still run in time
|E|O(1) when we are given I as an independence oracle that
is assumed to be evaluated in time |E|O(1). Given this, we
say that an algorithm for problems on matroids runs in poly-
nomial time if it runs in time |E|O(1) under this assumption.

Let G = (V,E) be a multigraph (i.e., G may contain
parallel edges). Define IG as the collection of all subsets
F ⊆ E such that G[F ] has no cycles. Then, pair (E, IG)
satisfies the above three conditions and hence it is a matroid,
called a graphic matroid. It is easy to see that if G is con-
nected, every base of (E, IG) is a spanning tree of G.

Finding Diverse Spanning Trees
Let G = (V,E) be a connected graph and let r be an in-
teger. The goal of this section is to develop an algorithm
for finding (not necessarily edge-disjoint) r spanning trees
T1, T2, . . . , Tr maximizing dsum(E(T1), . . . , E(Tr)).
Theorem 1. There is a polynomial-time algorithm that,
given a graphG and an integer r, computes r spanning trees
T1, . . . , Tr of G maximizing dsum(E(T1, . . . , E(Tr))).

The problem can be translated into words in matroid the-
ory: Find r bases B1, . . . , Br of a graphic matroid (E, I)
that maximizes dsum(B1, . . . , Br). As a special case of our
problem, the problem of finding mutually disjoint r bases of
a matroid can be solved in polynomial time by a greedy algo-
rithm for the matroid union, provided that the membership
of I can be decided in polynomial time. More generally, the
weighted version of this problem can be solved in polyno-
mial time.
Theorem 2 ((Nash-Williams 1967)). LetM = (E, I) be a
matroid and letw : E → R. Suppose that the membership of
I can be checked in polynomial time. Then, the problem of
deciding whether there is a set of mutually disjoint r bases
B1, . . . , Br ofM can be solved in polynomial time. More-
over, if the answer is affirmative, we can find such bases
that minimize the total weight (i.e.,

∑
1≤i≤r

∑
e∈Br

w(e))
in polynomial time.

Our objective is to maximize dsum(E(T1), . . . , E(Tr)),
where Ti is a spanning tree of G for 1 ≤ i ≤ r. This can be
rewritten as:∑

1≤i<j≤r

(|E(Ti)|+ |E(Tj)| − 2|E(Ti) ∩ E(Tj)|).

As |E(T1)| = · · · = |E(Tr)| = |V | − 1, the prob-
lem is equivalent to that of minimizing the pairwise sum
of |E(Ti) ∩ E(Tj)|, that is, finding a (not necessity edge-
disjoint) r spanning trees T1, . . . , Tr minimizing∑

1≤i<j≤r

|E(Ti) ∩ E(Tj)|. (1)

To solve this minimization problem, we reduce it to the
problem of finding r disjoint bases of a graphic matroid with
minimum total weight, which can be solved in polynomial
time (Theorem 2). For each edge e inG, we replace it with r
parallel edges e1, . . . , er, and the obtained multigraph is de-
noted by G′ = (V,E′). The weight of edges in G′ is defined

as follows. For each e ∈ E and 1 ≤ i ≤ r, the weight of ei
is defined as w(ei) = i − 1. Clearly, the construction of G′
can be done in polynomial time.

Lemma 1. Let k be an integer. Then,G has r spanning trees
T1, . . . , Tr with

∑
1≤i<j≤r |E(Ti)∩E(Tj)| ≤ k if and only

if there is a set of disjoint r spanning trees in G′ whose total
weight is at most k.

Proof. Suppose that G has r spanning trees T1, . . . , Tr
with

∑
1≤i<j≤r |E(Ti) ∩ E(Tj)| ≤ k. For each e ∈ E,

we let m(e) = |{i ∈ [r] : e ∈ E(Ti)}|. Let F =
{e1, e2, . . . , em(e) : e ∈ E}. Observe that F can be parti-
tioned into r disjoint spanning trees T ′1, . . . , T

′
r of G′: For

each 1 ≤ i ≤ r and e ∈ E(Ti), T ′i contains one of
e1, . . . , em(e) that is not contained in any other T ′j . This can
be done by the definition ofm(e). Moreover, the total weight
of F is∑
e∈E

∑
1≤i≤m(e)

w(ei) =
∑
e∈E

∑
1≤i≤m(e)

(i−1) =
∑
e∈E

(
m(e)

2

)
.

Since e is contained in m(e) trees of T1, . . . , Tr, the contri-
bution of e to

∑
1≤i<j≤r |E(Ti)∩E(Tj)| is exactly

(
m(e)
2

)
.

Therefore, the total weight of r disjoint spanning trees is at
most k.

Conversely, let T ′1, . . . , T
′
r be r disjoint spanning trees of

G′ minimizing the total weight. Note that as G is connected
and for each pair of adjacent vertices in G′, there are r par-
allel edges between them, we can always find these disjoint
spanning trees from G′. Let F =

⋃
1≤i≤r E(T ′i ) and let

k =
∑

e∈F w(e). For each e ∈ E, observe that either F does
not contains any of e1, e2, . . . , er or contains e1, e2, . . . , ej
for some 1 ≤ j ≤ r. This follows from the fact that if
ej /∈ F and ej′ ∈ F for some j < j′, we can exchange ej′
with ej , strictly decreasing the total weight of F . For each
e ∈ E, we let m(e) = |{e1, . . . , er} ∩ F |. Then, the total
weight of F is

∑
e∈E

(
m(e)
2

)
. Let T1, . . . Tr be the spanning

trees of G such that e ∈ E is contained in Ti if and only if
some edge ej copied from e is contained in T ′i . Since e is
contained in m(e) spanning trees among T1, . . . , Tr, it con-
tributes

(
m(e)
2

)
to the objective function (1). Therefore, we

have
∑

1≤i<j≤r |E(Ti) ∩ E(Tj)| = k.

Now, we are ready to describe our algorithm. Given a
graphG and an integer r, we compute the multigraphG′ and
the edge weight function w defined as above. Let E′ be the
set of edges ofG′ and I = {F ⊆ E′ : G′[F ] has no cycles}.
Then, (E′, I) is a graphic matroid. By Theorem 2, we
can compute r disjoint spanning trees in G′, whose total
weight is minimized, in polynomial time. By Lemma 1,
we can find r spanning trees T1, . . . , Tr in G′ maximizing
dsum(E(T1), . . . , E(Tr)) in polynomial time, which com-
pletes the proof of Theorem 1.

The above argument can be extended to an arbitrary ma-
troid equipped with an independent oracle that can be evalu-
ated in polynomial time. To see this, we need the following
lemma.
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Lemma 2. Let (E, I) be a matroid, e ∈ E, and e′ /∈ E.
Define I ′ = I ∪ {(F \ {e}) ∪ {e′} : F ∈ I, e ∈ F}.
Then, the pair (E ∪ {e′}, I ′) is a matroid. Moreover, if the
membership of I can be decided in polynomial time, then so
is I ′.

Proof. It is well known that (E∪{e′}, I ′) is a matroid (Nag-
amochi et al. 1997).

To check the membership of I ′ for given F ⊆ E ∪ {e′},
we test whether {e, e′} ⊆ F , F ∈ I for the case e′ /∈ F ,
and (F \ {e′}) ∪ {e} ∈ I for the case e′ ∈ F . These can be
done in polynomial time.

To find r bases B1, . . . , Br of a matroid M = (E, I)
maximizing dsum(B1, . . . , Br), we perform a polynomial-
time reduction to the problem of finding minimum weight r
disjoint bases of a matroid and solve it by the algorithm in
Theorem 2 as in Lemma 1. For each element e ∈ E, we let
e1, . . . , er be r copies of e, and let E′ = {ei : e ∈ E, 1 ≤
i ≤ r}. Since the size of bases ofM is its rank, denoted by
r(M), and

dsum(B1, . . . , Br) =
∑

1≤i<j≤r

2(r(M)− |Bi ∩Bj |),

the objective is to minimize
∑

1≤i<j≤r |Bi ∩ Bj |. Define
I ′ ⊆ 2E

′
as follows. For F ⊆ E, we let CF ⊆ 2E

′

be the set of all F ′ ⊆ E′ such that F ′ contains exactly
one of e1, . . . , er for each e ∈ F . Then, I ′ =

⋃
F∈I CF .

By Lemma 2, M′ = (E′, I ′) is a matroid. By weighting
each element of E′ as w(ei) = i − 1 for each e ∈ F and
1 ≤ i ≤ r, similarly to Lemma 1, we can prove thatM has
r bases B1, . . . , Br such that

∑
1≤i<j≤r |Bi ∩ Bj | ≤ k if

and only ifM′ had r disjoint bases of total weight at most
k, which can be found in polynomial time.

Theorem 3. Let M = (E, I) be a matroid. Suppose that
the membership of I can be checked in polynomial time.
Then, we can find r bases B1, . . . , Br of M maximizing
dsum(B1, . . . , Br) in polynomial time.

LetM = (E, I) be a matroid and let k be a positive in-
teger. The k-truncation of M is the pair (E, I ′) such that
F ⊆ E belongs to I ′ if and only if |F | ≤ k and F ∈ I.
It is known that the k-truncation of a matroid is also a ma-
troid (Oxley 2006). Hence, by Theorem 3, we have the fol-
lowing corollary.

Corollary 1. Let G = (V,E) be a graph and k, r pos-
itive integers. Then, there is a polynomial-time algorithm
that finds r forests F1, . . . , Fr of G with |E(Fi)| = k for
1 ≤ i ≤ r such that dsum(E(F1), . . . , E(Fr)) is maximized.

To give a precise running time bound, we use Cunning-
ham’s algorithm (Cunningham 1986) for the matroid in-
tersection, and the total running time of our algorithm is
O((rR)1.5r|E|Q), where R is the rank of the matroid M
and Q is the running time of the independent oracle ofM.
In particular, for DIVERSE SPANNING TREE, it runs in time
O((rn)2.5m), where n and m are the numbers of vertices
and edges of the input graph, respectively.

Algorithm 1 Given a vertex-colored graphG = (V,E) with
c : V → [k] and an integer k, find a colorful k-path in G

1: Set path(C, v) := False for all C ⊆ [k] and v ∈ V
2: for v ∈ V do
3: path({c(v)}, v) := True
4: for C ⊆ [k] in an increasing order of |C| do
5: for v ∈ V with c(v) ∈ C do
6: path(C, v) :=

∨
u∈NG(v)

path(C \ {c(v)}, u)

7: Answer YES iff path([k], v) = True for some v ∈ V

Finding Diverse k-Paths
In the previous section, we present an efficient algorithm for
finding diverse spanning trees. A natural variant of this prob-
lem is to find diverse spanning paths. However, the problem
is clearly hard since the problem of finding a single spanning
path, namely the Hamiltonian path problem, is NP-hard.
To cope with this difficulty, we investigate the complex-
ity of this problem from the perspective of fixed-parameter
tractability. In this context, given a graph G and integers k
and r, we are asked to find a set of r paths of length k − 1
maximizing diversity measures. Note the length of a path is
defined to be the number of edges in the path. In this section,
we present a FPT algorithm for this problem.

Finding a Single k-Path
We first quickly review the algorithm of (Alon, Yuster, and
Zwick 1995) for finding a k-path (i.e., a path of length k−1)
in a graph G = (V,E), which is widely known as the color-
coding technique. The algorithm basically consists of two
steps: Assign one of k colors to each vertex independently
and uniformly at random and then seek a colorful k-path,
that is, a path of length k − 1 whose vertices are colored
with distinct colors. By repeating these two steps sufficiently
many times, we can decide whetherG has a k-path with high
probability.

Suppose that G has at least one k-path P . We say that a
coloring c : V → [k] is good for P if P is [k]-colorful with
respect to c. Since the color of each vertex is determined in-
dependently and uniformly at random, the probability of a
good coloring for P is at least k!/kk = Ω(e−k). In vertex-
colored graphs, we can find a colorful k-path by the follow-
ing dynamic programming algorithm. Let c : V → [k] be a
coloring on vertices. For each v ∈ V and C ⊆ [k], we say
that a path P is feasible for (C, v) if P is C-colorful under
c and ends at v. Given this, we wish to compute a feasible
path for ([k], v) for some v ∈ V . We can compute such a
path by the following recurrence: there is a feasible path P
for (C, v) of length at least one if and only if there is a fea-
sible path for (C \ {c(v)}, u) for some u ∈ NG(v). This
yields an algorithm for finding a colorful k-path that runs in
time O(2kk(|V |+ |E|)), which is described in Algorithm 1.

By repeating the random coloring assignment and the al-
gorithm for finding a colorful k-path (Algorithm 1), we have
the following randomized algorithm.
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Theorem 4 ((Alon, Yuster, and Zwick 1995)). For ev-
ery constant ε > 0, there is a Monte Carlo algorithm
that decides whether G has a k-path and runs in time
O((2e)k(|V | + |E|)), which does not contain false positive
and returns a k-path with probability at least ε if the answer
is affirmative.

Alon et al. derandomize the algorithm of Theorem 4
by substituting random coloring with k-perfect hash fam-
ily (Alon, Yuster, and Zwick 1995; Naor, Schulman, and
Srinivasan 1995). Let U be a finite set. A family H of
functions h : U → [k] is called a k-perfect hash fam-
ily if for every k-element subset X ⊆ U , there is a func-
tion h ∈ H such that h(x) 6= h(y) for every x, y ∈ X
with x 6= y. For any U and a positive integer k, there
is a k-perfect hash family of size ekkO(log k) log |U | and
it can be constructed in time ekkO(log k)|U | log |U | (Naor,
Schulman, and Srinivasan 1995). Instead of using random
coloring c, we use k-perfect hash family, and then we can
deterministically decide whether G has a k-path in time
(2e)kkO(log k)|V |O(1) (Alon, Yuster, and Zwick 1995).

Extending to Diverse k-Paths
Let G = (V,E) be a graph and let k and r be
positive integers. We first present an algorithm
for finding r paths P1, . . . , Pr of length k − 1
maximizing dmin(V (P1), . . . , V (Pr)) rather than
dmin(E(P1), . . . , E(Pr)) (i.e., MIN-DIVERSE k-PATH)
for the reason that this version is conceptually simpler.
The algorithm for MIN-DIVERSE k-PATH is postponed
to the next section. Although we only discuss an al-
gorithm for maximizing dmin(V (P1), . . . , V (Pr)), the
technique can be readily applied to the one for maximizing
dsum(V (P1), . . . , V (Pr)) as well.

To find a set of diverse r paths of length k−1, we leverage
the same idea of (Alon, Yuster, and Zwick 1995). We use
kr colors and randomly assign these colors to each vertex
of G. Since an optimal solution consists of at most kr ver-
tices (i.e., not necessarily vertex-disjoint r paths of length
k − 1), the probability of assigning distinct colors to each
vertex in the solution is at least (kr)!/(kr)kr = Ω(e−kr).
More specifically, let P = {P1, P2, . . . , Pr} be a set of (not
necessarily vertex-disjoint) r paths of length k − 1. We say
that a coloring is good for P if each vertex in

⋃
P∈P V (P )

receives a distinct color. Suppose that c : V → [kr] is a good
coloring for P . Then, each k-path in P is obviously color-
ful in this coloring. Thus, we run Algorithm 1 and compute
the entry of path(C, v) for each C ⊆ [kr] with |C| ≤ k
and v ∈ V , which is the existence of C-colorful paths in the
colored graph. Clearly, this can be done in time

(
kr
k

)
nO(1).

The vertex coloring not only gives a way to find a k-path
in FPT time but also allows us to maximize the diversity of
k-paths by enumerating sets of colors. Fix a vertex-coloring
c : V → [kr]. We say that a set of colors C ⊆ [kr] with
|C| = k is feasible (under c) if there is a C-colorful path
in G. The following observation is straightforward but is the
heart of our algorithm.
Observation 1. Let c : V → [kr] be a coloring of V and let
C1, C2, . . . , Cr ⊆ [kr] be sets of colors with |Ci| = k for

1 ≤ i ≤ r. Suppose that Ci is feasible for all 1 ≤ i ≤ r.
Then, there are (not necessarily vertex-disjoint and even not
necessarily distinct) r paths P1, . . . , Pr of length k− 1 such
that dmin(V (P1), . . . , V (Pr)) ≥ dmin(C1, . . . , Cr).

This implies that for every vertex-coloring c : V →
[kr] and for feasible sets C1, . . . , Cr ⊆ [kr] with respect
to c, we have OPT ≥ dmin(C1, . . . , Cr), where OPT
is the optimal diversity of r paths of length k − 1, and
equality holds if c is good for an optimal solution P =
{P1, . . . , Pr} and Pi is Ci-colorful for all 1 ≤ i ≤ r.
With probability at least e−kr, a random coloring is good
for P . For any vertex-coloring c, we can check the fea-
sibility of all color sets C ⊆ [kr] with |C| = k in to-
tal time O(

(
kr
k

)
k(|V | + |E|)). Therefore, we can compute

OPT in time O(
(
kr
k

)
k(|V | + |E|) +

(
kr
k

)r
(kr)O(1)) by

simply enumerating all r-tuples of feasible color sets, as-
suming c is good for P . Overall, the total running time
is O

(
ekr
((

kr
k

)
k(|V |+ |E|) +

(
kr
k

)r
(kr)O(1)

))
, which is

2O(kr log(kr))(|V |+ |E|).
Theorem 5. For every constant ε > 0, there is a Monte
Carlo algorithm that finds r paths of length k− 1 in G max-
imizing dmin(V (P1), . . . , V (Pr)) or concludes that G has
no k-paths in time 2O(kr log(kr))(|V | + |E|). Moreover, it
does not contain false positive and returns an optimal solu-
tion with probability at least ε if G has at least one k-path.

This can be derandomized by the kr-perfect hash family
as well.
Corollary 2. There is a deterministic algorithm that finds
a set of r paths of length k − 1 in G maximizing
dmin(V (P1), . . . , V (Pr)) or concludes that G has no k-
paths in time 2O(kr log(kr))|V |O(1).

A General Framework for Finding Diverse
Solutions

In the previous section, we demonstrate a method for find-
ing diverse k-paths using the color-coding technique due to
Alon et al. (Alon, Yuster, and Zwick 1995). The power of
this method is not limited to finding diverse k-paths. Let U
be a finite set and let Π : 2U → {0, 1} be an arbitrary func-
tion. Throughout the paper, we assume that the function can
be evaluated in time |U |O(1). We call a subset X of U a
Π-set if Π(X) = 1. Many combinatorial objects can be ex-
pressed as this function (e.g., define U as the set of vertices
of a graph and Π(X) = 1 if and only ifX ⊆ U forms a path
of length k − 1).

The essence of the previous algorithm is that random col-
oring boils down the problem of finding diverse Π-sets to
that of finding a single C-colorful Π-set for given color set
C. More precisely, we have the following lemma.
Lemma 3. Suppose that, there is an algorithmA that, given
a finite set U , a coloring c : U → [kr], and C ⊆ [kr]
with |C| = k, decides whether there is a C-colorful Π-set
in time f(k, r)|U |O(1). Then we can find Π-sets U1, . . . , Ur,
with |Ui| = k for 1 ≤ i ≤ r maximizing dmin(U1, . . . , Ur)
or conclude that there is no Π-set of size k in U in time
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erk
((

kr
k

)
f(k, r)|U |O(1) +

(
kr
k

)r
(kr)O(1)

)
with high prob-

ability. Moreover, a deterministic counterpart runs in time
2kr log(kr)f(k, r)|U |O(1).

Proof. The proof is almost analogous to that in the previous
section and hence we only give a sketch of the proof.

Let U1, . . . , Ur be Π-sets of U that maximize
dmin(U1, . . . , Ur). We assign one of the colors in [kr]
to each element in U independently and uniformly at
random. Then, with probability at least e−kr, each element
in
⋃

1≤i≤r Ui receives a distinct color. For C ⊆ [kr], we
say that C is feasible (under c) if there is a C-colorful Π-set
of U . By using A, we can check in time

(
kr
k

)
f(k, r)|U |O(1)

the feasibility of all C ⊆ [kr] with |C| = k. To compute
dmin(U1, . . . , Ur), we simply find r feasible color sets
C1, . . . , Cr maximizing dmin(C1, . . . , Cr) by an exhaustive
search. The deterministic algorithm is obtained by using the
kr-perfect hash family as well.

Note again that the problem of maximizing dsum is also
solvable in the claimed running time in Lemma 3. In the rest
of this section, we discuss some applications of Lemma 3.

Diverse Matchings
Let G = (V,E) be a graph. A matching is a set of edges
M ⊆ E such that there are no edges in M sharing a com-
mon end vertex. Since the problem of computing a match-
ing of maximum size is solvable in polynomial time (Ed-
monds 1965), one may expect that DIVERSE MATCHING
or MIN-DIVERSE MATCHING can be solved in polynomial
time as well. However, it is unlikely: Finding two edge-
disjoint perfect matchings in cubic graphs is known to be
NP-hard (Holyer 1981). To overcome this difficulty, we con-
sider the problem of finding diverse matchings of size k and
show that this is fixed-parameter tractable parameterized by
k + r.
Theorem 6. DIVERSE MATCHING and MIN-DIVERSE
MATCHING can be solved in time 2O(kr log(kr))|V |O(1).

Proof. Suppose that each edge of G is colored with one of
the colors [kr]. For each C ⊆ [kr] with |C| = k, do the
following. We first remove all the edges colored with a color
not contained in C. Then, we apply the algorithm of finding
a colorful matching of size k due to (Gupta et al. 2019),

which runs in time
(

1+
√
5

2

)k
|V |O(1). Let Π : 2E → {0, 1}

be a function such that Π(M) = 1 if and only if M is a
matching of G. By Lemma 3, the statement follows.

Diverse Interval Scheduling
We are given a set of tasks represented by intervals I =
{[ai, bi] : 1 ≤ i ≤ n}, where [a, b] is the (closed) interval
whose end points are a ∈ R and b ∈ R with a ≤ b. A subset
I ′ ⊆ I is feasible if I ′ has no overlapping intervals, that
is, [a, b]∩ [a′, b′] = ∅ for distinct [a, b], [a′, b′] ∈ I ′. INTER-
VAL SCHEDULING is the problem of computing a maximum
cardinality feasible I ′ ⊆ I . This problem is also known as
the maximum independent set problem on interval graphs
and can be solved in polynomial time by a simple greedy

algorithm. We consider the diverse variants of INTERVAL
SCHEDULING. In DIVERSE INTERVAL SCHEDULING and
MIN-DIVERSE INTERVAL SCHEDULING, we are given a set
I of intervals and integers k and r. The goals of the prob-
lems are to find r sets of feasible intervals I1, . . . , Ir ⊆ I
with |Ii| = k for 1 ≤ i ≤ r maximizing dsum(I1, . . . , Ir)
and dmin(I1, . . . , Ir), respectively. To solve these problems
in FPT time, by Lemma 3, it suffices to show that the “col-
orful version” can be solved in FPT time. This problem is
also known as JOB INTERVAL SELECTION in the literature.
In addition to the input of INTERVAL SCHEDULING, we are
also given a coloring function c : I → [k]. The goal of JOB
INTERVAL SELECTION is to find a maximum cardinality set
of colorful feasible intervals in I. Halldórsson and Karls-
son (Halldórsson and Karlsson 2006) showed that this prob-
lem can be solved in time 2k|I|O(1), yielding the following
result together with Lemma 3.
Theorem 7. DIVERSE INTERVAL SCHEDULING and MIN-
DIVERSE INTERVAL SCHEDULING can be solved in time
2O(kr log(kr))|I|O(1).

Diverse k-Paths Revisited
As we have discussed in the previous section, the problem
of finding r paths P1, . . . , Pr of length k − 1 maximiz-
ing dmin(V (P1), . . . , V (Pr)) can be solved in FPT time. To
solve DIVERSE k-PATHS and MIN-DIVERSE k-PATHS, we
use Lemma 3 and a modified version of Algorithm 1. Sup-
pose that we are given an edge-colored graph G = (V,E)
with cE : E → [(k − 1)r]. For each D ⊆ [(k − 1)r] with
|D| = k − 1, we design an algorithm for finding a k-path
whose edges are D-colorful. The algorithm is quite simi-
lar to the k-path algorithm described in the previous sec-
tion. We assign a color from [k] to each vertex of G inde-
pendently and uniformly at random. Fix a vertex coloring
cV : V → [k]. For each C ⊆ [k] and for each D′ ⊆ D with
|C| − 1 = |D′|, we say that a path P is (C,D′)-colorful if
V (P ) is C-colorful and E(P ) is D′-colorful. The following
recurrence immediately yields a dynamic programming al-
gorithm for ([k], D)-colorful paths. For each C ⊆ [k] and
D′ ⊆ D with |C| − 1 = |D| ≥ 1, and v ∈ V with
cV (v) ∈ C, G has a (C,D′)-colorful path ending at v if and
only if there is a (C \ {c(v)}, D′ \ {cE({u, v})})-colorful
path ending at u ∈ V with {u, v} ∈ E. This recurrence
can be straightforwardly implemented by dynamic program-
ming whose running time is inO(4kk(|V |+ |E|)). By using
the k-perfect hash family for cv , we finally conclude that
DIVERSE k-PATH and MIN-DIVERSE k-PATH are fixed-
parameter tractable.
Theorem 8. DIVERSE k-PATH and MIN-DIVERSE k-PATH
can be solved in time 2O(kr log(kr))|V |O(1), where n is the
number of vertices of the input graph.

Diverse Subgraphs of Bounded Treewidth
Let G = (V,E) and G′ = (V ′, E′) be graphs. We say that
G is isomorphic toG′ if there is a bijection f between V and
V ′ such that {u, v} ∈ E if and only if {f(u), f(v)} ∈ E′
for every pair of vertices u, v ∈ V . Given graphs G and H ,
the subgraph isomorphism problem asks whether G has a
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subgraph isomorphic to H . This problem is a common gen-
eralization of many NP-hard problems, including the Hamil-
tonian path problem and the k-clique problem. Since the k-
clique problem, the problem of finding a clique of k ver-
tices, is W[1]-hard parameterized by k (Downey and Fel-
lows 1995), finding diverse subgraphs isomorphic to H is
also hard for general H . When H is “sparse”, however,
the problem is fixed-parameter tractable (Alon, Yuster, and
Zwick 1995).

A tree decomposition of G = (V,E) is a pair (T, {Xi ⊆
V : i ∈ I}) of a rooted tree T with node set I and a
collection {Xi : i ∈ I} of subsets of V such that (1)⋃

i∈I Xi = V ; (2) for each {u, v} ∈ E, there is an i ∈ I
with {u, v} ⊆ Xi; and (3) for each v ∈ V , the set of nodes
{i ∈ I : v ∈ Xi} induces a subtree of T . The width
of a tree decomposition (T, {Xi : i ∈ I}) is defined as
maxi∈I |Xi| − 1, and the treewidth of G is the minimum in-
teger t such thatG has a tree decomposition of width t. Alon
et al. (Alon, Yuster, and Zwick 1995) showed that when
the treewidth of H is a constant, the subgraph isomorphism
problem is fixed-parameter tractable.

Theorem 9 ((Alon, Yuster, and Zwick 1995)). Let G and H
be graphs. Suppose that |V (H)| = k and the treewidth ofH
is t. Then, there is an algorithm that decides if G has a sub-
graph isomorphic to H in time 2O(k)|V (G)|t+1 log |V (G)|.

We briefly describe their idea of Theorem 9. Let (T, {Xi :
i ∈ I) be a tree decomposition of H . For each i ∈ I , we
denote by Hi the subgraph of H induced by the vertices
appeared in Xi or Xj for some descendant j ∈ I of i. They
also use the color-coding technique as follows. Let c : V →
[k] be a coloring on V . For each C ⊆ [k], i ∈ I , Z ⊆
V with |Z| = |Xi|, and a bijection fZ : Z → Xi, the
algorithm decides whether G has a C-colorful subgraph H ′
isomorphic to Hi such that Z ⊆ V (H ′) and the bijection
f : V (H ′) → V (H) extends fZ , that is, f(z) = fZ(z)
for all z ∈ Z. This can be done in time 2O(k)|V (G)|t+1 by
dynamic programming and hence Theorem 9 follows.

By combining this algorithm with Lemma 3, we have the
following result.

Theorem 10. Let G and H be graphs. Suppose that
|V (H)| = k and the treewidth of H is t. Then there
is a 2O(kr log(kr))|V (G)|t+O(1)-time algorithm that finds
r subgraphs H1, . . . ,Hr isomorphic to H such that
dsum(V (H1), . . . , V (Hr)) or dmin(V (H1), . . . , V (Hr)) is
maximized, or concludes G has no subgraph isomorphic to
H .

We can extend this algorithm to DIVERSE SUBGRAPH
ISOMORPHISM and MIN-DIVERSE SUBGRAPH ISOMOR-
PHISM by simultaneously considering edge-colorings as in
Theorem 8. To be more precise, let cV : V → [k] and
cE : E → [|E(H)|] be random vertex- and edge-colorings.
For each C ⊆ [k], D ⊆ [|E(H)|], i ∈ I , Z ⊆ V with
|Z| = |Xi|, and a function f ′ : Z → Xi, we can de-
cide whether G has a (C,D)-colorful subgraph H ′ iso-
morphic to Hi such that Z ⊆ V (H ′) and the bijection
f : V (H ′) → V (H) extends f ′, that is, f(z) = f ′(z)
for all z ∈ Z by dynamic programming as well as the

vertex-colored case. Here, a subgraph H ′ is (C,D)-colorful
if V (H ′) is C-colorful and E(H ′) is D-colorful. It is not
hard to see that the running time of this dynamic program-
ming algorithm is 2O(k+|E(H)|)|V (G)|t+1.

Theorem 11. DIVERSE SUBGRAPH ISOMORPHISM and
MIN-DIVERSE SUBGRAPH ISOMORPHISM can be solved
in time f(k, r)|V (G)|t+O(1) for some function f , where
k = |V (H)|, and t is the treewidth of H .

Diverse Subgraphs with FO Properties

We have seen several examples for which finding diverse so-
lutions is fixed-parameter tractable. In particular, DIVERSE
k-PATH and MIN-DIVERSE k-PATH are fixed-parameter
tractable parameterized by k+r. In contrast to this tractabil-
ity, finding a single induced k-path is known to be W [2]-
complete (Chen and Flum 2007) with respect to parame-
ter k, where an induced path in a graph is a path such that
non-consecutive vertices on the path are not adjacent in the
graph.

A typical approach to overcoming such intractable prob-
lems is to restrict input graphs to some sparse graph classes,
such as planar graphs, bounded-treewidth graphs, or H-
minor free graphs with fixed H . One of the most remark-
able results in this context is an algorithmic metatheorem for
sparse graphs with first-order logic (FO) given by Grohe et
al. (Grohe, Kreutzer, and Siebertz 2017). Many graph prop-
erties can be expressed by a formula in FO and, in particular,
so is the property of being a colorful induced path of length
k− 1. A short note for the syntax of FO formulas on graphs
is given in the full version (Hanaka et al. 2020).

Grohe et al. (Grohe, Kreutzer, and Siebertz 2017) showed
that for a nowhere dense class C of graphs and an FO
formula φ, checking whether G |= φ is fixed-parameter
tractable parameterized by the length |φ| of formula φ.

Theorem 12 ((Grohe, Kreutzer, and Siebertz 2017)). Let
G = (V,E) be a graph that is in a nowhere dense class
of graphs and c : V → [k] a coloring on vertices. Let Π
be a property on graphs that is expressible by a formula φ
in first-order logic. Then, for every ε > 0, one can decide
whether G has a [k]-colorful subgraph satisfying Π in time
f(ε, |φ|, k)|V |1+ε for some function f .

We do not give the definition of nowhere dense classes
of graphs (See (Grohe, Kreutzer, and Siebertz 2017) for de-
tails), while it is worth mentioning that many sparse graph
classes are included in these classes, such as planar graphs,
bounded-treewidth graphs, and H-minor free graphs. By
combining Lemma 3 and Theorem 12, we have the follow-
ing theorem.

Theorem 13. Let G = (V,E) be a graph that
is in a nowhere dense class of graphs. Let Π be
a property on graphs that is expressible by a for-
mula φ in first-order logic. Then, we can find r sub-
graphs H1, . . . ,Hr of k vertices satisfying Π such that
dmin(V (H1), . . . , V (Hr)) or dsum(V (H1), . . . , V (Hr)) is
maximized, in time f(|φ|, k, r)|V |O(1).
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