
Integrated Optimization of Bipartite Matching and Its Stochastic Behavior:
New Formulation and Approximation Algorithm via Min-cost Flow Optimization

Yuya Hikima,1 Yasunori Akagi,1 Hideaki Kim,1 Masahiro Kohjima,1 Takeshi Kurashima,1
Hiroyuki Toda1

1NTT Service Evolution Laboratories, NTT Corporation,
1-1 Hikari-no-oka, Yokosuka-Shi, Kanagawa, 239-0847, Japan

{yuuya.hikima.ys, yasunori.akagi.cu, hideaki.kin.cn, masahiro.kohjima.ev, takeshi.kurashima.uf,
hiroyuki.toda.xb}@hco.ntt.co.jp

Abstract

The research field of stochastic matching has yielded many
developments for various applications. In most stochastic
matching problems, the probability distributions inherent in
the nodes and edges are set a priori, and are not controllable.
However, many matching services have options, which we
call control variables, that affect the probability distributions
and thus what constitutes an optimum matching. Although
several methods for optimizing the values of the control vari-
ables have been developed, their optimization in considera-
tion of the matching problem is still in its infancy. In this
paper, we formulate an optimization problem for determin-
ing the values of the control variables so as to maximize the
expected value of matching weights. Since this problem in-
volves hard to evaluate objective values and is non-convex,
we construct an approximation algorithm via a minimum-
cost flow algorithm that can find 3-approximation solutions
rapidly. Simulations on real data from a ride-hailing platform
and a crowd-sourcing market show that the proposed method
can find solutions with high profits of the service provider in
practical time.

1. Introduction
Bipartite graph matching has received a great deal of at-
tention as a fundamental discrete optimization problem that
has a wide ranging list of applications such as matching of
workers to jobs, residents to hospitals, and jobs to machines
in cloud computing (Ahuja, Magnanti, and Orlin 1993).
Among the variants of bipartite graph matching, stochastic
matching techniques have been recently developed because
they handle the probabilistic uncertainty of instances; that
is, the optimum matching is determined under a set of prob-
ability distributions associated with the nodes and edges.
In the kidney exchange (Chen et al. 2009), for example,
the expected number of patient-donor matching has been
maximized through the exchangeable probabilities between
patients and donors. In internet advertising (Mehta 2012),
advertisements are allocated optimally to website visitors
based on the probability distribution over types of visitors,
which is estimated from past traffic data from websites.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In most stochastic matching problems, the probability dis-
tributions inherent in the nodes and edges are assumed to be
given a priori and so are not controllable. However, many of
the matching services often have options, which we call con-
trol variables, that affect the probability distributions and the
resulting optimum matching. Finding the control variables
that maximize the business profit is one of the central top-
ics for the service providers. For example, a crowd-sourcing
servicer can manage worker participation rates for a task
by increasing or decreasing the wage (Horton and Chilton
2010), where a small wage causes a lack of participants
to assign tasks, while a large one might harm the business
profit. Therefore, we tackle the problem of optimizing the
control variables with the consideration of the resulting bi-
partite graph matching, given the effect of control variables
on the probabilistic uncertainty in the graph.

In this paper, we focus on a problem setting where the
existence of nodes on one side of the bipartite graph fol-
lows a probability distribution of which shape is determined
by control variables. This problem setting appears in vari-
ous applications such as taxi-requester matching in taxi dis-
patching and worker-task matching in crowd-sourcing. If the
given graph is a complete bipartite graph with equal edge
weights, we can use an existing method (Babaioff et al.
2015), which is proposed as a pricing scheme for single item
markets. It optimizes control variables so as to adjust the
expected number of the stochastic nodes to the number of
nodes on the other side. Because the method requires strong
assumptions on graph structures, the applicability is limited.
A more sophisticated optimization method, along with its
approximation ratio, has recently been proposed by (Tong
et al. 2018). It optimizes the control variables so as to max-
imize the expected weight of the resulting matching. How-
ever, this method has limited application because the setting
of the edge weights is restricted. Also, the approximation
ratio of this method gets worse as the number of nodes on
one side increases. This could lead to poor performance in
large-scale settings.

To address the limitations, we propose a new optimization
problem, which is called Integrated Stochastic Problem for
Control variables and Bipartite matching (ISPCB). ISPCB
is the problem of determining the values of the control vari-
ables to maximize the expected value of weights of bipartite

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3796

matching, and can be categorized as a two-stage stochastic
optimization problem in stochastic programming. Since IS-
PCB doesn’t require any assumptions on graph structures,
it can be applied to various applications: in crowd-sourcing
markets, we can allocate a set of tasks to workers at smaller
costs by setting an appropriate wage for each worker; in ride-
hailing service, we can maximize the profit by setting an ap-
propriate fare for each taxi request.

Since ISPCB is difficult and finding a global optimal so-
lution is hard, we propose a fast approximation algorithm;
it is guaranteed to output solutions with high objective val-
ues. ISPCB has two difficulties: It is difficult to evaluate the
objective value since the objective function deals with an ex-
ponential number of weighted bipartite matching problems;
It is a non-convex problem because of the non-convexity of
probability functions. In order to overcome these difficulties,
we approximate the objective function and reduce the prob-
lem to a nonlinear minimum-cost flow problem. Then, we
show that the problem is a convex min-cost flow problem un-
der the assumption that the probability function is the mono-
tone hazard rate function (Barlow, Marshall, and Proschan
1963). This is a reasonable assumption because the mono-
tone hazard rate function includes commonly used distribu-
tions such as normal and exponential distributions. Convex
min-cost flow problems are known to be solved efficiently
by several algorithms, and we use the capacity scaling al-
gorithm (Ahuja, Magnanti, and Orlin 1993; Végh 2016) to
solve the convex min-cost flow problem. The proposed al-
gorithm can output 3-approximation solutions for ISPCB.

We conduct simulations on real data from a ride-hailing
platform and a crowd-sourcing market. The results show that
the proposed method outputs more profitable solutions than
other methods in practical time.

The contributions of this study are threefold.
1. We formulate a new optimization problem, ISPCB that
can determine the values of control variables that maximize
the expected weights of bipartite matching. It is suitable for
various applications with control variables that impact the
uncertainty of bipartite graphs.
2. We propose a fast approximation algorithm via a min-cost
flow algorithm that can output 3-approximation solutions for
ISPCB.
3. We conduct simulation experiments on real data to con-
firm the effectiveness of the formulation of ISPCB and the
proposed algorithm for ISPCB in two applications: a ride-
hailing platform and a crowd-sourcing market.

2. Related Works
2.1 Matching Problem with Uncertainty
Many studies have examined matching problems under un-
certainty, such as stochastic probing matching (Bansal et al.
2010; Chen et al. 2009; Blum et al. 2015; Adamczyk 2011)
and online stochastic matching (Karp, Vazirani, and Vazi-
rani 1990; Feldman et al. 2009; Mehta 2012; Aggarwal et al.
2011). The main difference between these works and ours is
the decision variables: they attempt to find optimum match-
ing given probabilities of nodes or edges, while we optimize
control variables that demonstrate probabilistic effects on

the matching problem.
Most recently, in the context of ride-hailing platform

strategies, several studies tackle problems similar to ours.
For example, (Tong et al. 2018) determines the fare for
passengers in each area to control passenger’s participa-
tion probability and maximize the expected profit from
requester-taxi matching. (Chen et al. 2019) proposes a
bandit-based method for deciding the fare for each passen-
ger so as to maximize the expected profit from requester-
taxi matching. Although their works are similar to ours,
there are two distinct differences: (i) Our problem formu-
lation is general and applicable to various real-world do-
mains such as web-based crowd-sourcing and spatial crowd-
sourcing, while previous works are specific to the spatial
crowd-sourcing domain. (ii) Our algorithm is guaranteed
to output a 3-approximation solution, while previous algo-
rithms do not offer constant approximation ratios.

2.2 Stochastic Programming
Our problem can be seen as the two-stage stochastic op-
timization problem in stochastic programming (Shapiro,
Dentcheva, and Ruszczyński 2014; Birge and Louveaux
2011), which is a research area of optimization for problems
with uncertainty. A number of existing studies have been
conducted on the two-stage stochastic optimization prob-
lem since it is essential in many applications. The L-shaped
method (Van Slyke and Wets 1969; Gassmann 1990) and
stochastic decomposition (Higle and Sen 1991, 2013) are
typical solutions for which theoretical convergence has been
proved. However, these methods assume that random vari-
ables are independent of the decision variables, and so can-
not be applied to our problem where random variables are
affected by decision variables.

Among the solutions for optimization problems with
random variables dependent on decision variables, global
metamodel optimization (Scott, Frazier, and Powell 2011;
Brochu, Cora, and De Freitas 2010) can be applied to our
problem. However, it is computationally expensive and is
undesirable because the applications associated with our
problem demand quick solutions.

3. Problem Formulation
3.1 Matching Procedure
In this paper, we consider the following procedure to decide
one-to-one matching between multiple resources and mul-
tiple participants in a matching platform. The set of partic-
ipants U , the set of resources V , and a weighted bipartite
graph G = (U, V,E) are given; when (u, v) ∈ E holds,
resource v can be matched to participant u. We denote the
weight of edge (u, v) ∈ E by wuv . The platformer can de-
termine the value of control variable xu for each participant
u ∈ U . After the decision of xu for all u ∈ U , each partici-
pant chooses whether or not to continue to participate in the
subsequent process. This choice is assumed to be stochas-
tic; participant u will continue to participate with probabil-
ity pu(xu) and quit with probability 1 − pu(xu). If partici-
pant u quits, the corresponding node and its connected edges
are removed from graph G. Let G′ = (U ′, V, E′) be the

3797

Determine
control variables

𝒙𝒖𝟏

𝒙𝒖𝟑

𝒙𝒖𝟐
Each node 𝑢
is removed
with 1 − 𝑝𝑢(𝑥𝑢).

Decide matching

decide: decide 𝑴

profit of matching:
𝑤𝑢𝑣 + 𝑥𝑢

removed

𝑢1

𝑢2

𝑢3

𝑣1

𝑣2

𝑢1

𝑢2

𝑢3

𝑣1

𝑣2

(i) (ii)

Figure 1: Matching procedure

graph after above removing procedure. The platformer de-
cides matching M ⊆ E′ (i.e., an set of edges without com-
mon vertices in E′) and gets the profit of wuv and xu for
each (u, v) ∈ M . This procedure is illustrated in Fig. 1.
Note that wuv (or xu) can take a negative value, and in this
case the platformer would suffer a loss of |wuv| (or |xu|).

We introduce several real world problems to elucidate the
above procedure.

(i) Ride-hailing platform
In the ride-hailing platform, the platformer needs to decide
one-to-one matching between multiple requesters and mul-
tiple taxis in real time. We divide the time horizon into mul-
tiple time steps and consider that taxi dispatch is to be de-
termined at each time step. There are multiple requesters U
and taxis V in a two-dimensional space at each time. Let
wuv(≤ 0) be the total cost of allocating taxi v ∈ V to re-
quester u ∈ U , including the cost of gasoline, opportunity
costs, and other cost factors. The platformer can determine
price xu(≥ 0) for each requester u ∈ U . Then, each re-
quester u accepts (au = 1) the price with probability pu(xu)
or rejects (au = 0) the price with probability 1 − pu(xu).
Let the accepting requesters be U ′ and the combinations of
requesters U ′ and taxis V be E′. The platformer takes the
matching M ⊆ E′ and gets the profit of wuv + xu for each
(u, v) ∈M .

(ii) Crowd-sourcing market
In the crowd-sourcing market, the platformer needs to de-
cide one-to-one matching between multiple workers and
multiple tasks in real time. We divide the time horizon into
multiple time steps and consider that worker-task matching
is determined at each time step. There are multiple work-
ers U and tasks V at each time. Let wuv(≥ 0) be the reward
paid by the requester of tasks to the platformer when task v is
solved by worker u. Reward wuv is calculated based on the
skills and performance of each worker. The platformer can
determine a wage xu(≤ 0) for each worker u ∈ U . Here,
xu is negative because it is the price the platformer pays for
worker u. Then, each worker u accepts the wage, (au = 1),
with probability pu(xu) or rejects the wage, (au = 0), with
probability 1 − pu(xu). Let the accepting workers be U ′
and the combinations of workers U ′ and tasks V be E′. The
crowd-sourcing platformer takes the matching M ⊆ E′ and
profit wuv + xu for each (u, v) ∈M .

3.2 Optimization Problem
We consider an optimization problem to maximize the profit
of the platformer in the above procedure. When au ∀u ∈ U ,
which are the participant’s decisions, are fixed, the problem
to decide optimal matching is the following classic weighted
bipartite matching problem:

(Psub) max
z

∑
(u,v)∈E

(wuv + xu) · zuv

s.t.
∑

v∈δ(u)
zuv ≤ au ∀u ∈ U∑

u∈δ(v)
zuv ≤ 1 ∀v ∈ V

zuv ∈ {0, 1} ∀(u, v) ∈ E,

where δ(ξ) is the set of nodes adjacent to the node ξ.
Here, zuv ∈ {0, 1} indicates whether (u, v) ∈ E are

matched (zuv = 1) or not (zuv = 0). The first constraint
is that only accepting nodes u can be matched to one v.
The second constraint is that each node v can be matched
to one u.

Because au is a binary random variable generated accord-
ing to probability pu(xu), we focus on the maximization
problem of the expected profit of the platformer under con-
trol variable x, which we call Integrated Stochastic Problem
for Control variables and Bipartite matching (ISPCB):

(ISPCB) max
x∈R|U|

Ea∼D(x)[max
z∈Z(a)

f(x, z)],

where f(x, z) =
∑

(u,v)∈E(wuv+xu)·zuv , which is the ob-
jective function of (Psub), and Z(a) is the feasible region of
(Psub). D(x) is a probability distribution for a ∈ {0, 1}|U |;
The probability mass function of D(x) can be calculated by
Pr(a | x) =

∏
u∈U

{
pu(xu)au(1− pu(xu))(1−au)

}
.

Finding the optimum solution for (ISPCB) is difficult for
two reasons: (i) Random variable a takes 2|U | values in
{0, 1}|U |, so it is necessary to solve 2|U | weighted bipartite
matching problems (maxz∈Z(a) f(x, z)) to calculate the
objective value exactly. (ii) The objective function is non-
convex since the probability function pu(xu) is non-convex.

3.3 Assumption on pu
We assume the following throughout this paper.
Assumption 1 Probability function pu(x) is continuous,
monotonically decreasing, and bijective in the domain. The
domain of pu(x) is a connected set. There is x satisfying
pu(x) = 0 or limx→∞ pu(x) = 0. Moreover, 1 − pu(x) is
the monotone hazard rate distribution (MHR) (Barlow, Mar-
shall, and Proschan 1963), that is, −p′u(x)/pu(x) is mono-
tonically non-decreasing.

Assumption 1 is mild and complementary cumulative dis-
tribution functions of common distributions such as normal
and exponential distributions satisfy Assumption 1 (Tong
et al. 2018; Barlow, Marshall, and Proschan 1963).

The following lemma can be easily derived.
Lemma 1 When probability function 1 − pu(x) is MHR,
x+ pu(x)/p′u(x) is monotonically non-decreasing.
proof. See Section 7.1. �

3798

We will use this lemma to construct an efficient optimiza-
tion algorithm for (ISPCB) in Section 4.

4. Proposed Method
In this section, we propose an approximation algorithm for
(ISPCB). First, in Section 4.1, we provide a preliminary de-
scription of min-cost flow problems, which is referred in
Section 4.3 and 4.4. Then, in Sections 4.2-4.4, we propose
an approximation algorithm for (ISPCB). In Section 4.2, we
approximate the objective function of (ISPCB), and propose
an optimization problem (PA) whose optimal solution is a
3-approximation solution for (ISPCB). In Section 4.3, we
show that (PA) can be reduced to a convex min-cost flow
problem (FP) under Assumption 1. Then, in Section 4.4, we
use the capacity scaling algorithm, which is a solution for
convex min-cost flow problems, to solve (FP).

4.1 Min-cost Flow Problem
We give a preliminary description of min-cost flow prob-
lems. Let Ĝ = (V̂ , Ê) be a directed graph with a cost func-
tion cij : R → R and a capacity `ij ∈ R≥0 associated with
each edge (i, j) ∈ Ê. Each node i ∈ V̂ has a value, bi ∈ R,
which is called the supply of the node when bi > 0, or the
demand of the node when bi < 0. Given the above, the min-
cost flow problem can be written as follows:

(MCF) min
z

∑
(i,j)∈Ê

cij(zij)

s.t.
∑

j:(i,j)∈Ê

zij −
∑

j:(j,i)∈Ê

zji = bi ∀i ∈ V̂

0 ≤ zij ≤ `ij ∀(i, j) ∈ Ê.

When no assumptions are placed on the cost function
cij , then min-cost flow problems are generally NP-hard and
difficult to solve. However, if the cost functions are con-
vex, several methods can solve min-cost flow problems effi-
ciently (Kiraly and Kovacs 2012; Ahuja, Magnanti, and Or-
lin 1993). In Section 4.4, we use the capacity scaling algo-
rithm, which is one of those methods, to find an approxima-
tion solution of (ISPCB).

4.2 Approximation of Objective Function
To propose an approximation algorithm, we consider the ap-
proximation of the objective function of (ISPCB), that is,
Ea∼D(x)[maxz∈Z(a) f(x, z)]. First, we introduce the fol-
lowing problem for a given x:

max
z

∑
(u,v)∈E

(xu + wuv) · zuv (1)

s.t.
∑

v∈δ(u)
zuv ≤ pu(xu) ∀u ∈ U∑

u∈δ(v)
zuv ≤ 1 ∀v ∈ V

0 ≤ zuv ≤ 1 ∀(u, v) ∈ E.

Here, let f̂(x) be the optimal value of the above problem.
Then, the following theorem holds.

Theorem 1 For any x, the following holds:

1/3 · f̂(x) ≤ Ea∼D(x)[maxz∈Z(a) f(x, z)] ≤ f̂(x)

proof. See Section 7.2. �

We obtain the following optimization problem by replac-
ing Ea∼D(x)[maxz∈Z(a) f(x, z)] with f̂(x) for (ISPCB):

(PA) max
x,z

∑
(u,v)∈E

(xu + wuv) · zuv

s.t.
∑

v∈δ(u)
zuv ≤ pu(xu) ∀u ∈ U∑

u∈δ(v)
zuv ≤ 1 ∀v ∈ V

0 ≤ zuv ≤ 1 ∀(u, v) ∈ E
x ∈ R|U |.

Here, let x̄ and (x̂, ẑ) be optimal solutions for (ISPCB) and
(PA), respectively. Then, from Theorem 1, we obtain 1/3 ·
Ea∼D(x̄)[maxz∈Z(a) f(x̄, z)] ≤ 1/3 · f̂(x̄) ≤ 1/3 · f̂(x̂) ≤
Ea∼D(x̂)[maxz∈Z(a) f(x̂, z)], where the second inequality
holds because x̂ = arg maxx∈R|U|{f̂(x)} from the defini-
tion. Therefore, the solution of (PA) is a 3-approximation
solution for (ISPCB).

4.3 Reduce (PA) to Convex Min-cost Flow
Problem

(PA) is a non-convex problem with non-convex functions
pu(xu). We reduce (PA) to a convex min-cost flow problem
under Assumption 1. First, we give the following problem:

(PA′) max
z

∑
u∈U

p−1
u

(∑
v∈δ(u)

zuv
) ∑
v∈δ(u)

zuv +
∑

(u,v)∈E

wuvzuv

s.t.
∑
v∈δ(u)

zuv ∈ Su ∀u ∈ U

∑
u∈δ(v)

zuv ≤ 1 ∀v ∈ V

0 ≤ zuv ≤ 1 ∀(u, v) ∈ E,

where Su is the range of function pu. This optimization
problem is (PA) in which the decision variable x is elimi-
nated by the substitution xu := p−1

u (
∑
v∈δ(u) zuv).

Then, we show the following theorem.
Theorem 2 Suppose that Assumption 1 holds. Let an op-
timal solution of (PA′) be z∗ and x∗u := p−1

u (
∑
v∈δ(u) z

∗
uv)

for all u. Then, (x∗, z∗) is an optimal solution for (PA).

proof. See Section 7.3. �

From Theorem 2, we can solve (PA) by solving (PA′).
Here, we prepare new subscripts s and t. Let zsu :=∑
v∈δ(u) zuv for all u and zvt :=

∑
u∈δ(v) zuv for all v.

Let zst be a slack variable and n := min{|U |, |V |}: Then,

3799

𝑣2

𝑢2 𝑣3

𝑢1

𝑠 𝑡

cost: − 𝑝𝑢
−1 𝑧𝑠𝑢 ⋅ 𝑧𝑠𝑢

capacity: 𝑧𝑠𝑢 ∈ 𝑆𝑢

cost: −𝑤𝑢𝑣 ⋅ 𝑧𝑢𝑣
capacity: 0 ≤ 𝑧𝑢𝑣 ≤ 1

𝑣1

cost: 0
capacity: 0 ≤ 𝑧𝑠𝑡 ≤ 𝑛

cost: 0
capacity: 0 ≤ 𝑧𝑣𝑡 ≤ 1

supply: 𝑛 demand: −𝑛

Figure 2: Illustration of (FP)

(PA′) can be written as follows.

(FP) min
z

∑
u∈U

−p−1
u (zsu) · zsu −

∑
(u,v)∈E

wuv · zuv (2)

s.t.
∑
u∈U

zsu + zst = n,
∑
v∈V

zvt + zst = n (3)

zsu −
∑
v∈δ(u)

zuv = 0 ∀u ∈ U (4)

∑
u∈δ(v)

zuv − zvt = 0 ∀v ∈ V (5)

zsu ∈ Su ∀u ∈ U (6)
0 ≤ zvt ≤ 1 ∀v ∈ V (7)
0 ≤ zuv ≤ 1 ∀(u, v) ∈ E (8)
0 ≤ zst ≤ n. (9)

This is a nonlinear min-cost flow problem for the graph with
U ∪ V ∪ {s, t} as nodes.

We explain (FP) in the context of the min-cost flow prob-
lem (See Fig. 2). First, (2) represents the cost function for
the flow amount of each edge. −p−1

u (zsu) · zsu is the cost
function for each edge of {(s, u) | u ∈ U} and wuv · zuv is
the cost function for each edge of {(u, v) | u ∈ U, v ∈ V }.
The cost for zvt and zst is 0 because these variables are not
in the objective function. Second, (3), (4) and (5) represent
the demand/supply for each node. From these equations, the
supply at the node s is n, the demand at the node t is −n,
and the demands/supplies at other nodes are 0. Therefore,
the problem is to find a way of sending n amount of flow
from node s to node t through the network. Third, (6), (7),
(8) and (9) represent the capacity of flow amount for each
edge. We can view (FP) as a min-cost flow problem as shown
in Fig. 2.

Then, we show the following theorem.
Theorem 3 When Assumption 1 holds, the cost function
for all edges in min-cost flow problem (FP) is convex. In
other words, (FP) is a convex min-cost flow problem.

proof. See Section 7.4. �

4.4 Solution for (FP) via Capacity Scaling
Algorithm

From Theorem 3, we can use the capacity scaling algorithm
(Ahuja, Magnanti, and Orlin 1993; Végh 2016) to solve (FP)

as described in Section 4.1. The capacity scaling algorithm
explained in (Ahuja, Magnanti, and Orlin 1993) solves the
convex min-cost flow problems that restrict feasible z to in-
teger values. We can use this method and obtain an optimal
solution in a continuous domain to any desired degree of ac-
curacy by the following procedure: (i) Substitute ε · yij for
each zij , where ε is a sufficiently small value and yij ∈ Z|E|;
(ii) Find an integer optimal solution y∗ of the transformed
problem; (iii) Let z∗ij := ε · y∗ij . Then, z∗is an optimal solu-
tion of the original problem with a degree of accuracy of ε.

We describe the time complexity when we use the capac-
ity scaling algorithm to solve (FP). For a standard convex
min-cost flow problem (MCF) in Section 4.1, Theorem 14.1
of (Ahuja, Magnanti, and Orlin 1993) shows that the ca-
pacity scaling algorithm finds an integer optimal solution in
O(|Ê| · log(B̂) · Ŝ) time. Here, B̂ := maxi∈V̂ |bi|, and Ŝ
is the time complexity for solving the shortest path prob-
lem in graph Ĝ with non-negative edge costs. Dijkstra al-
gorithm with binary heap can solve shortest path problems
in O(|Ê| · log |V̂ |) time, so the total time complexity is
O(|Ê|2 · log(B̂) · log |V̂ |). In addition, when we use this
algorithm to find an optimal solution of a convex min-cost
flow problem in a continuous domain to a degree of accuracy
of ε, the total time complexity isO(|Ê|2 · log(B̂/ε) · log |V̂ |)
because substituting ε · yij into zij causes B̂ to be multi-
plied by 1/ε. From the above, for our problem (FP) with
graph G = (U, V,E), the capacity scaling algorithm can
find an optimal solution to a degree of accuracy of ε in
O(|E|2 · log(n/ε) · log(|U | + |V |)) time. Note that n =
min{|U |, |V |}.

5. Experiment
We conduct experiments to show that the followings hold:

• Proposed method outputs a more profitable solution than
the other methods in each application.
• Proposed method outputs the solution in practical time.

We performed simulation experiments using real data from
a ride-hailing platform and a crowd-sourcing market.

Experiments were run on a computer with Xeon Platinum
8168 of 4 x 2.7GHz, 1TB of memory, running CentOS 7.6.
The program codes were implemented in Python.

5.1 Ride-hailing Platform
We conduct experiments in the ride-haling platform whose
matching procedure is described in Section 3.1.

Data sets and parameter setup We used ride data gath-
ered in New York1. We use yellow taxi data and green
taxi data of Manhattan, Queens, Bronx, and Brooklyn. Each
record consists of pick-up area, pick-up time, drop-off area,
drop-off time, trip distance, total amount charged to pas-
sengers. We perform simulations using the data from Oc-
tober 6 and 10, 2019, which are holidays and weekdays in
a randomly chosen week. In each day, requester-taxi match-
ing situations are constructed every 5 minutes from 10:00 to

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

3800

Region, date n (requesters) m (taxis)
Time interval MEAN SD MEAN SD
Manhattan, 10/6 80.0 11.1 76.1 13.1
30 seconds 10/10 100.1 17.4 96.6 21.6

Queens, 10/6 92.3 22.7 88.3 27.0
300 seconds 10/10 95.4 23.1 89.8 28.1

Bronx, 10/6 5.3 2.8 5.3 2.7
300 seconds 10/10 6.2 2.6 6.2 2.7
Brooklyn, 10/6 26.5 5.7 26.4 5.6
300 seconds 10/10 27.2 5.3 26.7 7.3

Table 1: Summary of the real dataset in ride-hailing plat-
form.

20:00, that is, 120 (10 hours× 12 times) situations are simu-
lated. As the length of one time step, ts, which is required to
generate the situation, we adopt 30 seconds for Manhattan
and 300 seconds for the regions other than Manhattan be-
cause of the differences in the amount of data in each region.
The features of the dataset used are summarized in Table 1.

We recreate the situations from the data of each region,
and set the inputs U , V , wuv , and pu at each time.
(i) U : We extract taxi request data that has a pick-up time
within ts seconds from the target minute as the requester set
U . We set the origin/destination points for each requester
u ∈ U to be the points obtained by adding Gaussian noise to
the center point of the pick-up/drop-off area. This is because
the taxi ride data records only the areas of the pick-up/drop-
off.
(ii) V : We assume that it is possible to dispatch taxis that
have completed a request within the past ts seconds from the
target minute. Thus, the data with the corresponding drop-
off time is extracted as the taxi set V . The location of each
taxi v ∈ V is set by adding Gaussian noise to the center
point of drop-off area as with U .
(iii) wuv: Let wuv = −18.0 · τuv when τuv ≤ 0.1, with
wuv = −∞ otherwise. Here, τuv is the time required for taxi
v to fulfill request u, and is calculated from the destination
and origin of requester u and the location of taxi v. To reflect
the real-world constraint that a requester cannot be matched
with a taxi that is more than a certain distance (e.g. 5km)
away, we set wuv = −∞ when τuv > 0.1. Parameter 18.0
means taxi driver’s opportunity cost, which is based on taxi
driver’s income.
(iv) pu: We define pu in two ways. First, we consider the
following piecewise linear function:

pPLu (x) :=

1 (x < qu)

− 1
(α−1)·qu · x+ α

α−1 (qu ≤ x ≤ α · qu)

0 (x > α · qu),

where α and qu are constant scalars. We set α := 1.5 and let
qu be the actually paid amount for each request u in the data
set. When using this model, we restrict the prices that can be
set by the proposed method to [qu, α · qu] in order to satisfy
Assumption 1.

Second, we consider the following sigmoid model:

pSigu (x) := 1− 1

1 + e−(x−β·qu)/(γ·|qu|)
,

where, β and γ are constants. We set β = 1.3, γ =
0.3
√

3/π. The same qu as in pPLu (x) is used.

Metric To measure the expected benefits yielded by
each approach to the platformer, we define ER :=
1
N

∑N
k=1 maxz∈Z(ak) f(x, z), where (ak)Nk=1 is a set of in-

dependent, identically distributed realizations of a, which
are acceptance results. This metric is the approximated ex-
pected revenue of the platformer. We use it to calculate the
expected profit obtained at each time. We set N := 102.

Compared methods We compared the proposed method
with two state-of-the-art methods.
MAPS (Tong et al. 2018): It is an approximation algorithm
for area basis pricing for taxi service. In applying MAPS to
our problem, we have modified the followings: (a) we di-
vided the requesters in our problem into groups of areas and
defined the acceptance probability for each area by taking
the average of the individual acceptance probability func-
tions within the area; (b) We changed the τuv (in Data sets
and parameter setup) to τu, which is the time required to
fulfill request u. Then, we obtain prices by MAPS.
LinUCB (Li et al. 2010): It is a generic contextual bandit
algorithm, which is adopted by (Chen et al. 2019). As arms
of the method, we use pricing factors {0.6, 0.8, 1.0, 1.2, 1.4}
which are multiples of the base price. The base price for each
request is calculated according to the trip distance and the
average price per unit distance for all requests in the period
July to September, 2019. As features for learning, we use
(pick-up areas, drop-off areas, hours, trip distance). The ini-
tial parameter θµ for each arm µ ∈ {0.6, 0.8, 1.0, 1.2, 1.4}
is learned through 11040 processes using the request data in
the period July to September, 2019.

Experimental results Table 2 shows the results of the ex-
periments. Regardless of the region and the form of the prob-
ability function pu, the proposed method outperforms all
compared methods in ER. The differences between the pro-
posed method and all compared methods in ER are signif-
icant (two-sided t-test: p < 0.0001) in all experiments. In
terms of computational time, the proposed algorithm solves
the problem fast enough for practical use, although the ex-
isting method, MAPS, requires less computational time.

5.2 Crowd Sourcing Market
We conduct experiments in a crowd-sourcing market whose
matching procedure is described in Section 3.1.

Data set and parameter setup We used an open crowd-
sourcing dataset (Buckley, Lease, and Smucker 2010). The
data set contains records of worker’s judgments on the task
of checking the relevance of a given topic and a web page.
Each record has elements of (topic ID, worker ID, doc-
ument ID, judgment). Judgment is divided into five cat-
egories: highly relevant, relevant, non-relevant, unknown,
broken link. Here, broken link indicates that the web page
cannot be viewed. This data set is summarized in Table 3.
We use this data to replicate the worker-task matching situ-
ations and conduct multiple experiments.

We set the inputs U , V , wuv , and pu from the data for
each experiment.

3801

Region, Proposed MAPS LinUCB
pu ER time ER time ER time
Manhat- 1074 5.185 769 .098 566 9.275
tan, PL 1456 8.697 1012 .121 756 11.554
Manhat- 982 6.617 733 .125 600 9.411
tan, Sig 1304 11.127 967 .147 799 11.641
Queens, 2175 6.068 384 .055 784 11.765
PL 2443 6.896 441 .060 1061 11.992
Queens, 1954 5.468 380 .081 1080 11.382
Sig 2229 7.787 449 .091 1315 11.535
Bronx, 68 .008 24 .004 27 .184
PL 94 .010 37 .005 39 .219
Bronx, 64 .010 25 .005 37 .189
Sig 87 .013 38 .007 50 .232
Brookl- 337 .237 183 .022 142 2.480
yn, PL 398 .266 206 .028 169 2.440
Brookl- 304 .273 176 .029 162 2.455
yn, Sig 358 .356 196 .037 191 2.515

Table 2: Results of ride-hailing platform simulations. For
each region and pu, the first (second) row shows the results
using the data from October 6 (October 10). The time col-
umn of each method indicates the computational time (in
seconds). Each result represents the average of 120 dispatch
runs. The best value for each dataset in ER is in bold. In all
experiments, the differences between the proposed method
and all compared methods in ER are significant (two-sided
t-test: p < 0.0001).

all data topic ID document ID worker ID judgments
98453 100 19902 766 5

Table 3: Summary of the real dataset in crowd sourcing mar-
ket.

(i) U : Each worker in the data is assumed to be active with a
probability of φ with U being the set of active workers.
(ii) V : Each task in the data is assumed to appear with a
probability of ψ with V being the set of tasks created.
(iii) wuv: We decide the correct judgment for each task in
the data by majority vote. Let φus be the percentage of cor-
rect answers of worker u for topic s. In our experiment, we
assume that φus are known a priori, and wuv := φus(v) for
each (u, v). Here, s(v) means the topic of task v. This setup
is based on a scheme that determines the value of solving
a task according to the skill of the worker. For topics that
worker u has never solved, we set the percentage of correct
answers of worker u to be that for the whole of the tasks that
the worker u has solved.
(iv) pu: We define pu in two ways as with Section 5.1. First,
we consider the following piecewise linear function:

pPLu (x) :=

1 (x < α · qu)

1
(α−1)·qu · x−

1
α−1 (α · qu ≤ x ≤ qu)

0 (x > qu).

We set α := 1.5. Since the data does not contain information
on the amount paid to the worker, qu is generated from a
uniform distribution of [−0.4,−0.1] for each worker u. As

with Section 5.1, we restrict the wages that can be set by the
proposed method to [α · qu, qu].

Second, we consider the following sigmoid model:

pSigu (x) := 1− 1

1 + e−(x−β·qu)/(γ·|qu|)
,

where β and γ are constants. We set β = 1.25, γ = 0.25/π.
The same setting of qu as in pPLu (x) is used.

We conduct experiments with various values of parame-
ters (φ, ψ) and form of pu.

Metric We run 103 simulations for each setting. Then, we
let the average of the resulting profits of 103 simulations be
the metric, ER. It is an approximation of the expected plat-
former’s benefits.

Compared methods We compared the proposed method
to two exiting methods.
Myerson Reserve Price (MRP) (Myerson 1981): MRP
is proposed as the optimal price in a single item market
when there is enough supply and there is no differentia-
tion among buyers. We consider multiple types of tasks
to be one type of task, and all multiple workers to be of
average ability. Then, we use this price. Specifically, let
xu := argmaxx{(x + ŵ) · p(x)} for all u, where p(x) is
average of acceptance probability for all workers, and ŵ is
the average of the correct rate for all combinations of work-
ers and tasks.
Capped UCB (Babaioff et al. 2015): It is the pricing strat-
egy created to tackle the problem of limited supply in single
item market when there is no differentiation among buyers.
To use this strategy, we consider multiple types of tasks to be
one type of task, and all multiple workers to be of average
ability. This method determines the price while estimating
p(x), which is acceptance probability for all workers; here
we take it to be a given function. Specifically, for all u, let
xu := argmaxx{(x+ŵ) ·min(|V |, |U | ·p(x))}, where p(x)
and ŵ are the same as those defined for MRP.

Experimental results Table 4 shows the results of the
simulation experiments with different parameter values. Re-
gardless of the problem parameters and the form of the prob-
ability function pu, the proposed method outperforms all
baselines in terms of ER. Moreover, the differences between
the proposed method and all compared methods are signif-
icant (two-sided t-test: p < 0.0001) in all experiments. In
addition, the computational time of the proposed method is
short enough for practical use, although the compared meth-
ods requires less computational time.

5.3 Discussion
From the experimental results and theoretical results, there
are pros and cons between our algorithm and compared
methods. Our algorithm provides the 3-approximation guar-
antee, and can significantly increase the profit compared to
existing methods. In contrast, MAPS, MRP, and Capped
UCB can solve problems quickly, and our method is infe-
rior to those in terms of computational time.

However, there is room for improvement in the compu-
tation time of the proposed algorithm. For example, we can

3802

φ, pu Proposed MRP Capped UCB
ψ ER time ER time ER time
.1, PL 18.8 6.122 13.4 .009 13.2 .009

.0005 Sig 18.4 22.465 12.6 .019 14.0 .019
.1, PL 20.9 19.142 13.6 .011 13.6 .011

.001 Sig 20.3 55.682 13.5 .019 13.5 .020
.05, PL 10.5 2.586 6.9 .009 6.9 .010

.0005 Sig 10.3 4.778 6.9 .012 6.9 .012
.05, PL 10.4 2.563 6.8 .009 6.8 .010
.001 Sig 10.2 12.113 6.9 .013 6.9 .014

Table 4: Results of real dataset simulation. Each result rep-
resents the average of 103 simulation runs. The time col-
umn of each method indicates the computational time (in
seconds). The best value for each dataset is in bold. In all
experiments, the differences between the proposed method
and all compared methods in ER are significant (two-sided
t-test: p < 0.0001).

apply the method of (Végh 2016), which is the state of the
art method for convex min-cost flow problems and is ex-
pected to reduce the computational complexity. In addition,
the computational time of the proposed algorithm can be re-
duced by dividing the large-scale instances into groups of
middle-scale ones (e.g. decreasing the time step or subdi-
viding the region) in exchange for a slight reduction in the
objective value.

6. Conclusion
We formulate an optimization problem, ISPCB, to deter-
mine the values of control variables that maximize the ex-
pected value of the weights of bipartite matching. It is suit-
able for various applications with control variables that af-
fect the probabilities of nodes in a bipartite graph. Moreover,
we proposed a fast approximation algorithm that can out-
put 3-approximation solutions for ISPCB. Simulations us-
ing real data from two applications (ride-hailing platform
and crowd-sourcing market) confirmed the effectiveness of
our method, the formulation of the ISPCB and the proposed
approximation algorithm.

Future work includes showing the effectiveness of the
proposed method by applying it to actual services, speed-
ing up the proposed method, proving a tight approximation
ratio of the proposed method, and developing a method that
allows Assumption 1 to be relaxed.

7. Proof
7.1 Proof of Lemma 1
Since −p′u(x)/pu(x) is monotonically non-decreasing,
pu(x)/p′u(x) is monotonically non-decreasing. Then, x +
pu(x)/p′u(x) is monotonically non-decreasing because x is
monotonically increasing. �

7.2 Proof of Theorem 1
First, we introduce Problem A and show Lemma A, which
is used in the proof of Theorem 1.

Problem A. We consider an undirected bipartite graph
G = (U, V,E) where each node u ∈ U has probability
value pu(xu). Here, pu : R → R and xu ∈ R are given.
Suppose steps (i) and (ii) are repeated until U or V becomes
empty: (i) Choose u ∈ U and v ∈ V and try to match
them, which is called probing. The probing succeeds with
probability pu(xu) and the probing fails with probability
1−pu(xu); (ii) If the probing succeeds, u and v are removed
from U and V , respectively, with the benefit of (xu +wuv).
If the probing fails, no profit is made and u is removed from
U . Here, what is the most profitable probing strategy?

Lemma A. Let E[ALG] be the expected profit obtained
by the ROUND-COLOR-PROBE algorithm (Bansal et al.
2010) for Problem A. Then, E[ALG] ≥ 1/3 · f̂(x).

proof. For the problem (LP1) defined in (Bansal et al.
2010), let V LP1 := U ∪ V , ELP1 := E, wLP1

uv := (xu +
wuv) for all (u, v) ∈ ELP1, tLP1

u := 1 for all u ∈ ULP1,
tLP1
v :=∞ for all v ∈ V LP1. Under these settings, let L∗ is

an optimal value of (LP1). Then, E[ALG] ≥ 1/3 · L∗ from
(Bansal et al. 2010, Theorem 10). Since (LP1) is equivalent
to (1) under the settings, E[ALG] ≥ 1/3 · f̂(x). �

Then, we give proof of Theorem 1. First, we show
Ea∼D(x)[maxz∈Z(a) f(x, z)] ≤ f̂(x). Let Z ′(a) be the
feasible region of (Psub) where zuv ∈ {0, 1} is changed to
0 ≤ zuv ≤ 1. Then, the following equality holds from (Ko-
rte and Vygen 2005, Theorem 5.12, Theorem 11.2):

maxz∈Z(a) f(x, z) = maxz∈Z′(a) f(x, z) (10)

For any given x, maxz∈Z′(a) f(x, z) is a linear program-
ming problem and can be written as follows:

(LPp) maxz h>1 z

s.t. H1z ≤H2a + h2, 0 ≤ z,

where h1, h2, H1, H2 are constant vectors and constant
matrices. Then, the dual problem is as follows:

(LPd) miny (H2a + h2)>y

s.t. H>1 y ≥ h1, 0 ≤ y.

Since the dual problem has the same optimal value as the
primal problem in linear programming, the optimal value of
(LPd) is equal to (LPp), that is, maxz∈Z′(a) f(x, z). Let Y
be the feasible region of (LPd). Since (H2a+h2)>y is con-
cave in a for any y ∈ Y , we obtain miny∈Y (H2a+h2)>y,
that is, maxz∈Z′(a) f(x, z) is concave in a from (Boyd
and Vandenberghe 2004, Section 3.2.3). Then, the follow-
ing holds from Jensen’s inequality:

Ea∼D(x)[max
z∈Z′(a)

f(x, z)] ≤ max
z∈Z′(Ea∼D(x)[a])

f(x, z).

(11)

Then, since (10) and (11) hold and f̂(x) =
maxz∈Z′(Ea∼D(x)[a]) f(x, z) from definition, the fol-
lowing inequality holds:

Ea∼D(x)[max
z∈Z(a)

f(x, z)] ≤ f̂(x). (12)

3803

We show 1/3 · f̂(x) ≤ Ea∼D(x)[maxz∈Z(a) f(x, z)].
From Lemma A, if Ea∼D(x)[maxz∈Z(a) f(x, z)] ≥
E[ALG], we get Ea∼D(x)[maxz∈Z(a) f(x, z)] ≥ 1/3 ·
f̂(x). In Problem A, for each u ∈ U , whether a match-
ing involving u succeeds or fails is determined regardless
of other nodes v ∈ V and the order of probings. For a
trial ` of Problem A, let a` ∈ {0, 1}|U | be the variables
that represent whether the matching is successful or not if
each u ∈ U is chosen. Here, a`u = 1 in the case of success,
and a`u = 0 in the case of failure. Then, we can let z†(a`)
be the matching done by the ROUND-COLOR-PROBE al-
gorithm in trial `. Here, z†uv(a

`) = 1 indicates that u and
v are matched, and z†uv(a

`) = 0 indicates that they are not
matched. From the definition, z†(a`) is included in Z(a`),
that is, the feasible region of (Psub) with a = a`. The profit
obtained by the ROUND-COLOR-PROBE algorithm in trial
` is

∑
uv(pu + wuv) · z†uv(a`), that is, f(x, z†(a`)). Since

maxz∈Z(a`) f(x, z) ≥ f(x, z†(a`)) for any a`,

Ea∼D(x)[max
z∈Z(a)

f(x, z)] ≥ Ea∼D(x)[f(x, z
†(a))]=E[ALG].

(13)

From Lemma A and (13),

Ea∼D(x)[max
z∈Z(a)

f(x, z)] ≥ 1/3 · f̂(x). (14)

Then, from (12) and (14), it yields that

1/3 · f̂(x) ≤ Ea∼D(x)[maxz∈Z(a) f(x, z)] ≤ f̂(x).

7.3 Proof of Theorem 2
Let (x̂, ẑ) be an optimal solution for (PA). First, we show∑
v∈δ(u) ẑuv ∈ Su for all u ∈ U . For each u ∈ U , we

consider two cases according to whether
∑
v∈δ(u) ẑuv > 0

or
∑
v∈δ(u) ẑuv = 0.

(i) When
∑
v∈δ(u) ẑuv > 0, there exists a real number

c ∈ Su which satisfies 0 ≤ c <
∑
v∈δ(u) ẑuv , because

limx→∞ pu(x) = 0 or there is a real number x satisfying
pu(x) = 0 from Assumption 1. Moreover,

∑
v∈δ(u) ẑuv ≤ d

from the first constraints of (PA), where d := pu(x̂u).
The set Su is a connected set because it is an image of a
connected set by a continuous function pu. Because c <∑
v∈δ(u) ẑuv ≤ d for c, d ∈ Su and Su is a connected set,

we get
∑
v∈δ(u) ẑuv ∈ Su.

(ii) When
∑
v∈δ(u) ẑuv = 0, we show 0 ∈ Su, which

yields
∑
v∈δ(u) ẑuv ∈ Su. We assume 0 /∈ Su to obtain a

contradiction. We pick an arbitrary vertex v̀ ∈ δ(u). Note
that we can assume δ(u) 6= ∅ for all u ∈ U without loss of
generality, because removing {u | δ(u) = ∅} from U has no
effect on the optimization problem. Here,

∑
ù∈δ(v̀) ẑùv̀ ≤

1 from constraints of (PA). We consider the following two
cases.

(ii-a) When
∑
ù∈δ(v̀) ẑùv̀ < 1, we pick an number xM ∈

{x | x + wuv̀ > 0}. Since 0 /∈ Su, there exists ε satisfying
0 < ε ≤ pu(xM) and

∑
ù∈δ(v̀) ẑùv̀ + ε ≤ 1. Replacing x̂u

with xM and ẑuv̀(= 0) with ε increases the objective value

for (PA) because (xM + wuv̀) · ε > 0 and this modification
does not impair feasibility. This contradicts the optimality of
(x̂, ẑ) for (PA).

(ii-b) When
∑
ù∈δ(v̀) ẑùv̀ = 1, there exists ū (6= u) ∈ U

satisfying zūv̀ > 0 because
∑
v∈δ(u) ẑuv = 0. Since 0 /∈

Su, it yileds that limx→∞ pu(x) = 0 from Assumption 1.
Then, there exists xM satisfying xM + wuv̀ > x̂ū + wūv̀
and pu(xM) = ε < zūv̀ . Replacing x̂u with xM , ẑuv̀ (= 0)
with ε, and ẑūv̀ with ẑūv̀−ε increases the objective value for
(PA) because (xM +wuv̀) · ε− (x̂ū +wūv̀) · ε > 0 and this
modification does not impair feasibility. This contradicts the
optimality of (x̂, ẑ) for (PA).

From (i) and (ii), we get
∑
v∈δ(u) ẑuv ∈ Su for all u ∈ U .

Next, we show that there exists an optimal solution (x̃, z̃)
for (PA) that satisfies pu(x̃u) =

∑
v∈δ(u) z̃uv for all u. Let

(x̂, ẑ) be an optimal solution for (PA). Then, from con-
straints of (PA),

∑
v∈δ(u) ẑuv ≤ pu(x̂u) for all u. Suppose

that there exists u satisfying
∑
v∈δ(u) ẑuv < pu(x̂u) and let

Û := {u |
∑
v∈δ(u) ẑuv < pu(x̂u)}. Since

∑
v∈δ(u) ẑuv ∈

Su and pu is monotonically decreasing, there exists a posi-
tive scalar du that satisfies

∑
v∈δ(u) ẑuv = pu(x̂u + du) for

all u ∈ Û . Let x̃u be x̂u + du for all u ∈ Û , x̃u be x̂u for all
u /∈ Û , and z̃ be ẑ. Then, (x̃, z̃) is an optimal solution for
(PA) because it is a feasible solution and the objective value
is greater than or equal to the optimal value from ẑ ≥ 0.
Therefore, in (PA), there exists an optimal solution (x̃, z̃)
satisfying

∑
v∈δ(u) z̃uv = pu(x̃u) for all u ∈ U .

Hence, we can set the first inequality constraints of (PA)
as
∑
v∈δ(u) zuv = pu(xu) for all u ∈ U . Then, xu =

p−1
u

(∑
v∈δ(u) zuv

)
since pu is a bijective function from As-

sumption 1. By substituting this equality into variable x for
(PA), we obtain (PA′). Therefore, when z∗ is an optimal so-
lution for (PA′) and x∗u = p−1

u (
∑
v∈δ(u) z

∗
uv) for all u ∈ U ,

(x∗, z∗) is an optimal solution for (PA). �

7.4 Proof of Theorem 3
The theorem holds if p−1

u (zsu) · zsu is concave for each u.
For arbitrary u ∈ U , there exists only one yu that satisfies
zsu = pu(yu) from Assumption 1 when zsu ∈ Su. Then,
the following equality holds:(

p−1
u (zsu) · zsu

)′
= p−1

u (zsu) + zsu ·
(
p−1
u (zsu)

)′
= yu + pu(yu)/p′u(yu) (15)

Here, we consider z1
su and z2

su satisfying z1
su ≤ z2

su. Let y1
u

satisfy z1
su = pu(y1

u) and y2
u satisfy z2

su = pu(y2
u). Then,

y1
u ≥ y2

u since pu is monotonically decreasing from As-
sumption 1. From (15) and Lemma 1,

(
p−1
u

(
z1
su

)
· z1
su

)′ ≥(
p−1
u

(
z2
su

)
· z2
su

)′
. Because

(
p−1
u (zsu) · zsu

)′
is monotoni-

cally decreasing, p−1
u (zsu) · zsu is concave. It holds for all

u ∈ U . �

References
Adamczyk, M. 2011. Improved analysis of the greedy algo-
rithm for stochastic matching. Information Processing Let-
ters 111(15): 731–737.

3804

Aggarwal, G.; Goel, G.; Karande, C.; and Mehta, A. 2011.
Online vertex-weighted bipartite matching and single-bid
budgeted allocations. In SODA, 1253–1264.

Ahuja, R. K.; Magnanti, T. L.; and Orlin, J. B. 1993.
Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall.

Babaioff, M.; Dughmi, S.; Kleinberg, R.; and Slivkins, A.
2015. Dynamic Pricing with Limited Supply. ACM Trans-
actions on Economics and Computation 3(1): 1–26.

Bansal, N.; Gupta, A.; Li, J.; Mestre, J.; Nagarajan, V.; and
Rudra, A. 2010. When LP Is the Cure for Your Matching
Woes: Improved Bounds for Stochastic Matchings. Algo-
rithmica 63(4):218–229.

Barlow, R. E.; Marshall, A. W.; and Proschan, F. 1963. Prop-
erties of probability distributions with monotone hazard rate.
The Annals of Mathematical Statistics 34(2): 375–389.

Birge, J. R.; and Louveaux, F. 2011. Introduction to stochas-
tic programming. Springer Science & Business Media.

Blum, A.; Dickerson, J. P.; Haghtalab, N.; Procaccia, A. D.;
Sandholm, T.; and Sharma, A. 2015. Ignorance is almost
bliss: Near-optimal stochastic matching with few queries. In
EC, 325–342.

Boyd, S.; and Vandenberghe, L. 2004. Convex Optimization.
Cambridge University Press.

Brochu, E.; Cora, V. M.; and De Freitas, N. 2010. A tuto-
rial on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical re-
inforcement learning. arXiv preprint arXiv:1012.2599 .

Buckley, C.; Lease, M.; and Smucker, M. D. 2010. Overview
of the TREC 2010 Relevance Feedback Track (Notebook).
In TREC.

Chen, H.; Jiao, Y.; Qin, Z.; Tang, X.; Li, H.; An, B.; Zhu,
H.; and Ye, J. 2019. InBEDE: Integrating Contextual Bandit
with TD Learning for Joint Pricing and Dispatch of Ride-
Hailing Platforms. In ICDM, 61–70.

Chen, N.; Immorlica, N.; Karlin, A. R.; Mahdian, M.; and
Rudra, A. 2009. Approximating matches made in heaven.
In ICALP, 266–278.

Feldman, J.; Mehta, A.; Mirrokni, V.; and Muthukrishnan, S.
2009. Online stochastic matching: Beating 1-1/e. In FOCS,
117–126.

Gassmann, H. I. 1990. MSLiP: A computer code for the
multistage stochastic linear programming problem. Mathe-
matical Programming 47(1-3): 407–423.

Higle, J. L.; and Sen, S. 1991. Stochastic decomposition:
An algorithm for two-stage linear programs with recourse.
Mathematics of operations research 16(3): 650–669.

Higle, J. L.; and Sen, S. 2013. Stochastic decomposition: a
statistical method for large scale stochastic linear program-
ming. Springer Science & Business Media.

Horton, J. J.; and Chilton, L. B. 2010. The labor economics
of paid crowdsourcing. In EC, 209–218.

Karp, R. M.; Vazirani, U. V.; and Vazirani, V. V. 1990. An
optimal algorithm for on-line bipartite matching. In STOC,
352–358.
Kiraly, Z.; and Kovacs, P. 2012. Efficient implementations of
minimum-cost flow algorithms. Acta Univ. Sapientiae 4(1):
67–118.
Korte, B.; and Vygen, J. 2005. Combinatorial Optimization:
Theory and Algorithms, Third Edition. Springer Publishing
Company.
Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A
contextual-bandit approach to personalized news article rec-
ommendation. In WWW, 661–670.
Mehta, A. 2012. Online Matching and Ad Allocation. The-
oretical Computer Science 8(4): 265–368.
Myerson, R. B. 1981. Optimal auction design. Mathematics
of operations research 6(1): 58–73.
Scott, W.; Frazier, P.; and Powell, W. 2011. The correlated
knowledge gradient for simulation optimization of contin-
uous parameters using gaussian process regression. SIAM
Journal on Optimization 21(3): 996–1026.
Shapiro, A.; Dentcheva, D.; and Ruszczyński, A. 2014. Lec-
tures on stochastic programming: modeling and theory. So-
ciety for Industrial and Applied Mathematics.
Tong, Y.; Wang, L.; Zhou, Z.; Chen, L.; Du, B.; and Ye,
J. 2018. Dynamic Pricing in Spatial Crowdsourcing: A
Matching-Based Approach. In SIGMOD, 773–788.
Van Slyke, R. M.; and Wets, R. 1969. L-shaped linear
programs with applications to optimal control and stochas-
tic programming. SIAM Journal on Applied Mathematics
17(4): 638–663.
Végh, L. A. 2016. A strongly polynomial algorithm for a
class of minimum-cost flow problems with separable convex
objectives. SIAM Journal on Computing 45(5): 1729–1761.

3805

