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Abstract

We describe a compilation language of backdoor decom-
posable monotone circuits (BDMCs) which generalizes sev-
eral concepts appearing in the literature, e.g. DNNFs and
backdoor trees. A C-BDMC sentence is a monotone circuit
which satisfies decomposability property (such as in DNNF)
in which the inputs (or leaves) are associated with CNF en-
codings from a given base class C. We consider the class of
propagation complete (PC) encodings as a base class and we
show that PC-BDMCs are polynomially equivalent to PC en-
codings. Additionally, we use this to determine the properties
of PC-BDMCs and PC encodings with respect to the knowl-
edge compilation map including the list of efficient opera-
tions on the languages.

Introduction
In knowledge compilation (Darwiche and Marquis 2002;
Marquis 2015), we are concerned with transforming a given
propositional theory into a form which allows efficient query
answering and manipulation. The form of the output repre-
sentation is specified by a target compilation language. Lots
of target languages were described in knowledge compila-
tion map (Darwiche and Marquis 2002) which was later
extended with other languages and their disjunctive clo-
sures (Fargier and Marquis 2008). We are in particular in-
terested in languages based on conjunctive normal forms
(CNF) which are used to encode various constraints into
SAT. Since unit propagation is a basic procedure used in
DPLL based SAT solvers including CDCL solvers, it has
become a common practice to require that unit propagation
maintains at least some level of local consistency in the con-
straints being encoded into a CNF formula.

Close connection between unit propagation in SAT
solvers and maintaining generalized arc consistency (GAC)
was investigated for example by Bacchus (2007); Bessiere
et al. (2009). A stronger notion of propagation complete
(PC) encodings was introduced by Bordeaux and Marques-
Silva (2012) as a generalization of unit refutation complete
(URC) encodings (del Val 1994). A formula ϕ is propaga-
tion complete, if its consistency with a partial assignment
can be checked by unit propagation and in case the formula
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is consistent with a partial assignment, unit propagation de-
rives all implied literals. When encoding a constraint into a
CNF we usually distinguish two kinds of variables, the main
variables which directly correspond to the variables of a con-
straint, and auxiliary variables. A well known example is en-
coding of a circuit into a CNF formula using Tseitin’s encod-
ing (Tseitin 1983) where the main variables correspond to
the inputs of the circuit and auxiliary variables correspond to
the gates. Let us note that PC encodings treat all variables in
the same way: the propagation properties of a PC encoding
with respect to the auxiliary variables is the same as with re-
spect to the main variables. By way of contrast, if the encod-
ing only maintains GAC (see e.g. Bacchus 2007) or, equiv-
alently, domain consistency, the propagation properties are
required only for the main variables (GAC encoding in this
paper). A systematic study of encodings of multi-valued de-
cision diagrams (MDDs) with different propagation strength
is presented by (Abı́o et al. 2016) including a construction
of a polynomial size PC encoding for an arbitrary MDD.

Let us include a few remarks concerning a weaker notion
of consistency checker (CC encoding in this paper) consid-
ered, for example, by (Bessiere et al. 2009; Abı́o et al. 2016).
In the case of a CC encoding, unit propagation detects in-
consistency with a partial assignment of the main variables.
Following the framework of closures initiated by Fargier and
Marquis (2008), Bordeaux et al. (2012) studied disjunctive
closures of different types of CNF encodings and their place-
ment into knowledge compilation map. In particular, they
consider CC encodings denoted as ∃ URC-C and one of their
results is that the language of disjunctions of CC encod-
ings is polynomially equivalent to the language of CC en-
codings. We generalize this by proving that the language of
disjunctions of PC encodings is polynomially equivalent to
the language of PC encodings. Using a slightly simpler con-
struction, we also prove that the language of disjunctions of
URC encodings is polynomially equivalent to the language
of URC encodings.

The above results are a consequence of a more general
construction. We introduce a new target compilation lan-
guage parameterized with a class C of encodings. For the
special case when C is the class of PC encodings, we demon-
strate a transformation of a sentence in this language into a
single PC encoding.

A sentence in the proposed language is a monotone cir-
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cuit whose inputs called leaves are defined by CNF encod-
ings from a suitable base class C. Additionally, the conjunc-
tions in the circuit satisfy a decomposability property with
respect to the input variables similar to the language of de-
composable negation normal forms (DNNF, introduced by
Darwiche 1999). We call this structure backdoor decompos-
able monotone circuit with respect to the base class C (C-
BDMC), because it is closely related to C-backdoor trees
introduced by Samer and Szeider (2008). By definition, the
language of URC-BDMCs is a strict superset of the language
of disjunctions of URC encodings studied in Bordeaux et al.
(2012) as URC-C[∨, ∃].

BDMC generalizes also other concepts appearing in the
literature. A DNNF can be understood as a special case
of C-BDMC for any class C containing the literals. If we
consider circuits with only one node, we obtain that PC-
BDMC sentences generalize PC formulas and URC-BDMC
sentences generalize URC formulas. In the rest of the paper,
we mostly consider PC-BDMCs, but the results can be trans-
ferred to URC-BDMCs as well. Note that monotone CNFs
are propagation complete and thus they are special cases of
PC-BDMCs. Combining this with the results of Bova et al.
(2014) or Bova et al. (2016) and the fact that DNNFs are also
special cases of PC-BDMCs, we obtain that the language of
PC-BDMCs is strictly more succinct than the language of
DNNFs in the sense of the knowledge compilation map (see
Darwiche and Marquis 2002).

Generalizing the idea of PC-backdoor trees introduced
by Samer and Szeider (2008) towards a language for rep-
resenting boolean functions, we obtain a special case of PC-
BDMCs in which the circuit part has the form of an out-
arborescence consisting of decision nodes whose leaves are
associated with PC encodings without auxiliary variables.
The difference from the original backdoor trees is that the
formulas in the leaves are not necessarily restrictions of the
same formula. We show that PC-BDMCs are strictly more
succinct than the PC-backdoor trees generalized in this way.

The main result of our paper is that a PC-BDMC can be
compiled into a PC encoding of size polynomial with respect
to the total size of the input BDMC. As a consequence, we
get that both PC-BDMCs and PC encodings share the same
algorithmic properties while being equally succinct. More-
over, we argue that the properties of PC-BDMCs and PC en-
codings with respect to query answering and transformations
described in the knowledge compilation map (Darwiche and
Marquis 2002) are the same as in the case of DNNFs. At the
same time, both PC-BDMCs and PC encodings are strictly
more succinct than DNNFs which makes these languages
good target compilation languages.

A compilation of a smooth DNNF into a URC or PC en-
coding of polynomial size was described by Kučera and Sav-
ický (2019b) building on previous consistency checking and
domain consistency maintaining (or GAC) encodings de-
scribed by Abı́o et al. (2016); Gange and Stuckey (2012);
Jung et al. (2008). We generalize these results to a more
general structure, where the leaves contain PC encodings in-
stead of single literals. The omitted proofs can be found in
the full version of the paper (Kučera and Savický 2019a).

Definitions and Notation
We assume the reader is familiar with the basics of proposi-
tional logic, especially with the notion of entailment |= and
the notation related to formulas in conjunctive normal form
(CNF formula). We use lit(x) to denote the set of literals (x,
¬x) over the set of variables x. We treat a clause as a set
of literals and a CNF formula as a set of clauses. A partial
assignment α of values to variables in z is a subset of lit(z)
that does not contain a complementary pair of literals. A full
assignment a : x → {0, 1} is a special type of partial as-
signment and we use the representations by a function or by
a set of literals interchangeably. We consider encodings of
boolean functions defined as follows.
Definition 1 (Encoding). Let f(x) be a boolean function on
variables x = (x1, . . . , xn). Let ϕ(x,y) be a CNF formula
on n + m variables where y = (y1, . . . , ym). We call ϕ a
CNF encoding of f if

f(x) ≡ (∃y)ϕ(x,y) . (1)

The variables in x and y are called main variables and aux-
iliary variables, respectively.

We use ϕ `1 C to denote the fact that a clause C can
be derived by unit propagation interpreted as unit resolution
from a CNF formula ϕ (in particular, if C ∈ ϕ, then ϕ `1
C). The notion of a propagation complete CNF formula was
introduced by Bordeaux and Marques-Silva (2012) as a gen-
eralization of a unit refutation complete CNF formula intro-
duced by del Val (1994).
Definition 2 (Propagation complete encoding). Let ϕ(x,y)
be a CNF encoding of a boolean function defined on a set
of variables x. We say that the encoding ϕ is propagation
complete (PC), if for every partial assignment α ⊆ lit(x∪y)
and for each l ∈ lit(x ∪ y), such that

ϕ(x,y) ∧ α |= l (2)

we have

ϕ(x,y) ∧ α `1 l or ϕ(x,y) ∧ α `1 ⊥ . (3)

Backdoor Decomposable Monotone Circuits
and the Main Result

In this section we introduce a language of backdoor de-
composable monotone circuits (BDMC) and state the main
result of the paper. BDMCs form a common generaliza-
tion of decomposable negation normal forms (DNNF) intro-
duced by Darwiche (1999) and C-backdoor trees introduced
by Samer and Szeider (2008) if the base class C contains
the literals as formulas. It consists of sentences formed by a
combination of a decomposable monotone circuit with CNF
encodings from a suitable class C at the leaves. More pre-
cisely, let ϕi(xi,yi) for i = 1 . . . , ` be encodings from C
with auxiliary variables yi whose main variables xi are sub-
sets of a set of variables x and let us consider their combi-
nation by a monotone circuit D with ` inputs. This is a DAG
with nodes V , root ρ ∈ V , the set of edges E, and the set
of leaves L ⊆ V of size `. The inner nodes in V are la-
beled with ∧ or ∨ and represent connectives or gates. Each
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edge (v, u) in D connects an inner node v labeled ∧ or ∨
with one of its inputs u. The edge is directed from v to u, so
the inputs of a node are its successors (or child nodes). We
assume that there is a one to one correspondence between
the leaves of D and the formulas ϕi(xi,yi), i = 1, . . . , `
and we say that a leaf is labeled or associated with the cor-
responding formula. For a given index i ∈ {1, . . . , `}, the
leaf associated with ϕi is denoted as leaf(i). Given a lit-
eral l ∈ lit(x), let us denote range(l) the set of indices
of formulas in the leaves which contain variable var(l), i.e.
range(l) = {i ∈ {1, . . . , `} | var(l) ∈ xi}. Given two dif-
ferent formulas ϕi(xi,yi) and ϕj(xj ,yj), we assume that
yi ∩ yj = ∅, i.e. the sets of auxiliary variables of encodings
in different leaves are pairwise disjoint.

For a node v ∈ V , let us denote var(v) the set of main
variables from x that appear in the leaves which can be
reached from v by a path. In particular, var(v) = xi for
a leaf v associated with ϕ(xi,yi). We assume that var(ρ) =
x, i.e. each variable x ∈ x is in some leaf.

Given a node v ∈ V , let fv(xi) be the function defined
on the variables var(v) as follows. If v is a leaf node as-
sociated with ϕi(xi,yi), then fv(xi) is the function with
encoding ϕi(xi,yi). If v is a ∧-node or a ∨-node, fv is the
conjunction or the disjunction, respectively, of the functions
fu represented by the inputs u of v.

Definition 3 (Backdoor Decomposable Monotone Circuit).
Let C be a base class of CNF encodings containing every
literal as a formula. A sentence in the language of back-
door decomposable monotone circuits with respect to base
class C (C-BDMC) is a directed acyclic graph as described
above, where each leaf node is labeled with a CNF encoding
from C and each internal node is labeled with ∧ or ∨ and
can have arbitrarily many successors. Moreover, the nodes
labeled with ∧ satisfy the decomposability property, which
means that for every ∧-node v = v1 ∧ · · · ∧ vk, the sets
of variables var(v1), . . . , var(vk) are pairwise disjoint. The
function represented by the sentence is the function fρ de-
fined on the variables x = var(ρ).

We will omit prefix C and write simply BDMC in case
the choice of a particular class of formulas C is not essential.
The language of DNNFs is the class of those C-BDMCs,
whose leaves are the literals on the input variables. Since
a decision node can be represented as a disjunction of two
conjunctions in which one of the conjuncts is a literal, we
can also conclude that C-backdoor trees (Samer and Szeider
2008) form a subclass of C-BDMCs.

For the construction of the encoding, we consider the case
when C is equal to the class of PC encodings. This class ad-
mits a polynomial time satisfiability test. However, Babka
et al. (2013) proved that the corresponding membership test
whether a given formula is PC is co-NP-complete. For this
reason, when the complexity of algorithms searching for a
BDMC for a given function is in consideration, a different
suitable class of encodings with a polynomial time member-
ship test can be used, such as prime 2-CNF (which are PC)
or (renamable) Horn formulas (which are URC).

The function represented by a BDMC is described above
by a recursion. In order to relate this function to the encod-

ings constructed later, we describe the function using the
following notion. A minimal satisfying subtree T of D is
a rooted subtree of D (also called out-arborescence) which
has the following properties:

• The root ρ of D is also the root of T .

• For each ∧-node v in T , all edges (v, u) in D are in T .

• For each ∨-node v in T , exactly one of the edges (v, u) in
D is also in T .

If ϕi(xi,yi) and ϕj(xj ,yj) are formulas associated with
two different leaves of T , then by decomposability of D we
have that xi ∩ xj = ∅. We can observe that if T denotes the
set of all minimal satisfying subtrees of D, then we have

f(x) ≡
∨
T∈T

∧
leaf(i)∈V (T )

(∃yi)ϕi(xi,yi) . (4)

A smooth BDMC is defined similarly to a smooth DNNF.

Definition 4 (Smooth BDMC). We say that a C-BDMC D
is smooth if for every ∨-node v = v1 ∨ · · · ∨ vk we have
var(v) = var(v1) = · · · = var(vk).

If D is a smooth BDMC representing a function f(x) and
T is a minimal satisfying subtree of D, then for every x ∈
x there is a leaf of T which is associated with a formula
ϕi(xi,yi) such that x ∈ xi.

The definition of a smooth BDMC restricts only the oc-
currences of the main variables. The auxiliary variables of
the encodings in the leaves are local to the leaves and we
assume that the sets of auxiliary variables in the encod-
ings associated with two differrent leaves are disjoint. Dar-
wiche (2001) showed that a DNNF can be transformed into a
smooth DNNF with a polynomial increase of size. The same
approach can be used to make an arbitrary C-BDMC smooth.
This is one of the places, where we use the assumption that
every formula consisting of a single literal belongs to C.

Let us state the main result of this paper proven later using
Theorem 6 below.

Theorem 1. Let D be a smooth PC-BDMC representing a
function f(x). Then we can construct in polynomial time a
PC encoding of f(x).

Following Fargier and Marquis (2008), two languages L1

and L2 are called polynomially equivalent if any sentence in
L1 can be translated in polynomial time into an equivalent
sentence in L2 and vice versa. As a corollary of Theorem 1
we get the following.

Corollary 2. Languages of PC encodings and PC-BDMCs
are polynomially equivalent.

Relations to Other Target Compilation
Languages

Let us first recall the notion of succinctness introduced
by Gogic et al. (1995) and used later extensively by Dar-
wiche and Marquis (2002).

Definition 5 (Succinctness). Let L1 and L2 be two repre-
sentation languages. We say that L1 is at least as succinct as
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L2, iff there exists a polynomial p such that for every sen-
tence ϕ ∈ L2, there exists an equivalent sentence ψ ∈ L1

where |ψ| ≤ p(|ϕ|). We say that L1 is strictly more succinct
than L2 if L1 is at least as succinct as L2 but L2 is not at
least as succinct as L1.

Corollary 2 implies that the languages of PC encodings
and PC-BDMCs are equally succinct. Bova et al. (2014,
2016) show examples of monotone CNF formulas which
have only exponentially bigger DNNFs. Given the fact that
every monotone CNF formula is PC, we get that PC encod-
ings and PC-BDMCs are strictly more succinct than DNNFs.

Let us relate PC-BDMCs and PC encodings to backdoor
trees introduced by Samer and Szeider (2008) when we con-
sider PC formulas as a base class. Backdoor trees were in-
troduced in the context of parameterized SAT solving as an
auxiliary data structure that allows to make SAT solving of
a given CNF formula easy. Given a base class C, a C back-
door tree T for a CNF formula ϕ is defined as a decision
tree on some of the variables in ϕ which satisfies the fol-
lowing property: If α is a partial assignment specified by a
path from the root of T to a leaf, then ϕ(α) (i.e., formula
ϕ after we apply partial assignment α) belongs to class C.
In particular, all the formulas in the leaves are restrictions
of the same original formula. For proving a lower bound on
the size of a PC backdoor tree, we remove this assumption,
so we only require that the formula in every leaf represents
the restriction of the original function according to the as-
signments on the path from the root to the leaf. We will call
this structure generalized C backdoor tree and it is precisely
the subclass of C-BDMCs that satisfy that the only gates al-
lowed in the circuit part are decision gates (disjunctions of
two conjunctions), the directed graph in the circuit part is an
out-arborescence, and leaves are associated with C encod-
ings without auxiliary variables.

Let us point out another generalization of backdoor trees
within the framework of BDMCs obtained by including de-
composable conjunctions. This is a model that appears as
an intermediate state in several CNF to DNNF compilers,
whose final output is a Decision DNNF (see e.g., Lagniez
and Marquis 2017). From the compilation perspective, it
thus makes sense to consider a variant of BDMCs which
only allows conjunctions and decision nodes as inner nodes.
One of the variants of the lower bound below separates gen-
eralized PC backdoor trees with decomposable conjunctions
from generalized PC backdoor trees.

In this section, we present a family of boolean functions
which have PC-BDMCs of polynomial size, but any general-
ized PC backdoor tree has exponential size. For this purpose,
we measure the sizes of generalized PC backdoor trees and
PC-BDMCs in the same way, namely, we sum the sizes of
the formulas associated with the leaves with the number of
the edges in the circuit part.

For a given n, let us define formula ψ′n on 2n variables
y1, . . . , yn, z1, . . . , zn as follows.

ψ′n = (¬z1 ∨ · · · ∨ ¬zn) ∧
n∧
i=1

(¬yi ∨ zi)

It can be checked that ψ′n has 2n implicates of form CI =

∨
i∈I ¬zi∨

∨
i6∈I ¬yi for every set of indices I ⊆ {1, . . . , n}

in addition to n prime implicates ¬yi ∨ zi, i = 1, . . . , n.
Clause CI is an implicate of ψ′n, because it can be produced
by resolving clause ¬z1 ∨ ... ∨ ¬zn with ¬yi ∨ zi for i 6∈ I .
Kučera and Savický (2020, Section 4.1) argued that formula

ψn =
∧

C∈ψ′
n

(x ∨ C) (5)

where x is a new variable has only one prime PC represen-
tation which is the list of all its 2n +n prime implicates. We
use this property to show the main result of this section.

Theorem 3. PC-BDMCs (and thus also PC encodings) are
strictly more succinct than generalized PC backdoor trees.

Proof. For a given n, let us consider three sets of variables:
x = {xi,j | i, j ∈ {1, . . . , n}}, y = {yi,j,k | i, j ∈
{1, . . . , n}, k ∈ {1, . . . , n − 1}}, and z = {zi,j | i, j ∈
{1, . . . , n}}. For every i = 1, . . . , n, we introduce formulas

γi = (¬xi,1 ∨ · · · ∨ ¬xi,n)

δi = (¬zi,1 ∨ · · · ∨ ¬zi,n)

∧
n∧
s=1

(¬yi,s,1 ∨ · · · ∨ ¬yi,s,n−1 ∨ zi,s)

Let f(x,y, z) be the function represented by the disjunction
of formulas Γ =

∧n
i=1 γi and ∆ =

∧n
j=1 δj . Since Γ is a

conjunction of clauses on pairwise disjoint sets of variables,
it is immediate that Γ is PC. Formulas δi, i = 1, . . . , n are
PC because each can be constructed by subsequently tak-
ing conjunction of PC formulas which share a single vari-
able. This leads to a PC formula as shown by Bordeaux and
Marques-Silva (2012, proof of Proposition 5). It follows that
f has a small PC-BDMC in form of the disjunction of Γ and
∆. Let T be any generalized PC backdoor tree for f which
has leaves associated with PC formulas of size less than 2n.
We claim that every leaf in T has depth at least n and thus
the number of leaves of T is at least 2n.

Let us consider any partial assignment α ⊆ lit(x∪y∪ z)
of size n − 1. Since all prime implicates of γi and of δj for
all indices i, j have length at least n, we get that formulas
γi(α) and δj(α) are satisfiable. Moreover, there is a pair of
indices p, q, such that α does not assign a value to any vari-
able in γp and δq . Partial assignment α can be extended to
a partial assignment α′ such that f(α′) ≡ γp ∨ δq . This is
possible, since γi(α), δj(α) are pairwise independent and
satisfiable. Let us further extend α′ to satisfy all variables
xp,1, . . . , xp,n−1 and variables yq,s,t for s = 1, . . . , n and
t = 1, . . . , n − 2. In this way, we obtain a restriction of f
represented by the formula

(¬xp,n∨¬zq,1∨· · ·∨¬zq,n)∧
n∧
s=1

(¬xp,n∨¬yq,s,n−1∨zq,s)

which has the same structure as ψn defined by (5). This is
a contradiction with the choice of α, since any PC formula
equivalent to (5) has size at least 2n. It follows that every
leaf in T has depth at least n.
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The separation presented in Theorem 3 is based on a func-
tion defined by a disjunction of suitably chosen formulas
which is not allowed in generalized backdoor trees. A simi-
lar separation could be achieved with a function g defined by
a conjunction, namely, by the formula

∧n
i=1(γi ∨ δ′i) where

δ′i = (¬zi,1 ∨ · · · ∨ ¬zi,n) ∧
∧n
j=1(¬yi,1 ∨ zi,j).

Queries and Transformations
In this section we shall look at PC encodings and PC-
BDMCs as target compilation languages. We shall demon-
strate that both these languages have the same properties as
DNNFs when it comes to answering queries and transforma-
tions described by Darwiche and Marquis (2002).

Let us first look at queries. Darwiche and Marquis (2002)
consider CO (consistency), VA (validity), CE (clausal en-
tailment), EQ (equivalence), SE (sentential entailment), IM
(implicant), CT (model counting), and ME (model enumer-
ation). Out of these, CO, CE and ME can be done in poly-
nomial time on a DNNF, the remaining ones cannot be per-
formed in polynomial time unless P is equal to NP. Since
DNNFs form a special case of PC-BDMCs, we have that
also for PC encodings and PC-BDMCs, answering queries
VA, EQ, SE, IM, and CT is hard. Consistency checking CO
and clausal entailment CE can be performed on a PC encod-
ing by unit propagation. PC encodings also satisfy ME, be-
cause the models of a PC encoding can be enumerated with
polynomial delay by a simple backtrack procedure consider-
ing the fact that PC encodings are closed under the applica-
tion of a partial assignment. In particular, to enumerate the
models of a PC encoding ϕ, first check if it is satisfiable and
if so, pick an unassigned variable of ϕ and recursively enu-
merate the models of ϕ(x) and ϕ(¬x) which originate from
ϕ by satisfying literals x and¬x respectively. By Corollary 2
we have that PC-BDMCs and PC encodings are polynomi-
ally equivalent and thus they have the same properties with
respect to query answering.

Darwiche and Marquis (2002) consider the following
transformations on compilation languages: CD (condition-
ing), FO (forgetting), SFO (singleton forgetting), ∧C (con-
junction), ∧BC (bounded conjunction), ∨C (disjunction),
∨BC (bounded disjunction), and ¬C (negation). Unless P is
equal to NP, DNNFs do not allow polytime ∧C, ∧BC, and
¬C and since DNNFs are a special case of PC-BDMCs, this
is also the case for PC-BDMCs. It is well-known that these
operations are not efficient also for PC encodings under the
same assumption. The rest of transformations can be done in
polynomial time on DNNFs. Let us look at these transforma-
tions on PC-BDMCs and PC encodings. CD can be done in
polynomial time on PC encodings since partial assignment
preserves propagation completeness. Both FO and SFO are
trivial on a PC encoding, we just move the variables to be
forgotten from the set of main variables to the set of auxil-
iary variables. Note that PC encodings also allow to forget a
single auxiliary variable by means of Davis Putnam resolu-
tion. Both ∨C and ∨BC can be done on PC-BDMCs in the
same way as on DNNFs, just connect the roots of the input
PC-BDMCs with a disjunction gate. This transformation is
not so trivial on PC encodings. By Theorem 1 we have that

a PC-BDMC can be translated into a PC encoding in poly-
nomial time and thus a disjunction of PC encodings can be
transformed back into a PC encoding.

Extended Implicational Dual Rail Encoding
We use the well-known dual rail encoding of partial assign-
ments (see e.g., Bonet et al. 2018; Bryant et al. 1987; Ig-
natiev, Morgado, and Marques-Silva 2017; Manquinho et al.
1997; Morgado et al. 2019) to simulate unit propagation in
a general CNF formula in the same way as Bessiere et al.
(2009); Bordeaux et al. (2012); Kučera and Savický (2020).
We use the form of the encoding with a special variable rep-
resenting the fact that contradiction was not derived and ex-
tend it with clauses which make the encoding propagation
complete if the input CNF formula is PC.

Let us introduce for every l ∈ lit(x) a meta-variable JlK.
In addition, we use special meta-variable J>K intended to
represent the value of a formula in a way suitable for prop-
agating into the circuit part of BDMC. For this purpose, we
implement deriving a contradiction as deriving the negative
literal ¬J>K. The set of the meta-variables corresponding to
a vector of variables x will be denoted

meta(x) = {JlK | l ∈ lit(x) ∪ {>}} .

For notational convenience, we extend this notation also
to sets of literals that are meant as a conjunction, especially
to partial assignments. If α ⊆ lit(x) is a set of literals, then
JαK = {JlK | l ∈ α} denotes the set of meta-variables asso-
ciated with the literals in α. If JαK is used in a formula such
as ψ ∧ JαK, we identify this set of literals with the conjunc-
tion of them, similarly to the interpretation of α in ϕ ∧ α.
Definition 6 (Extended implicational dual rail encoding).
Let ϕ(x) be an arbitrary CNF formula. The extended im-
plicational dual rail encoding of ϕ is a formula on meta-
variables z = meta(x) denoted DR+(ϕ, z) and defined as
follows. If ϕ contains the empty clause, then DR+(ϕ, z) =
¬J>K. Otherwise, we set

DR+(ϕ, z) =
∧
C∈ϕ

∧
l∈C

 ∧
e∈C\{l}

J¬eK→ JlK


∧
∧
x∈x

(JxK ∧ J¬xK→ ¬J>K)

∧
∧

l∈lit(x)

(J>K ∨ JlK) ∧
∧
x∈x

(JxK ∨ J¬xK) .

(6)

A subset of extended implicational dual rail encoding is
used in the first part of the proof of Theorem 1 by Bessiere
et al. (2009) for a similar purpose as in this paper. A similar
encoding is used also by Bordeaux et al. (2012) as a part of a
larger formula. The proof of the following lemma is omitted,
since it is a straightforward extension of the properties of the
encodings used in the two papers cited above.
Lemma 4. Let ϕ(x) be a CNF formula without the empty
clause, let α ⊆ lit(x), and assume z = meta(x). Then

ϕ ∧ α `1 ⊥ ⇐⇒ DR+(ϕ, z) ∧ JαK `1 ¬J>K
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and if ϕ ∧ α 6`1 ⊥, then for every l ∈ lit(x) we have

ϕ ∧ α `1 l ⇐⇒ DR+(ϕ, z) ∧ JαK `1 JlK .

The clauses of form J>K ∨ JlK imply that once ¬J>K is
derived by unit propagation, which rules out the possibility
that ϕ is consistent with a given partial assignment, all meta-
variables JlK, l ∈ lit(x) are derived as well. The clauses
JxK∨J¬xK guarantee that every satisfying assignment can be
extended to a satisfying assignment of a formula obtained by
adding the clauses l→ JlK, l ∈ lit(x). We use the following
property of DR+(ϕ,meta(x)) (see the full version (Kučera
and Savický 2019a) for the proof).

Lemma 5. If ϕ(x) is a PC formula, then DR+(ϕ,meta(x))
is a PC formula.

We use extended implicational dual rail encodings of the
formulas in all the leaves as part of the encoding of a BDMC.
In order to make the propagation in them independent, the
extended implicational dual rail encoding in leaf(i) uses the
following set of meta-variables with indices in place of z

metai(x) = {JlKi | l ∈ lit(x) ∪ {>}} .

This is the reason for including the set of variables z as part
of the notation DR+(ϕ, z). Encodings DR+(ϕi, zi), i =
1, . . . , ` are connected to the remaining parts by identifying
the variable representing leaf node leaf(i) with the variable
J>Ki and the consistency with the input variables is guaran-
teed by adding the clauses l → JlKi for all l ∈ lit(xi) (see
also Bordeaux et al. 2012). Note that these clauses imply
JxKi ∨ J¬xKi for each x ∈ xi. The implied clauses are ex-
plicitly present in DR+(ϕi, zi) also for x ∈ yi.

PC Encoding of a PC-BDMC
In this section we present the encoding promised in the in-
troduction. To this end, let us fix a PC-BDMC D which rep-
resents a function f(x) on variables x = (x1, . . . , xn). Let
V denote the set of nodes in D and let ρ denote the root of
D. Let us assume that D has ` leaves which are labeled with
PC encodings ϕi(xi,yi), i = 1, . . . , `.

Separators
The construction of the PC encoding relies on the notion of
separators introduced by Kučera and Savický (2019b) and
briefly described below. Construction of separators can re-
quire to include a polynomial number of new nodes into D.
For every i = 1, . . . , n, let us denote Hi the set of nodes
v of D for which xi ∈ var(v). Let Di be the subgraph of
D induced by the vertices in Hi. We say that a set of nodes
S ⊆ Hi is a separator in Di, if every path in Di from the
root to a leaf contains precisely one node from S. We say
thatD can be covered by separators, if for each i = 1, . . . , n
there is a collection of separators Si in Di, such that the
union of S ∈ Si is Hi. Not every BDMC can be covered by
separators, but every BDMC can be modified in polynomial
time into an equivalent one which can be covered by separa-
tors (for more details, see Kučera and Savický 2019b).

For the purpose of the construction, let us assume that D
is a smooth BDMC covered by separators and let us denote

Si a set of separators which covers Di. Let us further denote
S =

⋃n
i=1 Si the set of all separators considered for cover-

ing D. It follows by smoothness of D that if T is a minimal
satisfying subtree of D, then for every i = 1, . . . , n, the in-
tersection of T and Di is a path from the root ρ to a leaf v
in Di, i.e. a leaf v satisfying xi ∈ var(v). It follows that T
must intersect each separator S ∈ S in exactly one node.

Encoding
We use the extended implicational dual rail encodings
DR+(ϕi, zi) of the formulas ϕi(xi,yi) associated with the
leaves of D, where zi = metai(xi ∪ yi) is the set of meta-
variables specific to the formula ϕi. The (disjoint) union of
these sets of variables is denoted z =

⋃`
i=1 zi.

We associate a variable v with every node v ∈ V . For a
leaf v ∈ V labeled with ϕi(xi,yi) for some i ∈ {1, . . . , `},
the variable v is identified with J>Ki. This identification is
understood as follows. The variable actually used in the en-
coding is J>Ki. The variable v corresponding to the leaf is
used for simplicity if we refer to its role within the mono-
tone circuit part of D while J>Ki is used when referring to
the role of the leaf within the extended implicational dual-
rail encoding of ϕi(xi,yi) which is a part of the encoding.

The set of variables associated with the inner nodes of
D (i.e. the ∧-nodes and ∨-nodes) will be denoted v. As ex-
plained above, a leaf is represented by a variable J>Ki which
belongs to z. Altogether, the encoding described in this sec-
tion uses three kinds of variables: x, z, and v.

Consider the list of clauses in Table 1. Clauses N1–N3 are
the same as introduced by Abı́o et al. (2016) and (Kučera
and Savický 2019b). Clauses N6 are the same as intro-
duced by Kučera and Savický (2019b) and a special case
of them was also used by Abı́o et al. (2016). Clauses N4
used in the cited constructions are not needed for encod-
ings of BDMC. We use exactly-one constraints in group N6,
similarly to Kučera and Savický (2019b), if we would use
the at-most-one constraints instead, we would obtain a URC
encoding provided the encodings associated with leaves are
URC. Let us point out that group N6 contains a redundant
unit clause ρ, since one of the separators in S is {ρ}.

Let us denote P(x, z,v) the encoding consisting of the
clauses in Table 1. The encoding is clearly constructible in
polynomial time and in particular, it has a polynomial size
as well. Theorem 1 follows from the following proposition.
Theorem 6. Let D be a smooth PC-BDMC covered by sep-
arators and representing a function f(x). Then P(x, z,v)
is a PC encoding of f(x).

Proof sketch. We only provide a sketch of the proof,
see (Kučera and Savický 2019a) for the full proof. As the
first step we show that P is a CNF encoding of f . Assume
that a is a model of f , i.e. f(a) = 1. It follows that there is
a minimal satisfying subtree T of D. We form assignments
b and c of values to variables in z and v respectively as fol-
lows. For every node v ∈ v set c(v) = 1 if and only if v is in
T . A variable v representing leaf(i) is identified with J>Ki
in z. Consistently with the above, set b(v) = b(J>Ki) = 1 if
and only if leaf(i) is in T . For every i such that b(J>Ki) = 0
we set b(JlKi) = 1 for every literal l ∈ lit(xi ∪ yi). If
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group clause condition

N1 v → v1 ∨ · · · ∨ vk v = v1 ∨ · · · ∨ vk
N2 v → vi v = v1 ∧ · · · ∧ vk, i = 1, . . . , k
N3 v → p1 ∨ · · · ∨ pk v ∈ V has incoming edges from p1, . . . , pk
N6 eo(S) S ∈ S
R ρ ρ is the root
E1 DR+(ϕi, zi) i = 1, . . . , `, zi = metai(xi ∪ yi)
E2 l→ JlKi l ∈ lit(xi), i = 1, . . . , `

E3
(∧

i∈range(l)JlKi
)
→ l l ∈ lit(x)

Table 1: List of clauses of the encoding P(x, z,v). S =
⋃n
i=1 Si denotes a fixed collection of separators which covers D and

eo(S) denotes a suitable PC encoding of the exactly-one constraint on the variables in S. By construction, we have v = J>Ki
for a leaf node v associated with formula ϕi(xi,yi).

b(J>Ki) = 1, then ϕi(xi,yi) is associated with a leaf of T
and thus it has a model consistent with a and we set the val-
ues b(JlKi) according to this model for every l ∈ lit(xi,yi).
One can check that P(a,b, c) is satisfied.

For the other direction assume that we have assignments
a, b, and c of values to variables in x, z, and v respectively
and which together satisfy P . Let us denoteD′ the subgraph
ofD which is induced by the inner nodes v for which c(v) =
1 and leaves with indices i for which b(J>Ki) = 1. We can
show that D′ contains a minimal satisfying subtree T of D
consistent with a and thus a is a model of f .

It remains to show that P is PC. Let ψp be the formula
formed by clauses of groups N1–N3, N6, and ρ. Formula
ψp is defined over variables which correspond to all nodes
V of D, i.e. v and the leaves. The formula denoted ψp
by Kučera and Savický (2019b) differs from the formula
denoted in the same way here in the interpretation of the
leaves. However, we can show that ψp is PC in the same way
as Kučera and Savický (2019b). Bordeaux and Marques-
Silva (2012) showed that a formula which is composed as
a conjunction of two PC formulas sharing a single vari-
able is PC. By inductive use of this argument together with
Lemma 5 we obtain that for each i = 1, . . . , ` the formula
ψi = ψi−1 ∧ DR+(ϕi, zi) is PC. It follows that formula
P ′(z,v) = ψ` formed by clauses of groups N1–N3, N6, E1,
and ρ is PC. Clauses N6 ensure that any model of P ′ inter-
sects every separator at exactly one node. The models of P ′
are thus precisely the encodings of minimal satisfying sub-
trees of D. Using smoothness, this implies that any model
of P ′ can be extended to a model of P in which the values
of the main variables are uniquely determined by clauses E2
and E3. This can be used to finally show that P is PC.

Let us close the section with an asymptotic estimate of
the size of encoding P . We will assume that the exactly one
constraints (clauses N6) are represented with a linear size
encoding described by Kučera and Savický (2019b). The en-
coding then containsO(ns+m) variables andO(ns+e+r)
clauses where n denotes the number of input variables, s the
number of nodes of D, e the number of edges of D, m the
total number of variables in the formulas associated with the
leaves, and r the total length of these formulas (the sum of
the lengths of all the clauses).

Conclusion and Further Research
We have introduced the language of C-BDMCs which is
a common generalization of DNNFs (introduced by Dar-
wiche 1999) and C-backdoor trees (introduced by Samer
and Szeider 2008). Moreover, URC-BDMCs contain the dis-
junctive closure of URC encodings URC-C[∨, ∃] (Bordeaux
et al. 2012) as a subset.

We have shown that PC-BDMCs are polynomially
equivalent to PC encodings (introduced by Bordeaux and
Marques-Silva 2012). In particular, the language of disjunc-
tions of PC encodings is polynomially equivalent to PC en-
codings. By a slight modification of our construction, we
get a similar result for URC encodings which is a gener-
alization of the results of Bordeaux et al. (2012). We have
demonstrated that PC-BDMCs and PC encodings have the
same properties as DNNFs with respect to query answering
and transformations considered in the knowledge compila-
tion map (Darwiche and Marquis 2002). Using the results
of Bova et al. (2014, 2016), PC encodings and PC-BDMCs
are strictly more succinct than DNNFs and we have shown
that they are also strictly more succinct than generalized PC-
backdoor trees we have introduced when discussing the re-
lation of PC-BDMCs to other target compilation languages.

Although PC encodings and PC-BDMCs are polynomi-
ally equivalent, a compilation from a CNF into a PC-BDMC
can be easier than to a PC encoding. In particular, we might
consider modifications of the techniques of compiling a
CNF into a DNNF (see e.g., Darwiche 2004; Lagniez and
Marquis 2017; Muise et al. 2012) such that the process of
splitting the formula into pieces stops at encodings from
a class C, so earlier than at the literals. Note that some of
the compilers into a DNNF (e.g., D4 introduced by Lagniez
and Marquis 2017) actually compile into a Decision DNNF
which is a DNNF where only decision nodes and decompos-
able ∧-gates are allowed. It is natural to consider C-BDMCs
restricted in the same way. Such Decision C-BDMCs form a
language more restricted than general C-BDMCs, but more
general than generalized C-backdoor trees. Further research
is needed to determine whether one can construct a reason-
ably efficient compiler of a CNF formula into a C-BDMC
which uses for example prime 2-CNFs (which are PC) or re-
namable Horn formulas (which are URC) as the base class.
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