
Dependency Stochastic Boolean Satisfiability:
A Logical Formalism for NEXPTIME Decision Problems with Uncertainty

Nian-Ze Lee,1 Jie-Hong R. Jiang1, 2

1 Graduate Institute of Electronics Engineering, National Taiwan University
2 Department of Electrical Engineering, National Taiwan University

No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
{d04943019, jhjiang}@ntu.edu.tw

Abstract

Stochastic Boolean Satisfiability (SSAT) is a logical formal-
ism to model decision problems with uncertainty, such as
Partially Observable Markov Decision Process (POMDP) for
verification of probabilistic systems. SSAT, however, is lim-
ited by its descriptive power within the PSPACE complex-
ity class. More complex problems, such as the NEXPTIME-
complete Decentralized POMDP (Dec-POMDP), cannot be
succinctly encoded with SSAT. To provide a logical formal-
ism of such problems, we extend the Dependency Quantified
Boolean Formula (DQBF), a representative problem in the
NEXPTIME-complete class, to its stochastic variant, named
Dependency SSAT (DSSAT), and show that DSSAT is also
NEXPTIME-complete. We demonstrate the potential appli-
cations of DSSAT to circuit synthesis of probabilistic and
approximate design. Furthermore, to study the descriptive
power of DSSAT, we establish a polynomial-time reduction
from Dec-POMDP to DSSAT. With the theoretical founda-
tions paved in this work, we hope to encourage the develop-
ment of DSSAT solvers for potential broad applications.

1 Introduction
Satisfiability (SAT) solvers (Biere, Heule, and van Maaren
2009) have been successfully applied to numerous research
fields including artificial intelligence (Nilsson 2014; Russell
and Norvig 2016), electronic design automation (Marques-
Silva and Sakallah 2000; Wang, Chang, and Cheng 2009),
software verification (Bérard et al. 2013; Jhala and Majum-
dar 2009), etc. The tremendous benefits have encouraged the
development of more advanced decision procedures for sat-
isfiability with respect to more complex logics beyond pure
propositional. For example, solvers of the satisfiability mod-
ulo theories (SMT) (De Moura and Bjørner 2011; Barrett
and Tinelli 2018) accommodate first order logic fragments;
quantified Boolean formula (QBF) (Narizzano, Pulina, and
Tacchella 2006; Büning and Bubeck 2009) allows both exis-
tential and universal quantifiers; stochastic Boolean satisfia-
bilty (SSAT) (Littman, Majercik, and Pitassi 2001; Majercik
2009) models uncertainty with random quantification; and
dependency QBF (DQBF) (Balabanov, Chiang, and Jiang
2014; Scholl and Wimmer 2018) equips Henkin quantifiers
to describe multi-player games with partial information. Due

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to their simplicity and generality, various satisfiability for-
mulations are under active investigation.

Among the quantified decision procedures, QBF and
SSAT are closely related. While SSAT extends QBF to
allow random quantifiers to model uncertainty, they are
both PSPACE-complete (Stockmeyer and Meyer 1973). A
number of SSAT solvers have been developed and applied
in probabilistic planning, formal verification of probabilis-
tic design, partially observable Markov decision process
(POMDP), and analysis of software security. For example,
solver MAXPLAN (Majercik and Littman 1998) encodes a
conformant planning problem as an exist-random quanti-
fied SSAT formula; solver ZANDER (Majercik and Littman
2003) deals with partially observable probabilistic planning
by formulating the problem as a general SSAT formula;
solver DC-SSAT (Majercik and Boots 2005) relies on a
divide-and-conquer approach to speedup the solving of a
general SSAT formula. Solvers ressat and erssat (Lee,
Wang, and Jiang 2017, 2018) are developed for random-
exist and exist-random quantified SSAT formulas respec-
tively, and applied to the formal verification of probabilistic
design (Lee and Jiang 2018). POMDP has also been stud-
ied under the formalism of SSAT (Majercik and Littman
2003; Salmon and Poupart 2019). Recently, bi-directional
polynomial-time reductions between SSAT and POMDP are
established (Salmon and Poupart 2019). The quantitative in-
formation flow analysis for software security is also inves-
tigated as an exist-random quantified SSAT formula (Fre-
mont, Rabe, and Seshia 2017).

In view of the close relation between QBF and SSAT,
we raise the question what would be the formalism that
extends DQBF to the stochastic domain. We formalize the
dependency SSAT (DSSAT) as the answer to the question.
We prove that DSSAT has the same NEXPTIME-complete
complexity as DQBF (Peterson, Reif, and Azhar 2001), and
therefore it can succinctly encode decision problems with
uncertainty in the NEXPTIME complexity class.

To highlight the benefits of DSSAT over DQBF, we note
that DSSAT intrinsically represents an optimization problem
(the answer is the maximum satisfying probability) while
DQBF is a decision problem (the answer is either true or
false). The optimization nature of DSSAT potentially allows
broader applications of the formalism. Moreover, DSSAT is
often preferable to DQBF in expressing problems involving

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3877

uncertainty and probabilities. As case studies, we investigate
its applicability in probabilistic system design/verification
and artificial intelligence.

In system design of the post Moore’s law era, the practice
of very large scale integration (VLSI) circuit design experi-
ences a paradigm shift in design principles to overcome the
obstacle of physical scaling of computation capacity. Prob-
abilistic design (Chakrapani et al. 2008) and approximate
design (Venkatesan et al. 2011) are two such examples of
emerging design methodologies. The former does not re-
quire logic gates to be error-free, but rather allowing them
to function with probabilistic errors. The latter does not re-
quire the implementation circuit to behave exactly the same
as the specification, but rather allowing their deviation to
some extent. These relaxations to design requirements pro-
vide freedom for circuit simplification and optimization. We
show that DSSAT can be a useful tool for the analysis of
probabilistic design and approximate design.

The theory and applications of Markov decision pro-
cess and its variants are among the most important topics
in the study of artificial intelligence. For example, the de-
cision problem involving multiple agents with uncertainty
and partial information is often considered as a decentral-
ized POMDP (Dec-POMDP) (Oliehoek, Amato et al. 2016).
The independent actions and observations of the individual
agents make POMDP for single-agent systems not applica-
ble and require the more complex Dec-POMDP. Essentially
the complexity is lifted from the PSPACE-complete policy
evaluation of finite-horizon POMDP to the NEXPTIME-
complete Dec-POMDP. We show that Dec-POMDP is poly-
nomial time reducible to DSSAT.

To sum up, the main results of this work include:

• formulating the DSSAT problem (Section 3),

• proving its NEXPTIME-completeness (Section 4), and

• showing its applications in:

– analyzing probabilistic/approximate design (Section 5)
– modeling Dec-POMDP (Section 6).

Our results may encourage the development of DSSAT
solvers to enable potential broad applications.

2 Preliminaries
In this section, we provide background knowledge about
SSAT, DQBF, probabilistic design, and Dec-POMDP.

In the sequel, Boolean values TRUE and FALSE are rep-
resented by symbols > and ⊥, respectively; they are also
treated as 1 and 0, respectively, in arithmetic computation.
Boolean connectives ¬,∨,∧,⇒,≡ are interpreted in their
conventional semantics. Given a set V of variables, an as-
signment α is a mapping from each variable x ∈ V to
B = {>,⊥}, and we denote the set of all assignments over
V by A(V). An assignment α satisfies a Boolean formula φ
over a set V of variables if φ yields > after substituting all
occurrences of every variable x ∈ V with its assigned value
α(x) and simplifying φ under the semantics of Boolean con-
nectives. A Boolean formula φ over a set V of variables is a
tautology if every assignment α ∈ A(V) satisfies φ.

2.1 Stochastic Boolean Satisfiability
SSAT was first proposed by Papadimitriou and described as
games against nature (Papadimitriou 1985). An SSAT for-
mula Φ over a set V = {x1, . . . , xn} of variables is of the
form: Q1x1, . . . , Qnxn.φ, where each Qi ∈ {∃,

Rp} and
Boolean formula φ over V is quantifier-free. Symbol ∃ de-
notes an existential quantifier, and

Rp denotes a randomized
quantifier, which requires the probability that the quantified
variable equals > to be p ∈ [0, 1]. Given an SSAT formula
Φ, the quantification structureQ1x1, . . . , Qnxn is called the
prefix, and the quantifier-free Boolean formula φ is called the
matrix.

Let x be the outermost variable in the prefix of an SSAT
formula Φ. The satisfying probability of Φ, denoted by
Pr[Φ], is defined recursively by the following four rules:

a) Pr[>] = 1,
b) Pr[⊥] = 0,
c) Pr[Φ] = max{Pr[Φ|¬x],Pr[Φ|x]}, if x is existentially

quantified,
d) Pr[Φ] = (1 − p) Pr[Φ|¬x] + pPr[Φ|x], if x is randomly

quantified by

Rp,
where Φ|¬x and Φ|x denote the SSAT formulas obtained by
eliminating the outermost quantifier of x via substituting the
value of x in the matrix with ⊥ and >, respectively.

The decision version of SSAT is stated as follows. Given
an SSAT formula Φ and a threshold θ ∈ [0, 1], decide
whether Pr[Φ] ≥ θ. On the other hand, the optimization ver-
sion asks to compute Pr[Φ]. The decision version of SSAT
was shown to be PSPACE-complete (Papadimitriou 1985).

2.2 Dependency Quantified Boolean Formula
DQBF was formulated as multiple-person alternation (Pe-
terson and Reif 1979). In contrast to the linearly ordered
prefix used in QBF, i.e., an existentially quantified variable
will depend on all of its preceding universally quantified
variables, the quantification structure in DQBF is extended
with Henkin quantifiers, where the dependency of an ex-
istentially quantified variable on the universally quantified
variables can be explicitly specified.

A DQBF Φ over a set V = {x1, . . . , xn, y1, . . . , ym} of
variables is of the form:

∀x1, . . . , ∀xn, ∃y1(Dy1
), . . . , ∃ym(Dym).φ, (1)

where eachDyj ⊆ {x1, . . . , xn} denotes the set of variables
that variable yj can depend on, and Boolean formula φ over
V is quantifier-free. We denote the set {x1, . . . , xn} (resp.
{y1, . . . , ym}) of universally (resp. existentially) quantified
variables of Φ by V ∀Φ (resp. V ∃Φ).

Given a DQBF Φ, it is satisfied if for each variable yj ,
there exists a function fj : A(Dyj) → B, such that after
substituting variables in V ∃Φ with their corresponding func-
tions respectively, matrix φ yields a tautology over V ∀Φ . The
set of functions F = {f1, . . . , fm} is called a set of Skolem
functions for Φ. In other words, Φ is satisfied by F if

min
β∈A(V ∀

Φ)
1φ|F (β) = 1, (2)

3878

p

z

Figure 1: Conversion of the distillation operation.

where 1φ|F (·) is an indicator function to indicate whether
an assignment over V ∀Φ belongs to the set of satisfying
assignments of matrix φ, when variables in V ∃Φ are sub-
stituted by their Skolem functions in F . That is, φ|F =
{β | φ(β(x1), . . . , β(xn), f1|β , . . . , fm|β) ≡ >}, where
fj |β is the logical value derived by substituting every xi ∈
Dyj with β(xi) in function fj . The satisfiability problem of
DQBF was shown to be NEXPTIME-complete (Peterson,
Reif, and Azhar 2001).

2.3 Probabilistic Design
In this paper, a design refers to a combinational Boolean
logic circuit, which is a directed acyclic graph G = (V,E),
where V is a set of vertices, and E ⊆ V × V is a set of
edges. Each vertex in V can be a primary input, primary out-
put, or an intermediate gate. An intermediate gate is associ-
ated with a Boolean function. An edge (u, v) ∈ E signifies
the connection from u to v, denoting the associated Boolean
function of v may depend on u. A circuit is called a partial
design if some of the intermediate gates are black boxes, that
is, their associated Boolean functions are not specified.

A probabilistic design is an extension of conventional
Boolean logic circuits to model the scenario where inter-
mediate gates exhibit probabilistic behavior. In a probabilis-
tic design, each intermediate gate has an error rate, i.e., the
probability for the gate to produce an erroneous output. An
intermediate gate is erroneous if its error rate is nonzero.
Using the distillation operation (Lee and Jiang 2018), an er-
roneous gate can be modeled by its corresponding error-free
gate XORed with an auxiliary input, which valuates to >
with a probability equal to the error rate. As illustrated in
Figure 1, a NAND gate with error rate p is converted to an
error-free NAND gate XORed with a fresh auxiliary input
z with Pr[z = >] = p so that it triggers the error with
probability p. After applying the distillation operation to ev-
ery erroneous gate, all the intermediate gates in the distilled
design become error-free, which makes the techniques for
conventional Boolean circuit reasoning applicable.

2.4 Decentralized POMDP
Dec-POMDP is a formalism for multi-agent systems under
uncertainty and with partial information. Its computational
complexity was shown to be NEXPTIME-complete (Bern-
stein et al. 2002). In the following, we briefly review the
definition, optimality criteria, and value function of Dec-
POMDP from the literature (Oliehoek, Amato et al. 2016).

A Dec-POMDP is specified by a tupleM = (I, S, {Ai},
T, ρ, {Oi},Ω,∆0, h), where I = {1, . . . , n} is a finite set of
n agents, S is a finite set of states,Ai is a finite set of actions

of Agent i, T : S× (A1×· · ·×An)×S → [0, 1] is a transi-
tion distribution function with T (s,~a, s′) = Pr[s′|s,~a], the
probability to transit to state s′ from state s after taking ac-
tions ~a, ρ : S × (A1 × · · · × An)→ R is a reward function
with ρ(s,~a) giving the reward for being in state s and taking
actions ~a, Oi is a finite set of observations for Agent i, Ω :
S× (A1×· · ·×An)× (O1×· · ·×On)→ [0, 1] is an obser-
vation distribution function with Ω(s′,~a, ~o) = Pr[~o|s′,~a],
the probability to receive observation ~o after taking actions
~a and transiting to state s′, ∆0 : S → [0, 1] is an initial state
distribution function with ∆0(s) = Pr[s0 ≡ s], the proba-
bility for the initial state s0 being state s, and h is a planning
horizon, which we assume finite in this work.

Given a Dec-POMDPM, we aim at maximizing the ex-
pected total reward E[

∑h−1
t=0 ρ(st,~at)] through searching an

optimal joint policy for the team of agents. Specifically, a
policy πi of Agent i is a mapping from the agent’s observa-
tion history, i.e., a sequence of observations oti = o0

i , . . . , o
t
i

received by Agent i, to an action at+1
i ∈ Ai. A joint pol-

icy for the team of agents ~π = (π1, . . . , πn) maps the
agents’ joint observation history ~ot = (ot1, . . . , o

t
n) to ac-

tions ~at+1 = (π1(ot1), . . . , πn(otn)). We shall focus on de-
terministic policies only, as it was shown that every Dec-
POMDP with a finite planning horizon has a deterministic
optimal joint policy (Oliehoek, Spaan, and Vlassis 2008).

To assess the quality of a joint policy ~π, its value is defined
to be E[

∑h−1
t=0 ρ(st,~at)|∆0, ~π]. The value function V (~π) can

be computed in a recursive manner, where for t = h − 1,
V π(sh−1,~oh−2) = ρ(sh−1, ~π(~oh−2)), and for t < h− 1,

V π(st,~ot−1) = ρ(st, ~π(~ot−1))+∑
st+1∈S

∑
~ot∈~O

Pr[st+1, ~ot|st, ~π(~ot)]V π(st+1,~ot). (3)

The probability Pr[st+1, ~ot|st, ~π(~ot)] in the above equation
is the product of T (st, ~π(~ot), st+1) and Ω(st+1, ~π(~ot), ~ot).
Eq. (3) is also called the Bellman Equation of Dec-POMDP.

Denoting the empty observation history at the first stage
(i.e., t = 0) with the symbol ~o−1, the value V (~π) of a joint
policy equals

∑
s0∈S ∆0(s0)V π(s0,~o−1).

3 DSSAT Formulation
In this section, we extend DQBF to its stochastic vari-
ant, named Dependency Stochastic Boolean Satisfiability
(DSSAT).

A DSSAT formula Φ over V = {x1, . . . , xn, y1, . . . , ym}
is of the form:

Rp1x1, . . . ,

Rpnxn, ∃y1(Dy1
), . . . , ∃ym(Dym).φ, (4)

where each Dyj ⊆ {x1, . . . , xn} denotes the set of vari-
ables that variable yj can depend on, and Boolean formula
φ over V is quantifier-free. We denote the set {x1, . . . , xn}
(resp. {y1, . . . , ym}) of randomly (resp. existentially) quan-
tified variables of Φ by V

R

Φ (resp. V ∃Φ).
Given a DSSAT formula Φ and a set of Skolem functions

F = {fj : A(Dyj) → B | j = 1, . . . ,m}, the satisfying

3879

probability Pr[Φ|F] of Φ with respect to F is defined by the
following equation:

Pr[Φ|F] =
∑

α∈A(V

R

Φ)

1φ|F (α)w(α), (5)

where 1φ|F (·) is the indicator function defined in Section 2.2
and w(α) =

∏n
i=1 p

α(xi)
i (1 − pi)

1−α(xi) is the weight-
ing function for assignments. In other words, the satisfying
probability is the summation of weights of satisfying assign-
ments over V

R

Φ . The weight of an assignment can be under-
stood as its occurring probability in the space of A(V

R

Φ).
The decision version of DSSAT is stated as follows. Given

a DSSAT formula Φ and a threshold θ ∈ [0, 1], decide
whether there exists a set of Skolem functions F such that
Pr[Φ|F] ≥ θ. On the other hand, the optimization version
asks to find a set of Skolem functions to maximize the satis-
fying probability of Φ.

The formulation of SSAT can be extended by incorporat-
ing universal quantifiers, resulting in a unified framework
named extended SSAT (Majercik 2009), which subsumes
both QBF and SSAT. In the extended SSAT, besides the
four rules discussed in Section 2.1 for calculating the satis-
fying probability of an SSAT formula Φ, the following rule
is added: Pr[Φ] = min{Pr[Φ|¬x],Pr[Φ|x]}, if x is univer-
sally quantified. Similarly, an extended DSSAT formula Φ
over a set of variables {x1, . . . , xn, y1, . . . , ym, z1, . . . , zl}
is of the form:

Q1v1, . . . , Qn+lvn+l, ∃y1(Dy1), . . . , ∃ym(Dym).φ, (6)

where Qivi equals either
Rpkxk or ∀zk for some k with

vi 6= vj for i 6= j, and each Dyj ⊆ {x1, . . . , xn, z1, . . . , zl}
denotes the set of randomly and universally quantified vari-
ables which variable yj can depend on. The satisfying prob-
ability of Φ with respect to a set of Skolem functions F =
{fj : A(Dyj) → B | j = 1, . . . ,m}, denoted by Pr[Φ|F],
can be computed by recursively applying the aforemen-
tioned five rules to the induced formula of Φ with the ex-
istential variables yj being substituted with their respective
Skolem functions fj . Under the above computation scheme,
both Eq. (2) and Eq. (5) are special cases, where the vari-
ables preceding the existential quantifiers in the prefixes are
solely universally or randomly quantified, and hence the fifth
or the fourth rule is applied to calculate Pr[Φ|F].

Note that in the above extension the Henkin-type quanti-
fiers are only defined for the existential variables. Although
the extended formulation increases practical expressive suc-
cinctness, the computational complexity is not changed as to
be shown in the next section.

4 DSSAT Complexity
In the following, we show that the decision version of
DSSAT is NEXPTIME-complete.
Theorem 1. DSSAT is NEXPTIME-complete.

Proof. To show that DSSAT is NEXPTIME-complete, we
have to show that it belongs to the NEXPTIME complexity
class and that it is NEXPTIME-hard.

First, to see why DSSAT belongs to the NEXPTIME com-
plexity class, observe that a Skolem function for an existen-
tially quantified variable can be guessed and constructed in
nondeterministic exponential time with respect to the num-
ber of randomly quantified variables. Given the guessed
Skolem functions, the evaluation of the matrix, summa-
tion of weights of satisfying assignments, and comparison
against the threshold θ can also be performed in exponential
time. Overall, the whole procedure is done in nondeterminis-
tic exponential time with respect to the input size, and hence
DSSAT belongs to the NEXPTIME complexity class.

Second, to see why DSSAT is NEXPTIME-hard, we re-
duce the NEXPTIME-complete problem DQBF to DSSAT
as follows. Given an arbitrary DQBF:

ΦQ = ∀x1, . . . , ∀xn, ∃y1(Dy1
), . . . , ∃ym(Dym).φ,

we construct a DSSAT formula:

ΦS =

R0.5x1, . . . ,

R0.5xn, ∃y1(Dy1), . . . , ∃ym(Dym).φ

by changing every universal quantifier to a randomized
quantifier with probability 0.5. The reduction can be done
in polynomial time with respect to the size of ΦQ. We will
show that ΦQ is satisfiable if and only if there exists a set of
Skolem functions F such that Pr[ΦS |F] ≥ 1.

The “only if” direction: As ΦQ is satisfiable, there ex-
ists a set of Skolem functions F such that after substituting
the existentially quantified variables with the corresponding
Skolem functions, matrix φ becomes a tautology over vari-
ables {x1, . . . , xn}. Therefore, Pr[ΦS |F] = 1 ≥ 1.

The “if” direction: As there exists a set of Skolem func-
tions F such that Pr[ΦS |F] ≥ 1, after substituting the
existentially quantified variables with the corresponding
Skolem functions, each assignment α ∈ A({x1, . . . , xn})
must satisfy φ, i.e., φ becomes a tautology over vari-
ables {x1, . . . , xn}. Otherwise, the satisfying probability
Pr[ΦS |F] must be less than 1 as the weight 2−n of some
unsatisfying assignment is missing from the summation.
Therefore, ΦQ is satisfiable.

When DSSAT is extended with universal quantifiers, its
complexity remains in the NEXPTIME complexity class as
the fifth rule of the satisfying probability calculation does
not incur any complexity overhead. Therefore the following
corollary is immediate.
Corollary 1. The decision problem of DSSAT extended with
universal quantifiers of Eq. (6) is NEXPTIME-complete.

5 Application: Analyzing Probabilistic and
Approximate Partial Design

After formulating DSSAT and proving its NEXPTIME-
completeness, we show its application to the analysis of
probabilistic design and approximate design. Specifically,
we consider the probabilistic version of the topologically
constrained logic synthesis problem (Sinha, Mishchenko,
and Brayton 2002; Balabanov, Chiang, and Jiang 2014), or
equivalently the partial design problem (Gitina et al. 2013).

In the (deterministic) partial design problem, we are given
a specification function G(X) over primary input variables

3880

X

F

𝑡1
𝑡2

𝐷1
𝐷2

G

Z

𝑧1
𝑧2

Figure 2: Circuit for the equivalence checking of probabilis-
tic partial design.

X and a partial design CF with black boxes to be synthe-
sized. The Boolean functions induced at the primary outputs
of CF can be described by F (X,T), where T corresponds
to the variables of the black box outputs. Each black box out-
put ti is specified with its input variables (i.e., dependency
set) Di ⊆ X ∪ Y in CF , where Y represents the variables
for intermediate gates in CF referred to by the black boxes.
The partial design problem aims at deriving the black box
functions {h1(D1), . . . , h|T |(D|T |)} such that substituting
ti with hi in CF makes the resultant circuit function equal
G(X). The above partial design problem can be encoded as
a DQBF problem; moreover, the partial equivalence check-
ing problem is shown to be NEXPTIME-complete (Gitina
et al. 2013).

Specifically, the DQBF that encodes the partial equiva-
lence checking problem is of the form:

∀X, ∀Y, ∃T (D).

(Y ≡ E(X))→ (F (X,T) ≡ G(X)), (7)

where D consists of (D1, . . . , D|T |), E corresponds to the
defining functions of Y in CF , and the operator “≡” denotes
elementwise equivalence between its two operands.

The above partial design problem can be extended to
its probabilistic variant, which is illustrated by the circuit
shown in Figure 2. The probabilistic partial design problem
is the same as the deterministic partial design problem ex-
cept thatCF is a distilled probabilistic design (Lee and Jiang
2018) with black boxes, whose functions at the primary out-
puts can be described by F (X,Z, T), where Z represents
the variables for the auxiliary inputs that trigger errors in
CF (including the errors of the black boxes) and T corre-
sponds to the variables of the black box outputs. Each black
box output ti is specified with its input variables (i.e., depen-
dency set) Di ⊆ X ∪ Y in CF . When ti is substituted with
hi in CF , the function of the resultant circuit is required to
be sufficiently close to the specification with respect to some
expected probability.

The hardness of the problem is stated in Theorem 2,
whose proof can be found in the full version of this work
at https://arxiv.org/abs/1911.04112.
Theorem 2. The probabilistic partial design equivalence
checking problem is NEXPTIME-complete.

Moreover, the probabilistic partial design problem can be
encoded with the following DSSAT formula

R

X,

R

Z, ∀Y, ∃T (D).

(Y ≡ E(X))→ (F (X,Z, T) ≡ G(X)), (8)

where the primary input variables are randomly quantified
with probability pxi

of xi ∈ X to reflect their weights, and
the error-triggering auxiliary input variables Z are randomly
quantified according to the pre-specified error rates of the er-
roneous gates in CF . Notice that the above DSSAT formula
takes advantage of the extension with universal quantifiers
as discussed previously.

In approximate design, a circuit implementation may de-
viate from its specification by a certain extent. The amount
of deviation can be characterized in a way similar to the error
probability calculation in probabilistic design. For approxi-
mate partial design, the equivalence checking problem can
be expressed by the DSSAT formula:

R

X, ∀Y, ∃T (D).

(Y ≡ E(X))→ (F (X,T) ≡ G(X)), (9)

which differs from Eq. (8) only in requiring no auxiliary in-
puts. The probabilities of the randomly quantified primary
input variables are determined by the approximation criteria
in measuring the deviation. For example, when all the in-
put assignments are of equal weight, the probabilities of the
primary inputs are all set to 0.5.

6 Application: Modeling Dec-POMDP
In this section we demonstrate the descriptive power of
DSSAT to model NEXPTIME-complete problems by con-
structing a polynomial-time reduction from Dec-POMDP to
DSSAT. Our reduction is an extension of that from POMDP
to SSAT proposed in the previous work (Salmon and Poupart
2019).

In essence, given a Dec-POMDP M, we will construct
in polynomial time a DSSAT formula Φ such that there is a
joint policy ~π forMwith value V (~π) if and only if there is a
set of Skolem functions F for Φ with satisfying probability
Pr[Φ|F], and V (~π) = Pr[Φ|F].

First we introduce the variables used in construction of
the DSSAT formula and their domains. To improve read-
ability, we allow a variable x to take values from a finite set
U = {x1, . . . , xK} (Salmon and Poupart 2019). Under this
setting, a randomized quantifier

R

over variable x specifies
a distribution Pr[x ≡ xi] for each xi ∈ U . We also define a
scaled reward function:

r(s,~a) =
ρ(s,~a)−mins′,~a′ ρ(s′,~a′)∑

s′′,~a′′ [ρ(s′′,~a′′)−mins′,~a′ ρ(s′,~a′)]

such that r(s,~a) forms a distribution over all pairs of s and
~a, i.e., ∀s,~a.r(s,~a) ≥ 0 and

∑
s,~a r(s,~a) = 1. We will use

the following variables:

• xts ∈ S: the state at stage t,

• xi,ta ∈ Ai: the action taken by Agent i at stage t,

• xi,to ∈ Oi: the observation received by Agent i at stage t,

3881

∧
0≤t≤h−2

[xt
p ≡ ⊥ →

∧
i∈I

xi,t
o ≡ 0 ∧ xt+1

s ≡ 0 ∧ xt+1
p ≡ ⊥] (10)

xh−1
p ≡ ⊥ (11)∧

s∈S

∧
~a∈ ~A

[x0
p ≡ ⊥ ∧ x0

s ≡ s ∧
∧
i∈I

xi,0
a ≡ ai → x0

r ≡ Nr(s,~a)] (12)

∧
1≤t≤h−1

∧
s∈S

∧
~a∈ ~A

[xt−1
p ≡ > ∧ xt

p ≡ ⊥ ∧ xt
s ≡ s ∧

∧
i∈I

xi,t
a ≡ ai → xt

r ≡ Nr(s,~a)] (13)

∧
0≤t≤h−2

∧
s∈S

∧
~a∈ ~A

∧
s′∈S

[xt
p ≡ > ∧ xt

s ≡ s ∧
∧
i∈I

xi,t
a ≡ ai ∧ xt+1

s ≡ s′ → xt
Ts,~a
≡ s′] (14)

∧
0≤t≤h−2

∧
s′∈S

∧
~a∈ ~A

∧
~o∈~O

[xt
p ≡ > ∧ xt+1

s ≡ s′ ∧
∧
i∈I

xi,t
a ≡ ai ∧

∧
i∈I

xi,t
o ≡ oi → xt

Ωs′,~a
≡ NΩ(~o)] (15)

Figure 3: The formulas used to encode a Dec-POMDPM.

• xtr ∈ S × (A1 × . . .×An): the reward earned at stage t,
• xtT ∈ S: transition distribution at stage t,
• xtΩ ∈ O1 × . . .×On: observation distribution at stage t,
• xtp ∈ B: used to sum up rewards across stages.

We represent elements in the sets S, Ai, and Oi by inte-
gers, i.e., S = {0, 1, . . . , |S| − 1}, etc., and use indices s,
ai, and oi to iterate through them, respectively. On the other
hand, a special treatment is required for variables xtr and xtΩ,
as they range over Cartesian products of several sets. We will
give a unique number to an element in a product set as fol-
lows. Consider ~Q = Q1 × . . . × Qn, where each Qi is a
finite set. An element ~q = (q1, . . . , qn) ∈ ~Q is numbered
by N(q1, . . . , qn) =

∑n
i=1 qi(

∏i−1
j=1 |Qj |). In the following

construction, variables xtr and xtΩ will take values from the
numbers given to the elements in S × ~A and ~O by Nr(s,~a)
and NΩ(~o), respectively.

We begin by constructing a DSSAT formula for a Dec-
POMDP with h = 1. Under this setting, the derivation of
the optimal joint policy is simplified to finding an action
for each agent such that the expectation value of the reward
function is maximized, i.e.,

~a∗ = arg max
~a∈ ~A

∑
s∈S

∆0(s)r(s,~a)

The DSSAT formula below encodes the above equation:

R

x0
s,

R

x0
r, ∃x1,0

a (Dx1,0
a

), . . . , ∃xn,0a (Dxn,0
a

).φ,

where the distribution of x0
s follows Pr[x0

s ≡ s] = ∆0(s),
the distribution of x0

r follows Pr[x0
r ≡ Nr(s,~a)] = r(s,~a),

each Dxi,0
a

= ∅, and the matrix:

φ =
∧
s∈S

∧
~a∈ ~A

[x0
s ≡ s ∧

∧
i∈I

xi,0a ≡ ai → x0
r ≡ Nr(s,~a)].

As the existentially quantified variables have no dependency
on randomly quantified variable, the DSSAT formula is ef-
fectively an exist-random quantified SSAT formula.

For an arbitrary Dec-POMDP with h > 1, we follow
the two steps proposed in the previous work (Salmon and
Poupart 2019), namely policy selection and policy evalua-
tion, and adapt the policy selection step for the multi-agent
setting in Dec-POMDP.

In the previous work (Salmon and Poupart 2019), an
agent’s policy selection is encoded by the following prefix
(use Agent i as an example):

∃xi,0a ,

R

x0
p,

R

xi,0o , . . . ,

R

xh−2
p ,

R

xi,h−2
o , ∃xi,h−1

a ,

R

xh−1
p .

In the above quantification, variable xtp is introduced to sum
up rewards earned at different stages. It takes values from
B, and follows a uniform distribution, i.e., Pr[xtp ≡ >] =

Pr[xtp ≡ ⊥] = 0.5. When xtp ≡ ⊥, the process is stopped
and the reward at stage t is earned; when xtp ≡ >, the pro-
cess is continued to stage t + 1. Note that variables {xtp}
are shared across all agents. With the help of variable xtp,
rewards earned at different stages are summed up with an
equal weight 2−h. Variable xi,to also follows a uniform dis-
tribution Pr[xi,to ≡ oi] = |Oi|−1, which scales the satisfy-
ing probability by |Oi|−1 at each stage. Therefore, we need
to re-scale the satisfying probability accordingly in order to
obtain the correct satisfying probability corresponding to the
value of a joint policy. The scaling factor, denoted κh, equals
2h(| ~O||S|)h−1 (derived in the proof of Theorem 3).

As the actions of the agents can only depend on their
own observation history, for the selection of a joint policy
it is not obvious how to combine the quantification, i.e., the
selection of a policy, of each agent into a linearly ordered
prefix required by SSAT, without suffering an exponential
translation cost. On the other hand, DSSAT allows to specify
the dependency of an existentially quantified variable freely
and is suitable to encode the selection of a joint policy. In
the prefix of the DSSAT formula, variable xi,ta depends on
Dxi,t

a
= {xi,0o , . . . , xi,t−1

o , x0
p, . . . , x

t−1
p }.

Next, the policy evaluation step is exactly the same as that
in the previous work (Salmon and Poupart 2019). The fol-

3882

∃x1,0
a x2,0

a

R

x0
p

R

x1,0
o x2,0

o

∃x1,1
a x2,1

a

R

x1
p

0

R

xsxrxTxΩ

......∆0(s0)T (s0,~a0, s1)Ω(s1,~a0, ~o0)r(s1,~a1)

1
|S|

0.5 0.5

~a1 = (a1
1, a

1
2)

...∃x1,1
a x2,1

a

1
|O1×O2| ~o0 = (o0

1, o
0
2)

R

x1,0
o x2,0

o

· · · 00 · · ·∃x1,1
a x2,1

a

R

x1
p

0

R

xsxrxTxΩ

............∆0(s0)r(s0,~a0)

1
|S|

0.5 0.5

1
|O1×O2|

0.5 0.5

~a0 = (a0
1, a

0
2)

Figure 4: The decision tree of a Dec-POMDP example with two agents and h = 2.

lowing quantification computes the value of a joint policy:

R

xts,

R

xtr, t = 0, . . . , h− 1

R

xtT ,

R

xtΩ, t = 0, . . . , h− 2

Variables xts follow a uniform distribution Pr[xts ≡ s] =
|S|−1 except for variable x0

s, which follows the initial dis-
tribution specified by Pr[x0

s ≡ s] = ∆0(s); variables
xtr follow the distribution of the reward function Pr[xtr ≡
Nr(s,~a)] = r(s,~a); variables xtT follow the state transi-
tion distribution Pr[xtTs,~a

≡ s′] = T (s,~a, s′); variables xtΩ
follow the observation distribution Pr[xtΩs′,~a

≡ NΩ(~o)] =

Ω(s′,~a, ~o). Note that these variables encode the random
mechanism of a Dec-POMDP and are hidden from agents.
That is, variables xi,ta do not depend on the above variables.

The formulas to encode M are listed in Figure 3. For-
mula (10) encodes that when xtp ≡ ⊥, i.e., the process is
stopped, the observation xi,to and next state xt+1

s are set to
a preserved value 0, and xt+1

p ≡ ⊥. Formula (11) ensures
the process is stopped at the last stage. Formula (12) ensures
the reward at the first stage is earned when the process is
stopped, i.e., x0

p ≡ ⊥. Formula (13) requires the reward at
stage t > 0 is earned when xt−1

p ≡ > and xtp ≡ ⊥. For-
mula (14) encodes the transition distribution from state s to
state s′ given actions ~a are taken. Formula (15) encodes the
observation distribution to receive observation ~o under the
situation that state s′ is reached after actions ~a are taken.
Theorem 3. The above reduction maps a Dec-POMDPM
to a DSSAT formula Φ, such that a joint policy ~π exists for
M if and only if a set of Skolem functions F exists for Φ,
with V (~π) = Pr[Φ|F].

Due to space limit, the proof is available in the full-paper
version at https://arxiv.org/abs/1911.04112. Note that the
proposed reduction is a polynomial-time reduction, as the
numbers of variables and clauses in the resulting DSSAT for-
mula are polynomials of the input size of the Dec-POMDP.
Below we demonstrate the reduction with an example.
Example 1. Consider a Dec-POMDP with two agents and
planning horizon h = 2. Given a joint policy (π1, π2) for

Agent 1 and Agent 2, let the actions taken at t = 0 be
~a0 = (a0

1, a
0
2) and the actions taken at t = 1 under cer-

tain observations ~o0 = (o0
1, o

0
2) be ~a1 = (a1

1, a
1
2). The value

of this joint policy is computed by Eq. (3) as

V (π) =
∑
s0∈S

∆0(s0)[r(s0,~a0)

+
∑
~o0∈~O

∑
s1∈S

T (s0,~a0, s1)Ω(s1,~a0, ~o0)r(s1,~a1)].

The decision tree of the converted DSSAT formula is shown
in Figure 4. Note that the randomized quantifiers over vari-
ables xtp, xts, and xto will scale the satisfying probability by
the corresponding factors labelled on the edges. Therefore,
we have to re-scale the satisfying probability by 22|S||O1 ×
O2|, according to the scaling factor κh = 2h(| ~O||S|)h−1.
(A more detailed explanation for this example can be found
in the full paper.)

7 Conclusions and Future Work
In this paper, we extended DQBF to its stochastic vari-
ant DSSAT and proved its NEXPTIME-completeness. Com-
pared to the PSPACE-complete SSAT, DSSAT is more pow-
erful to succinctly model NEXPTIME-complete decision
problems with uncertainty. The new formalism can be use-
ful in applications such as artificial intelligence and sys-
tem design. Specifically, we demonstrated the DSSAT for-
mulation of the analysis to probabilistic/approximate par-
tial design, and gave a polynomial-time reduction from
the NEXPTIME-complete Dec-POMDP to DSSAT. We
envisage the potential broad applications of DSSAT and
plan solver development for future work. We note that re-
cent developments of clausal abstraction for QBF (Jan-
ota and Marques-Silva 2015; Rabe and Tentrup 2015) and
DQBF (Tentrup and Rabe 2019) might provide a promising
framework for DSSAT solving. Clausal abstraction has been
lifted to SSAT (Chen, Huang, and Jiang 2021), and we are
investigating its feasibility for DSSAT.

3883

Acknowledgments
The authors are grateful to Christoph Scholl, Ralf Wim-
mer, and Bernd Becker for valuable discussions motivating
this work. This work was supported in part by the Min-
istry of Science and Technology of Taiwan under Grant
No. 108-2221-E-002-144-MY3, 108-2218-E-002-073, and
109-2224-E-002-008. JHJ was supported in part by the
Alexander von Humboldt Foundation during this work.

References
Balabanov, V.; Chiang, H.-J. K.; and Jiang, J.-H. R. 2014.
Henkin quantifiers and Boolean formulae: A certification
perspective of DQBF. Theoretical Computer Science 523:
86–100.

Barrett, C.; and Tinelli, C. 2018. Satisfiability modulo theo-
ries. Handbook of Model Checking 305–343.

Bérard, B.; Bidoit, M.; Finkel, A.; Laroussinie, F.; Petit, A.;
Petrucci, L.; and Schnoebelen, P. 2013. Systems and Soft-
ware Verification: Model-checking Techniques and Tools.
Springer Science & Business Media.

Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilberstein,
S. 2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research
27(4): 819–840.

Biere, A.; Heule, M.; and van Maaren, H. 2009. Handbook
of Satisfiability. IOS press.

Büning, H. K.; and Bubeck, U. 2009. Theory of quantified
Boolean formulas. Handbook of Satisfiability 185: 735–760.

Chakrapani, L. N. B.; George, J.; Marr, B.; Akgul, B. E. S.;
and Palem, K. V. 2008. Probabilistic design: A survey of
probabilistic CMOS technology and future directions for
terascale IC design. In VLSI-SoC: Research Trends in VLSI
and Systems on Chip, 101–118.

Chen, P.-W.; Huang, Y.-C.; and Jiang, J.-H. R. 2021. A sharp
leap from quantified Boolean formula to stochastic Boolean
satisfiability solving. In Proceedings of the 35th AAAI Con-
ference on Artificial Intelligence (AAAI).

De Moura, L.; and Bjørner, N. 2011. Satisfiability modulo
theories: Introduction and applications. Communications of
the ACM 54(9): 69–77.

Fremont, D. J.; Rabe, M. N.; and Seshia, S. A. 2017. Maxi-
mum model counting. In Proceedings of the 31st AAAI Con-
ference on Artificial Intelligence (AAAI), 3885–3892.

Gitina, K.; Reimer, S.; Sauer, M.; Wimmer, R.; Scholl, C.;
and Becker, B. 2013. Equivalence checking of partial de-
signs using dependency quantified Boolean formulae. In
Proceedings of the IEEE 31st International Conference on
Computer Design (ICCD), 396–403.

Janota, M.; and Marques-Silva, J. 2015. Solving QBF by
clause selection. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence (IJCAI), 325–
331.

Jhala, R.; and Majumdar, R. 2009. Software model check-
ing. ACM Computing Surveys 41(4): 21:1–21:54.

Lee, N.-Z.; and Jiang, J.-H. R. 2018. Towards formal eval-
uation and verification of probabilistic design. IEEE Trans-
actions on Computers 67(8): 1202–1216.

Lee, N.-Z.; Wang, Y.-S.; and Jiang, J.-H. R. 2017. Solving
stochastic Boolean satisfiability under random-exist quan-
tification. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI), 688–694.

Lee, N.-Z.; Wang, Y.-S.; and Jiang, J.-H. R. 2018. Solving
exist-random quantified stochastic Boolean satisfiability via
clause selection. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI), 1339–
1345.

Littman, M. L.; Majercik, S. M.; and Pitassi, T. 2001.
Stochastic Boolean satisfiability. Journal of Automated Rea-
soning 27(3): 251–296.

Majercik, S. M. 2009. Stochastic Boolean satisfiability.
Handbook of Satisfiability 185: 887–925.

Majercik, S. M.; and Boots, B. 2005. DC-SSAT: A divide-
and-conquer approach to solving stochastic satisfiability
problems efficiently. In Proceedings of the 19th AAAI Con-
ference on Artificial Intelligence (AAAI), 416–422.

Majercik, S. M.; and Littman, M. L. 1998. MAXPLAN: A
new approach to probabilistic planning. In Proceedings of
the 4th International Conference on Artificial Intelligence
Planning (AIPS), 86–93.

Majercik, S. M.; and Littman, M. L. 2003. Contingent plan-
ning under uncertainty via stochastic satisfiability. Artificial
Intelligence 147(1-2): 119–162.

Marques-Silva, J. P.; and Sakallah, K. A. 2000. Boolean
satisfiability in electronic design automation. In Proceedings
of the 37th Annual Design Automation Conference (DAC),
675–680.

Narizzano, M.; Pulina, L.; and Tacchella, A. 2006. The
QBFEVAL web portal. In Proceedings of the 10th European
Conference on Logics in Artificial Intelligence (JELIA),
494–497.

Nilsson, N. J. 2014. Principles of Artificial Intelligence.
Morgan Kaufmann.

Oliehoek, F. A.; Amato, C.; et al. 2016. A Concise Introduc-
tion to Decentralized POMDPs. Springer.

Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2008. Op-
timal and approximate Q-value functions for decentralized
POMDPs. Journal of Artificial Intelligence Research 32:
289–353.

Papadimitriou, C. H. 1985. Games against nature. Journal
of Computer and System Sciences 31(2): 288–301.

Peterson, G.; Reif, J.; and Azhar, S. 2001. Lower bounds for
multiplayer noncooperative games of incomplete informa-
tion. Computers & Mathematics with Applications 41(7-8):
957–992.

Peterson, G. L.; and Reif, J. H. 1979. Multiple-person al-
ternation. In Proceedings of the 20th IEEE Symposium on
Foundations of Computer Science (FOCS), 348–363.

3884

Rabe, M. N.; and Tentrup, L. 2015. CAQE: A certifying
QBF solver. In Proceedings of the 15th Conference on For-
mal Methods in Computer-Aided Design (FMCAD), 136–
143.
Russell, S. J.; and Norvig, P. 2016. Artificial Intelligence: A
Modern Approach. Pearson Education Limited.
Salmon, R.; and Poupart, P. 2019. On the relationship
between stochastic satisfiability and partially observable
Markov decision processes. In Proceedings of the 35th
Conference on Uncertainty in Artificial Intelligence (UAI),
407:1–407:11.
Scholl, C.; and Wimmer, R. 2018. Dependency quantified
Boolean formulas: An overview of solution methods and ap-
plications. In Proceedings of the 21st International Con-
ference on Theory and Applications of Satisfiability Testing
(SAT), 3–16.
Sinha, S.; Mishchenko, A.; and Brayton, R. K. 2002. Topo-
logically constrained logic synthesis. In Proceedings of
the 21st IEEE/ACM International Conference on Computer
Aided Design (ICCAD), 679–686.
Stockmeyer, L. J.; and Meyer, A. R. 1973. Word problems
requiring exponential time. In Proceedings of the 5th Annual
ACM Symposium on Theory of Computing (STOC), 1–9.
Tentrup, L.; and Rabe, M. N. 2019. Clausal abstraction for
DQBF. In Proceedings of the 22nd International Conference
on Theory and Applications of Satisfiability Testing (SAT),
388–405.
Venkatesan, R.; Agarwal, A.; Roy, K.; and Raghunathan,
A. 2011. MACACO: Modeling and analysis of circuits
for approximate computing. In Proceedings of the 30th
IEEE/ACM International Conference on Computer Aided
Design (ICCAD), 667–673.
Wang, L.-T.; Chang, Y.-W.; and Cheng, K.-T. T. 2009. Elec-
tronic Design Automation: Synthesis, Verification, and Test.
Morgan Kaufmann.

3885

