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Abstract
Solving Satisfiability is at the core of a wide range of applica-
tions from Knowledge Representation to Logic Programming
to Software and Hardware Verification. One of the models of
Satisfiability, the Random Satisfiability problem, has received
much attention in the literature both, as a useful benchmark
for SAT solvers, and as an exciting mathematical object. In
this paper we tackle a somewhat nonstandard type of Ran-
dom Satisfiability, the one where instances are not chosen
uniformly from a certain class of instances, but rather from
a certain nontrivial distribution. More precisely, we use so-
called Configuration Model, in which we start with a distri-
bution of degrees (the number of occurrences) of a variable,
sample the degree of each variable and then generate a ran-
dom instance with the prescribed degrees. It has been pro-
posed previously that by properly selecting the starting dis-
tribution (to be, say, power law or lognorm) one can approx-
imate at least some aspect of ‘industrial’ instances of SAT.
Here we suggest an algorithm that solves such problems for a
wide range of degree distributions and obtain a necessary and
a sufficient condition for the satisfiability of such formulas.

Introduction
The Satisfiability (SAT) problem is one of the classical and
most useful in practice computational problems. Solving
Satisfiability is at the core of a wide range of applications
from Knowledge Representation to Logic Programming to
Software and Hardware Verification. Although NP-complete
in general, SAT proved to be solvable in reasonable time
in a great number of applications. SAT solvers have seen a
great deal of progress over the last 3-4 decades. A number of
standard methods such as DPLL (Davis and Putnam 1960;
Davis, Logemann, and Loveland 1962), and also more ad-
vanced heuristics such as conflict analysis (Marques-Silva
and Sakallah 1999), VSIDS heuristics (Marques-Silva and
Sakallah 1999; Moskewicz et al. 2001), and others (Jarvisalo
and Biere 2012; Eén and Biere 2005) have allowed for cre-
ation of solvers capable of solving industrial scale instances
of SAT, which nowadays may include millions of variables
and clauses. Such solvers have become reliable tools in solv-
ing a wide variety of real-world computational problems.

Random SAT and its restriction, Random k-SAT, are often
seen as a model of ‘typical case’ instances of SAT, and have
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been intensively studied for decades. Apart from algorith-
mic questions related to the Random SAT, much attention
has been paid to such problems as satisfiability thresholds
and the structure of the solution space. While it makes sense
to consider random instances as ‘typical’ SAT instances, in
reality it turns out that random instances tend to be much
more difficult than the instances seen in practice (Cook and
Mitchell 1996). Even rather small random formulas contain-
ing only a few hundreds variables often cannot be solved
by even the most successful SAT solvers in reasonable time,
in stark contrast with huge practical instances of millions
of variables. It is therefore an interesting research question,
what properties make practical instances amenable to SAT
solving methods.

A number of candidates have been suggested to explain
this phenomenon such as certain regularities in the instances,
low values of graph parameters associated with the instance
(say, treewidth), backdoor variables, etc. For example, it
is known that SAT solvers use restarts with great success,
while restarts help very little when solving random SAT in-
stances. In (Li et al. 2020) they attempt to find a broad class
of SAT instances where restarts help. Another proposed con-
dition, (Ansótegui, Bonet, and Levy 2009a,b), is the distribu-
tion of the degree (the number of occurrences) of variables
in an instance. In this paper we follow this approach and
study the Random SAT problem for a range of distributions,
as explained in detail below. Although results obtained here
and in previous research do not support the proposition that
practical problems can be thought of as instances of some
Random SAT over a nonstandard distribution, such prob-
lems seem to be of significant interest in their own rights
as they allow for representation of very diverse types of SAT
instances.

Probably the central theme in the SAT research apart from
algorithms is identifying necessary and sufficient condition
for satisfiability of formulas. Some of such conditions are
structural, e.g., so-called bicycles and contradictory paths
(Chvátal and Reed 1992; Cooper, Frieze, and Sorkin 2007)
determining the satisfiability of 2-CNFs (see more about that
in Section ). In the cases of Random SAT such satisfiability
conditions manifest themselves as the phenomenon of satis-
fiability threshold and phase transition.

One of the most widely studied distributions of random
SAT is the uniform model. To sample k-CNF formulas with
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n variables and m clauses from this model, we sample u.a.r.
(uniformly at random) m clauses with replacement from the
set of all

(
n
k

)
2k possible clauses having exactly k literals.

Hence, each instance is sampled equiprobably among all for-
mulas with n variables and m clauses. The satisfiability of a
random k-CNF then depends heavily on the quantity ρ = m

n ,
called density. It was proved in (Friedgut 1999) that for each
k (and possibly the number of variables n) there exists a crit-
ical density ρk(n), such that random uniform formulas with
density less than ρk(n) are satisfiable with high probabil-
ity (w.h.p.), while instances with ρ above the critical density
are unsatisfiable w.h.p. Moreover, a recent work (Friedrich
and Rothenberger 2019), which may be regarded as an ex-
tension of Fridgut’s result to non-uniform random SAT in-
stances, shows that if a distribution of variable’s occurrence
in random formulas satisfies some criteria, then such formu-
las must undergo a sharp satisfiability threshold.

The satisfiability threshold phenomena produced an im-
pressive line of research. It includes designing and analyzing
SAT algorithms (Achlioptas 2001; Coja-Oghlan 2010; Coja-
Oghlan and Panagiotou 2013; Ding, Sly, and Sun 2015) and
applications of the second moment method (Achlioptas and
Moore 2006) to find lower bounds, and a variety of proba-
bilistic and proof complexity tools to obtain upper bounds
(Dubios and Boufkhad 1997; Kirousis et al. 1998; Dubois,
Boufkhad, and Mandler 2003). The culmination of this re-
search so far has been the result by (Ding, Sly, and Sun 2015)
that finds the precise location of the satisfiability threshold
for large k.

To see how the subject of this paper is related to the afore-
mentioned research, note that Random k-SAT can be formu-
lated using one of the three models whose statistical prop-
erties are very similar. The model with fixed density ρ is
described above (Franco and Paull 1983; Selman, Mitchell,
and Levesque 1996). Alternatively, to produce a random for-
mula, for selected variables every possible k-clause is in-
cluded with probability tuned up so that the expected num-
ber of clauses equals ρn. Finally, (Kim 2004) showed that
one can also use the Configuration Model we study in this
paper, which he called Poisson Cloning model. In this model
for each variable vi we first select a positive integer di ac-
cordingly to the Poisson distribution with expectation ρk,
the degree of the variable. Then we create di clones of vari-
able vi, and choose a random partition of the set of clones
into (d1 + · · · + dn)/k k-element subsets, then converting
them into clauses randomly. The three models are largely
equivalent and can be used whichever suits better to the task
at hand.

The Configuration Model opens up a possibility for a wide
range of different distributions of k-CNFs arising from dif-
ferent degree distributions. Starting with any random vari-
able ξ that takes strictly positive integer values one obtains
a distribution Cnk (ξ) on k-CNFs as above using ξ in place
of the Poisson distribution. Note that ξ may depend on n,
the number of variables, and even be different for differ-
ent variables. One ‘extreme’ case of such a distribution is
Poisson Cloning described above. Another case is studied
by Cooper, Frieze, and Sorkin (Cooper, Frieze, and Sorkin
2007). In their case each variable of a 2-SAT instance has a

prescribed degree, which can be viewed as assigning a de-
gree to every variable according to a random variable that
only takes one value. Also, (Boufkhad et al. 2005) consid-
ered another case of this kind — regular Random k-SAT.

Therefore, it may be beneficial to study what similarities
and differences the random models have, what inner struc-
tures they possess, and how they affect the running time of
SAT solvers, in order to create better and more universal
search heuristics.

In this paper we consider Random k-SAT in the config-
uration model given by distribution Cnk (ξ), where ξ is dis-
tributed according to the power law distribution in the fol-
lowing sense. Let Fξ(`) = Pr[ξ ≥ `] denote the tail function
of a positive integer valued random variable ξ. We say that ξ
is distributed according to the power law with parameter α
if there exist constants V,W such that

W`−α ≤ Fξ(`) ≤ V `−α. (1)

Power law type distributions have received much atten-
tion in the literature. They have been widely observed in
natural phenomena (Newman 2005; Clauset, Shalizi, and
Newman 2009), as well as in more artificial structures such
as networks of various kinds (Barabási and Albert 1999).
Apart from the Configuration Model, graphs and hyper-
graphs (and therefore CNFs), whose degree sequences are
distributed accordingly to a power law of some kind can also
be generated in a number of ways. These include prefer-
ential attachment (Aiello, Graham, and Lu 2001; Barabási
and Albert 1999; Bollobás et al. 2001; Bollobás and Ri-
ordan 2002), hyperbolic geometry (Krioukov et al. 2010),
and others (Ansótegui, Bonet, and Levy 2009a,b). Although
graphs, hypergraphs, and CNFs resulting from all such pro-
cesses satisfy the power law distributions of their degrees,
other properties can be very different.

The approach most closely related to this paper was sug-
gested by (Ansótegui, Bonet, and Levy 2009a,b). Given the
number of variables n, the number of clauses m, and a pa-
rameter β, the first step in their construction is to create
m k-clauses without naming the variables. Then for every
variable-place X in every clause, X is assigned to be one of
the variables v1, . . . , vn according to the distribution

Pr[X = vi, β, n] =
i−β∑n
j=1 j

−β .

Ansotegui et al. argue that this model often well matches
the experimental results on industrial instances, see also
(Ansótegui et al. 2016; Giráldez-Cru and Levy 2016;
Ansótegui et al. 2008).

The satisfiability conditions for this model has been stud-
ied in (Friedrich et al. 2017). Since the model has two pa-
rameters, β and ρ = m/n, the resulting picture is compli-
cated. Friedrich et al. proved that a random CNF is unsat-
isfiable with high probability if ρ is large enough (although
constant), and if β < 2k−1

k−1 . If β ≥ 2k−1
k−1 , the formula is

satisfiable with high probability provided ρ is smaller than
a certain constant. The unsatisfiability results in (Friedrich
et al. 2017) are mostly proved using the local structure of a
formula.
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Here we seek to obtain similar results for the Con-
figuration Model, in which distribution ξ satisfies condi-
tion (1). The case k = 2 was considered in (Omelchenko
and Bulatov 2019), where a tight bound on the satisfiabil-
ity/unsatisfiability was obtained. Specifically, they proved
that a formula φ sampled from Cn2 (ξ) is satisfiable w.h.p. if
ξ satisfies the inequality Eξ2 < 3Eξ and unsatisfiable w.h.p.
otherwise.

Here we consider the case when k ≥ 3. Although we
have not obtained a complete satisfiability classification, we
obtained strong necessary and sufficient conditions for the
satisfiability of instances in the Configuration Model. First,
we show that if α is small enough (and therefore the for-
mulas tend to be dense) w.h.p. the formula contains a small
unsatisfiable subformula, and hence is unsatisfiable itself.

Theorem 1 Let φ is sampled according to the Configuration
Model for a distribution ξ satisfying condition (1) for 0 <
α < k

k−1 . Then w.h.p. φ is unsatisfiable.

Interestingly, the density of formulas satisfying (1) can
be much lower than the density of unsatisfiable instances
sampled uniformly, which of course suggests that heavy tail
distributions allow for unevenly concentrated formulas.

For a sufficient condition for satisfiability we suggest an
algorithm (Algorithm 2) that w.h.p. finds a satisfying assign-
ment provided ξ satisfy certain property (see condition (2)
in the section on a sufficient condition) that is not difficult to
verify.

Theorem 2 Let φ be sampled according to the Configura-
tion Model for a r.v. ξ satisfying condition (1) for α ≥ k

k−1 ,
and

2C1 E

[(
deg(l) deg(l̄)

)1+ (1−α)(k−2)
2

]
< 1,

where C1 :=
[

2V
α−1

]k−2
k

[Eξ]k−1 . Then w.h.p. φ is satisfiable.

We will argue later that the gap between the necessary
condition from Theorem 1 and the sufficient condition from
Theorem 2 is relatively small. However, experiments sug-
gest that the actual satisfiability/unsatisfiability borderline
lies somewhere between the two conditions, see the section
on experiments.

Note also that while Algorithm 2 serves theoretical pur-
poses, actual SAT solvers have no difficulties with power-
law distributed CNFs even of very large size, as our experi-
ments suggest.

Due to space restrictions, we only explain here the main
ideas behind the majority of proofs. Detailed proofs can be
found in supplemental materials.

Notation and Preliminaries
Random k-Satisfiability and Configuration Model. As
usual, a k-CNF is a conjunction φ =

∧
1≤i≤m

ci of clauses,

and every clause ci is a disjunction of exactly k literals,
that is, a propositional variable or its negation. It will be
convenient to think of a k-CNF as a set of its clauses, i.e.

φ = {c1, c2, . . . , cm}. We call the degree of a variable v the
number of times it appears in φ. Likewise, the degree of a
literal l is the number of times it appears in φ. To avoid any
confusion, we use letter v (possibly with a subscript) when
we refer to a variable, and letter l (again, possibly with a
subscript) to refer to a literal. Then the degree of a variable
v will be denoted deg(v) and the degree of a literal l will be
denoted deg(l).

In the k-Satisfiability problem (k-SAT for short) the goal
is to decide the satisfiability of a k-CNF. In the Random k-
Satisfiability the goal is the same, while instances are sam-
pled from a certain distribution of k-CNFs.

In this paper we study Random k-SAT that does not have
limitations on instances such as fixed density, but different
instances appear with vastly different probability. The Con-
figuration Model for k-SAT is defined as follows. Let ξ be
positive integer-valued random variable, this will be the dis-
tribution of the degree of each variable in our k-CNFs. Let
n be the number of variables we want in the formula, let the
variables be v1, . . . , vn. Then construct a k-CNF in the fol-
lowing three steps.

STEP 1. Sample the degree di of each vi from ξ. If the sum
of the di’s is not a multiple of k, discard the sampled num-
bers and start over. Otherwise, for each i, create di copies of
vi; we call these copies clones of vi.

STEP 2. Generate a partition p1, . . . , pm of the set S of all
clones into k-element subsets uniformly at random. These
will be the clauses of our k-CNF after we choose the polarity
for each clone in the next step. It may happen that some of
the k-element subsets in fact contain multiple clones of the
same variable. We treat such clauses as regular k-clauses,
and add them into the formula.

STEP 3. For each pi and every clone x ∈ pi, negate x with
probability 1/2. The resulting clause is denoted ci.

If clone x is a clone of a variable v and it was assigned neg-
ative sign, then we say that x is also a clone of the literal v̄,
otherwise it is clone of the literal v. To avoid any confusion
that may arise from this convention, we will explicitly men-
tion whether we talk about literals or variables. If a literal
l was formed from a clone of some variable v, we say l is
associated with v. Algorithm 1 gives a more formal descrip-
tion of this procedure.

We denote the fact that a k-CNF formula φ having n
variables was sampled from the Configuration Model by
φ ∼ Ckn(ξ).

Example 3 (Poisson Cloning (Kim 2004)) In the standard
uniform Random k-SAT we generate a random instance with
n variables and m clauses by sampling the required number
of random clauses from the set of all k-clauses. If the den-
sity ρ = m/n is low (say, constant) the distribution of the
degree of each variable is well approximated by the Poisson
distribution. Therefore, (Kim 2004) argued that the Config-
uration Model in which ξ has the Poisson distribution with
the mean kρ shares many common properties with the stan-
dard Random k-SAT. Kim called this kind of Configuration
Model Poisson Cloning and demonstrated that a number of
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Algorithm 1 Configuration Model Ckn(ξ)

1: procedure CONFIGURATIONMODELCNF(n, k, ξ)
2: Form a sequence of n numbers {di}ni=1, each sam-

pled independently from ξ
3: if Sn :=

∑n
i=1 di is not a multiple of k then

4: discard the sequence, and go to step 2
5: end if
6: Otherwise, let S ←

n⋃
i=1

{vi, vi, . . . , vi︸ ︷︷ ︸
di times

}

7: Let φ← ∅
8: while S 6= ∅ do
9: Pick u.a.r. k elements {x1, x2, . . . , xk} from S

10: Let c← {x1, x2, . . . , xk}, S ← S − c
11: Negate each element in c independently with

probability 1/2
12: φ← φ ∪ {c}
13: end while
14: return φ
15: end procedure

results can be obtained much easier in the Poisson Cloning
model.
Example 4 (d-Regular SAT) If ξ is constant, that is,
Pr[ξ = d] = 1, we obtain so-called d-Regular k-SAT, in
which the degree of every variable equals d. (Boufkhad et al.
2005) uses another model in which all literals have almost
the same degree. However, the later model can be simulated
to some extent by the Configuration Model as well.
Example 5 (Power Law SAT) The following distribution
plays a very important role in this paper, see, (Borovkov
2008; Omelchenko and Bulatov 2018, 2019). Random vari-
able ξ is said to be distributed according to the zeta distri-
bution with parameter β if Pr[ξ = `] = `−β

ζ(β) , where ζ(β) is
the Riemann zeta function. Power-law distributed structures
naturally appear as the result of many discrete processes,
and the Configuration Model with a zeta distributed ξ often
approximates such structures very well.

Tail Conditions and Power-Law Distributions. The con-
ditions on random variables (r.v.) we use are in terms of tail
functions. The tail function of a positive integer-valued r.v.
ξ is Fξ(`) = Pr[ξ ≥ `], where ` ≥ 1.
Definition 6 An integer-valued positive r.v. ξ has power-law
probability distribution, if Fξ(`) = Θ (`−α), where α > 0.
We denote this fact as ξ ∼ P (α). Clearly, if ξ ∼ P (α), then
there exist constants V,W > 0, such thatW `−α ≤ Fξ(`) ≤
V `−α for every ` ≥ 1.

The prime example of a power-law distributed r.v. is the
zeta distributed r.v. introduced in Example 5. To verify this
we only need to compute its tail function. Let ξ be a zeta
distributed r.v. with parameter β > 1. A rough estimation
shows that

Fξ(`) = Pr[ξ ≥ `] =
∞∑
d=`

d−β

ζ(β)
= Θ

(
`1−β

)
.

Thus, a zeta-distributed r.v. with parameter β in our terms is
power-law distributed with parameter α = β − 1.

Suppose that φ ∈ Cnk (ξ) is a k-CNF with n variables pro-
duced by the Configuration Model Algorithm 1. The set of
all clones will usually be denoted by Sn and Sn = |Sn| will
denote the total number of clones in φ. Clearly, the number
of clauses in φ is |φ| = Sn

k . We denote by L(φ) the set of all
literals in φ, while V (φ) denotes the set of all variables in φ.
Then |V (φ)| = n and |L(φ)| ≤ 2n.

The next theorem shows that Sn does not deviate too far
from its expected value.

Theorem 7 ((Omelchenko and Bulatov 2018)) Let Sn =∑n
i=1 ξi, where ξi’s are independent copies of a positive

integer-valued random variable ξ with Pr [ξ ≥ `] ≤ V `−α,
where V > 0 and α > 0 are constants.

(1) If 0 < α ≤ 1, then Sn = O
(
n

1
α

)
w.h.p.

(2) If α > 1, then Sn = nEξ + o(n) w.h.p.

We complete this section with a useful bound on the max-
imal degrees of variables in φ.

Lemma 8 Let φ ∼ Ckn(ξ), where ξ is some positive integer-
valued r.v. with the right tail satisfying Fξ(`) ≤ V `−α for

some V, α > 0. Let also ∆ = max
v∈V (φ)

(
deg(v)

)
be the max-

imal degree of variables in φ. Then ∆ = O
(
n

1
α

)
w.h.p.

A Necessary Condition for Satisfiability
We begin with identifying a necessary condition for satisfi-
ability of instances of our Random k-SAT. To this end we
establish a simple combinatorial property of k-CNFs sam-
pled from Ckn(ξ), ξ ∼ P (α), when α is small enough.

Theorem 9 Let φ ∼ Ckn(ξ), where ξ ∼ P (α) and k ≥ 2. If
0 < α < k

k−1 , then w.h.p. φ is unsatisfiable.

To prove the theorem we show that φ contains a set of
k variables that w.h.p. appear together in at least 1

2 (k −
1)! logk n clauses. Then, observing that if we have a for-
mula with k variables, we only need 2k clauses (that is a
constant number) to make the formula unsatisfiable. In the
case 0 < α < k−1

k in φ ∼ P (α) we have a subformula with
(k − 1)! logk n clauses. Clearly, w.h.p. such subformula is
not satisfiable.

In the case of power law distributed r.vs. in addition to
unsatisfiability several other events happen at α = k

k−1 .

Theorem 10 Let ξ ∼ P (α). Then the following are equiva-
lent:

1. α < k
k−1 ;

2. for φ ∈ Ckn(ξ) let φ` denote the formula obtained from φ
by removing all variables of degree less than ` and clauses
they occur in; then w.h.p. the density of φ` goes to infinity
as n and ` grow;

3. for any k-SAT formula ψ with a fixed number of variables
with constant degrees w.h.p. φ ∈ Ckn(ξ) contains ψ as
subformula.
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Algorithm 2
1: procedure ISSAT(φ)
2: φ′ ← ∅
3: for c ∈ φ do
4: Let l1, l2 be two literals from c, such that

deg(l) ≥ max (deg(l1), deg(l2)) for any l ∈ c
5: c′ ← {l1, l2}
6: φ′ ← φ′ ∪ {c′}
7: end for
8: if φ′ is SAT then
9: return SAT

10: end if
11: return FAILED
12: end procedure

A Sufficient Condition for Satisfiability
In this section we present a sufficient condition for a Ran-
dom k-SAT to be satisfiable. More specifically, we show that
if the distribution ξ satisfies some extra conditions on the
mean of a certain expression in terms of degrees of literals,
then a random instance from Ckn(ξ) is satisfiable with high
probability.

To obtain this result we present an algorithm that given an
instance from Ckn(ξ), where ξ satisfies the aforementioned
condition, with high probability finds a satisfying assign-
ment for such an instance. Clearly, the existence of such
algorithm implies that instances from Ckn(ξ) must be sat-
isfiable with high probability as well.

Given a k-CNF φ the algorithm works as follows: first, for
each clause it identifies two literals with the smallest degrees
(making a random choice if such literals are not unique) and
removes all the remaining literals, thus converting φ into a
2-CNF formula φ′. Second, it solves the resulting 2-SAT in-
stance that can be done in linear time. If φ′ is satisfiable, then
clearly the original formula φ is satisfiable as well. However,
if φ′ is not satisfiable, we cannot infer that φ is not satisfi-
able, and the algorithm declares it fails to answer whether
φ is satisfiable or not. For a more formal description of the
algorithm, see Algorithm 2. We show that when ξ satisfies
some condition, Algorithm 2 finds a satisfying assignment
of φ ∈ Ckn(ξ) w.h.p.

Originally this algorithm was proposed for a different
model, which was used to study satisfiability of random k-
CNFs with power-law degree distribution (Friedrich et al.
2017). Although the model studied in (Friedrich et al. 2017)
and the Configuration Model exhibit some level of similar-
ity, there are significant differences too. For instance, the
latter model is able to simulate directly random d-Regular
CNF, while the former model cannot do this; on the other
hand, model from (Friedrich et al. 2017) can be used to pro-
duce instances of random uniform model, while the Config-
uration Model can only approximate such instances. What
is also more important for this section, in (Friedrich et al.
2017) Algorithm 2 proves a necessary and sufficient condi-
tions for satisfiability, while in our case it can only prove a
sufficient condition that does not quite match the necessary
condition from the previous section.

Theorem 11 Let φ ∼ Ckn(ξ), where ξ is some positive
integer-valued r.v. with the right tail functionFξ(`) ≤ V `−α
for some constants V > 0, α > k

k−1 and any ` ≥ 1. Then
Algorithm 2 finds a satisfying assignment of φ w.h.p., when
ξ satisfies

2C1 E

[(
deg(l) deg(l̄)

)1+ (1−α)(k−2)
2

]
< 1, (2)

where C1 :=
[

2V
α−1

]k−2
k

[Eξ]k−1 .

Remark 12 Observe that when α > k
k−2 and k ≥ 3 it also

holds that 1 + (1−α)(k−2)
2 < 0 and the expression in the

expectation decreases exponentially in k and α, and much
faster than the denominator in C1. This shows that the sat-
isfiability threshold of Ckn(ξ) is equal k

k−1 + ok(1), when
n→∞ and k is large.

In the rest of this section we outline a proof of Theo-
rem 11.

In order to prove Theorem 11 we employ a well-known
structural property of satisfiable 2-CNFs. A bicycle of length
s is a sequence of 2-clauses (u, l1)(l̄1, l2) . . . . . . (l̄s, w),
where variables associated with literals l1, l2, . . . , ls ∈ L(φ)
are distinct, and u,w ∈ {l1, l̄1, l2, l̄2, . . . , ls, l̄s}. It was
shown in (Chvátal and Reed 1992) that if a 2-CNF does not
contain bicycles then it is satisfiable. Therefore it suffices to
show that the 2-CNF φ′ produced in the first phase of Algo-
rithm 2 contains no bicycles.

Let φ′ be a 2-CNF formula obtained during the execution
of Algorithm 2 from φ ∼ Ckn(ξ), where ξ is a r.v. satisfying
condition (2) with tail function Fξ(`) ≤ V `−α with α >
k
k−1 and V > 0. It turns out that formula φ′ w.h.p. does not
contain not only bicycles of length greater than 4

ε log n, but
even paths of such length. This can be shown by estimating
the expectation of the number of such paths.

On the other hand, φ′ may contain ‘short’ paths (of length
s ∈ O(log n)), and potentially they can be a part of some
short bicycles. However, a bicycle is not only a path, it also
needs to sort of close on itself. We show that for short paths
this is almost improbable. This again can be done by esti-
mating the expectation of the number of bicycles of such
length.

Lemma 13 Let φ′ be a 2-CNF formula obtained during the
execution of Algorithm 2 from φ ∼ Ckn(ξ), where ξ is an r.v.
with tail function Fξ(`) ≤ V `−α for some α > k

k−1 , and
which also satisfies condition (2). Then φ′ has no bicycles
w.h.p.

As it was mentioned at the beginning of this section, 2-
SAT formulas with no bicycles are satisfiable, hence, φ′ is
satisfiable, which means that the original k-CNF formula
φ must be satisfiable w.h.p. This finalizes proof of Theo-
rem 11.

Experiments
In this section we report the results of some computational
experiments we conducted with Configuration Model, in
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(a) (b)

Figure 1: (a) Experimentally obtained satisfiability of Ckn(ξ) formulas. (b) Experimentally obtained dependence of the Algo-
rithm 2 success probability (y-axis) vs. β (x-axis). Solid gray vertical line at β = 2.5 marks our lower bound on satisfiability.

which ξ is the zeta distribution. The experiments pursued
the following goals:

(a) to estimate the actual location of the satisfiabil-
ity/unsatisfiability borderline;

(b) to evaluate the success rate of Algorithm 2 for different
values of the parameter α.

Let ξ be an r.v. distributed according to the zeta distribu-
tion Pr [ξ = l] = `−β

ζ(β) . We ran our experiments for different
values of the parameter β > 1. As it was noted earlier, zeta
distributed r.v. ξ is from the class of power-law distributions
P (α) with tail function satisfying Fξ(`) = Θ

(
`1−β

)
.

(a) By the definition of power-law distributions the expo-
nent of the tail α = β − 1. Hence, since ξ ∼ P (β − 1),
by Theorem 9 we do not expect formulas from Ckn(ξ) to be
satisfiable, when β − 1 < k

k−1 .
We generated two collections of 3-SAT formulas, one

with n = 106 variables and another one with n = 2 · 106

variables. For each n ∈ {106, 2 · 106} and every β ∈
{2.30, 2.35, 2.40, . . . , 2.95, 3.00}we created 2048 formulas
from C3

n(ξ), which we solved using CryptoMiniSAT 5.6.6
with default parameters, and calculated the fraction of satis-
fiable formulas among those instances (see Figure 1a). Ex-
periments were performed on machines with 32Gb of RAM
and Intel Core i7-6700 CPU, and we had 6 threads working
in parallel generating instances and solving them on each
computer.

Observe that when we doubled the number of variables,
the satisfiability dropped for β < 2.5, which agrees with our
lower bound for α < k

k−1 (or equivalently, in terms of β
for zeta-distributed ξ, when β < 2k−1

k−1 ). Also the satisfiabil-
ity somewhat dropped at β = 2.5, which supports our be-
lief that the true satisfiability/unsatisfiability borderline lies
somewhere above the k

k−1 mark. However, it could also be
that 2048 instances were not enough to see how satisfiability
evolves in the neighborhood to the right of β = 2.5.

(b) We ran Algorithm 2 on the same instances used for
(a) and (b), and also extra 2048 instances for each n ∈

{106, 2 · 106} and β ∈ {2.51, 2.52, . . . , 2.68, 2.69} (see
Figure 1b). Notice that overall the algorithm is quite effec-
tive solving Ckn(ξ) formulas with zeta-distributed ξ. When
we doubled the number of variables, its success probabil-
ity somewhat dropped for β ≤ 2.52, however, after the 2.53
mark the algorithm demonstrates reliable increase in success
probability comparing to its efficiency when n = 106.

Also, looking for an explanation of such a good perfor-
mance of SAT-solvers on heavy-tailed distributions we fol-
lowed (Boufkhad et al. 2005) who ran experiments, which
suggested that DPLL based SAT-solvers explore many more
branches while solving random d-Regular SAT (see Exam-
ple 4) , in which every literal has approximately the same de-
gree, than a random formula from the uniform model. The
hypothesis is that heuristics in the solvers have hard times
deciding which branch to pick in d-Regular formulas, since
all literals “look” almost the same, while in the uniform
model there is some variability in the literals’ degree. Natu-
rally, Boufkhad et al. posed an interesting question whether
the number of explored branches decreases when the range
of degrees increases.

We conducted a similar experiment, where we com-
pared the number of branches that CryptoMiniSAT solver
must explore before concluding whether a given formula is
SAT/UNSAT, and formulas were sampled from three differ-
ent random models, i.e. d-Regular SAT, uniform model, and
the Configuration Model with zeta distribution. Zeta dis-
tribution may be viewed as one of the canonical discrete
heavy-tailed distributions, and while in the uniform model
the largest degree is O(log n) w.h.p., heavy-tailed distribu-
tions can produce much larger degrees.

The experiment’s set up was the following. We created
10,000 instances for each model, for each average variable’s
degree from the set {1.1, 1.2, 1.3, . . . , 13.2, 13.3, 13.4}, and
for the number of variables n ∈ {100, 200, 300} (except
we did not test d-Regular SAT with n = 300, since it was
taking too long to solve such instances to collect any rea-
sonable amount of good measurements). Each instance then
was solved using CryptoMiniSAT 5.6.6 solver, and the num-
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k 3 4 5 6 7 8 9 10
Lower bound 2.500 2.333 2.250 2.200 2.167 2.143 2.125 2.111
Upper (algorithmic) bound 2.616 2.400 2.294 2.231 2.190 2.160 2.139 2.122
Relative gap 4.64% 2.86% 1.95% 1.41% 1.06% 0.81% 0.64% 0.51%

Table 1: Estimated bounds of the satisfiability threshold β0 for φ ∼ Ckn(ξ), where ξ is a zeta-distributed r.v.

(a) (b)

(c) (d)

Figure 2: The mean number of explored branches in 3-SAT formulas sampled from different random models. The number of
branches is in log scale and differs for each plot; the shaded area around the curves is the 99% confidence interval. (a) Formulas
having n = 100 variables. (b) Formulas with n = 200. (c) Formulas with n = 300. (d) The mean number of branches for zeta
distributed 3-SAT from the Configuration Model with minimum degree 5 and n = 300.

ber of explored branches was recorded for each formula.
The aggregated results of the experiment are presented in
the Figure 2.

Our results support the hypothesis proposed in (Boufkhad
et al. 2005). Even after 15 years after the paper was pub-
lished, SAT solvers still have troubles solving d-Regular
SAT, since the number of decisions they make seem to in-
crease exponentially with the number of variables. Simi-
lar troubles (although to slightly lower extent) they have
with uniformly distributed instances. However, what strikes
the most is the ease solvers have when dealing with the
heavy-tailed distributed instances. It seems that the number
of branches a DPLL solver explores scales at most linearly
with the number of variables. This agrees well with other
experiments described above.

However, one may argue that zeta distributed formulas
have too many variables of degree 1, which greatly sim-
plifies the search process. However, we also measured the
number of branches needed to solve zeta distributed formu-

las with minimum degree 5, and, as Figure 4(d) shows, it did
not make formulas much harder to solve.

Finally, to demonstrate that Algorithm 2 is actually quite
effective solving heavy-tailed distributed instances from the
Configuration Model despite being myopic, we computa-
tionally estimated the lower (Theorem 9) and upper (The-
orem 11) bounds of the satisfiability threshold β0 for zeta-
distributed random k-SAT, see Table 1. From the table, it
readily follows that the relative gap between the two bounds
decreases rapidly, as k grows, and becomes less than 1%
even for k ≥ 8.
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