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Abstract

Given a propositional formula ψ, the model counting problem,
also referred to as #SAT, seeks to compute the number of
satisfying assignments (or models) of ψ. Modern search-based
model counting algorithms are built on conflict-driven clause
learning, combined with the caching of certain subformulas
(called components) encountered during the search process.
Despite significant progress in these algorithms over the years,
state-of-the-art model counters often struggle to handle large
but structured instances that typically arise in combinatorial
settings. Motivated by the observation that these counters do
not exploit the inherent symmetries exhibited in such instances,
we revisit the component caching architecture employed in
current counters and introduce a novel caching scheme that fo-
cuses on identifying symmetric components. We first prove the
soundness of our approach, and then integrate it into the state-
of-the-art model counter GANAK. Our extensive experiments
on hard combinatorial instances demonstrate that the resulting
counter, SYMGANAK, leads to improvements over GANAK
both in terms of PAR-2 score and the number of instances
solved.

1 Introduction
Given a propositional formulaψ, the model counting problem,
also referred to as #SAT, seeks to compute the number of
satisfying assignments (or models) of ψ. Model counting is a
fundamental problem in artificial intelligence with a wide va-
riety of applications such as probabilistic inference (Chavira
and Darwiche 2008), neural network verification (Baluta et al.
2019), computational biology (Sashittal and El-Kebir 2020),
and the like. Consequently, the problem of model counting
has been subject to intense theoretical and practical inves-
tigations over the past four decades. The seminal work of
Valiant (1979) showed that model counting is #P-complete.
Subsequently, Toda (1991) proved that every problem in the
polynomial hierarchy can be efficiently solved using only a
single call to a #P oracle; more formally, PH ⊆ P#P.

Practical strategies for model counting span a variety of
approaches, from approximate techniques (Stockmeyer 1983;
Soos and Meel 2019) with probabilistic error bounds, to exact
counting (Birnbaum and Lozinskii 1999; Bayardo Jr and
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Pehoushek 2000; Sang et al. 2004; Thurley 2006; Aziz et al.
2015; Oztok and Darwiche 2015; Lagniez and Marquis 2017).
Many solvers use variants of the classic DPLL algorithm for
SAT solving (Davis, Logemann, and Loveland 1962), with
optimizations geared towards model counting (Birnbaum
and Lozinskii 1999). One prominent optimization used in
such algorithms is component caching: during the search
process subsets of clauses that can be solved independently
(referred to as components) are identified, solved, and cached.
When the same component appears again along a different
search path, the model count of the component can simply be
returned from the cache, alleviating the need to recompute
it (Bacchus, Dalmao, and Pitassi 2003).

The exact representation scheme used for storing compo-
nents in the cache differs between solvers: CACHET (Sang
et al. 2004; Sang, Beame, and Kautz 2005) uses a simple
encoding where the literals in each clause are represented
as integers with clauses separated by a sentinel. SHARPSAT
(Thurley 2006) uses a hybrid encoding that achieves a more
compact representation. GANAK (Sharma et al. 2019) intro-
duced the notion of a probabilistic cache: the component
encodings are hashed into a yet smaller representation to en-
able better cache utilization but, in the process, paying a price
with a (small) probability of incorrect counts due to hash col-
lisions. The algorithm is parametrized by the probability of
collision, which can be set as small as the user desires, at
the expense of poorer cache utilization due to longer hash
lengths. In addition, GANAK adds several other optimizations
that allow it to significantly outperform other state-of-the-art
model counters.

However, all existing cache indexing schemes (including
that of GANAK) declare a cache hit only on exact matches on
components. We make an important observation that there
are often components that are structurally identical but dif-
fer only in the variables appearing in the formula. Due to
the fact that components employ variables disjoint from the
rest of the formula, the model counts can also be transferred
across such structurally identical components. Such symmet-
ric components occur naturally in many instances, particu-
larly those arising from combinatorial problems. It is worth
remarking here that counting variants of many combinato-
rial problems, such as n-queens, quasigroup (Latin square)
completion, and graph k-colouring, enjoy straightforward
reductions to #SAT (Wang et al. 2020; Lauria et al. 2017;
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Gomes and Shmoys 2002).
Our primary contribution is exploiting the inherent sym-

metry exhibited in combinatorial problems for component
caching-based model counters. To this end, we propose
and formalise the notion of symmetric component caching—
allowing for the use of cached model counts even across com-
ponents that are only structurally identical (symmetric) and
not exact matches. We first prove that the proposed scheme
is sound when combined with clause learning. We then aug-
ment the state-of-the-art counter GANAK with symmetric
component caching, along with several low-level but cru-
cial technical improvements. The resulting counter, called
SYMGANAK, outperforms the state-of-the-art model counter
GANAK on PAR-2 score and number of instances solved,
achieving significant performance gains in terms of runtime.

The performance improvement of SYMGANAK over
GANAK in the context of combinatorial instances should
be viewed in the context of the recent SAT solver-assisted
breakthroughs in mathematics. The scalability of SAT solv-
ing has allowed questions of existence of particular structures
to be carefully reduced to SAT queries (Brakensiek et al.
2020; Heule, Kullmann, and Marek 2016); since counting is
a fundamental combinatorial object, the resolution of several
open problems in combinatorics via automated reasoning
techniques would significantly benefit from the availability
of efficient model counters for such instances.

2 Related Work
We are not the first to explore symmetry in propositional
logic: the use of precomputed symmetry-breaking predicates
to speed up SAT solving dates back to the 1990s (Crawford
et al. 1996). More recent work has extended this idea with
the use of more efficient symmetry-breaking formulas (De-
vriendt et al. 2016). Taking a different approach, others have
examined how symmetry information can be used at runtime
for SAT solvers (Sabharwal 2009).

Outside of SAT solving, Kitching and Bacchus (2007)
explored symmetry in the context of solving constraint opti-
mization problems with decomposable objective functions.
Bart et al. (2014) exploited symmetry to achieve space sav-
ings in knowledge compilation. We also note that a rich
literature on symmetry exists in the adjacent domain of lifted
inference, in which the aim is to develop algorithms that
exploit symmetries in graphical models to speed up proba-
bilistic inference. Although many such algorithms assume a
relational representation of the input, several approaches do
target non-relational input models; see, for example, (Holtzen,
Millstein, and Van den Broeck 2019; Bui, Huynh, and Riedel
2013; Niepert 2012).

In the context of propositional model counting specifically,
Wang et al. (2020) studied the use of existing model counting
algorithms on formulas conjoined with symmetry-breaking
predicates, thus effectively counting models up to isomor-
phism. SYMGANAK differs in that it counts all models of the
formula, and does not rely on symmetries of the input formula
itself—rather, it exploits symmetry amongst the components
encountered during runtime of the algorithm. Note that, in
principle, this does not require symmetry to be present in the

input formula for our approach to be effective: if a variable or-
dering can be chosen in such a way that propagating variables
in this order leads to structurally identical components, this
will suffice to see performance gains over existing counters.
We compare different variable ordering heuristics later in this
paper, and also examine the implications of our approach
when integrating with many of the features (such as clause
learning) present in modern model counters.

3 Background
In this section, we provide some background on propositional
logic and model counting, and review some preliminaries on
graph isomorphism and the #DPLL algorithm with compo-
nent caching.

Propositional logic We deal with propositional logic
throughout this paper. Variables are symbols which can take
the value true or false. A literal is a positive variable x or
its negation ¬x. A propositional formula ψ is defined induc-
tively as either a literal, the conjunction or the disjunction of
two formulas. We define the support of a formula ψ, denoted
by vars(ψ), as the set of variables that occur in ψ, e.g. if
ψ = x1 ∧ ¬x2 then vars(ψ) = {x1, x2}. Similarly, we de-
fine lits(ψ) as the set of all literals that can be formed using
variables from vars(ψ). A clause is a disjunction of literals,
e.g. x1 ∨ ¬x2 ∨ x3. A formula is said to be in conjunctive
normal form (CNF) if it is a conjunction of clauses. As is
standard in the model counting literature, we assume in the
remainder of this paper that all formulas are specified in CNF.
When applying π, an assignment of literals to truth values, to
ψ, we denote the resulting formula as ψ|π .

We follow the usual semantics of propositional logic,
which we omit here for brevity. Denote by Rψ the set of
all models of a formula ψ, and by Rψ↓P the projection of
Rψ onto P (that is, the models in Rψ restricted to literals
formed only from P ). The satisfiability problem is to deter-
mine whether or not a given formula ψ has a model, that is,
decide if |Rψ| > 0. Analogously, the model counting prob-
lem is to determine the number of models of a given formula
(i.e., determine |Rψ|).

Graph isomorphism Below we describe a few notions
relating to graph theory that we will use to detect structural
symmetries in formulas. We first review the definition of a
coloured graph.

Definition 1 (Coloured graph). A coloured graph is a three-
tuple G = (V,E, P ), where (V,E) specifies an undirected
graph and P = {Vi}ki=1 is a partition of the vertices into k
distinct colours. We further denote colour(v) = i if v ∈ Vi.

Given two coloured graphs, one can ask if they are isomor-
phic.

Definition 2 (Coloured graph isomorphism). Given two
coloured graphs G = (V1, E1, P1) and H = (V2, E2, P2),
G and H are said to be isomorphic if there exists a bijection
φ : G→ H such that:

• ∀v, w ∈ V1, (v, w) ∈ E1 ⇐⇒ (φ(v), φ(w)) ∈ E2

3923



Algorithm 1: #DPLL algorithm with component
caching.

1 function GetModelCount(ψ):
2 encoding← Encode(ψ)
3 if encoding in cache then
4 return CacheGet(encoding)
5 else
6 pick a literal l in ψ
7 |Rψl | ← CountConditioned(ψ, l)
8 |Rψ¬l | ← CountConditioned(ψ, ¬l)
9 CacheInsert(encoding, |Rψl |+ |Rψ¬l |)

10 return |Rψl |+ |Rψ¬l |
11 end
12 function CountConditioned(ψ, l):
13 ψl ← propagate units on ψ|l
14 if ψl contains empty clause then
15 return 0
16 else if ψl contains no clauses then
17 v ← number of unassigned variables in ψl
18 return 2v

19 else
20 |Rψl | ← 1
21 C ← DisjointComponents(ψl)
22 for Ci ← C do
23 |Rψl | ← |Rψl | × GetModelCount(Ci)
24 end
25 return |Rψl |
26 end

• ∀v ∈ V1 colour(v) = colour(φ(v))

The (coloured) graph isomorphism problem is to deter-
mine whether or not two (coloured) graphs are isomorphic.
The coloured graph isomorphism problem is polynomial-time
reducible to its uncoloured counterpart (Schweitzer 2009),
so we will omit the word “coloured” when appropriate. Al-
though the complexity theoretic status of the graph isomor-
phism problem remains open, relatively efficient algorithms
exist in practice (McKay and Piperno 2014). A closely related
problem is that of graph canonization, which is to compute
the canonical labelling of a given graph.

Definition 3 (Canonical labelling). Given graphs G and H, a
canonical labelling of a graph G is a new graph Canon(G),
such that H is isomorphic to G if and only if Canon(G) =
Canon(H).

As implied by the name, Canon(G) is effectively a rela-
belling of G. Thus, given an oracle for graph canonization,
verifying isomorphism between graphs can be done by com-
puting the canonical labelling for each graph, and checking
whether the resulting graphs are identical.

#DPLL algorithm with component caching A popular
model counting approach is a variant of the classic DPLL
algorithm for SAT solving (Davis, Logemann, and Loveland
1962; Birnbaum and Lozinskii 1999). This algorithm (Al-
gorithm 1) repeatedly chooses a literal l and creates two

branches (lines 6–8): one in which the variable is conditioned
to be true (ψ|l), and another where it is conditioned to be false
(ψ|¬l). When assigning true (false) to l, any clause containing
the l (¬l) is satisfied and thus removed; from the remaining
clauses ¬l (l) is eliminated. In the process, if all clauses are
removed, the formula is satisfied and the model count under
the current partial assignment is 2v , where v is the number of
unassigned variables. Instead, if a clause becomes empty, the
formula is unsatisfied and further assignments do not lead to
any model (lines 13–18).

Arguably one of the most impactful optimizations to the
above algorithm has been component caching. Component
caching identifies subformulas (or components) that can be
solved independently and memoizes them, allowing for a
shallower search tree. The component caching step happens
each time before a variable is selected and propagated.
Definition 4 (Component). Consider a partitioning of a for-
mula ψ into sets of clauses ψ = C1 ∪ · · · ∪ Cn such that
vars(Ci) ∩ vars(Cj) = ∅ for i 6= j. Then each Ci is called a
component of ψ, and we have |Rψ| =

∏n
i=1 |RCi |.

Example 1. Consider the formula ψ and its condition-
ing ψ|b :

ψ


a ∨ ¬c
¬a ∨ ¬b ∨ c
d ∨ ¬e
¬d ∨ e ∨ b

ψ|b


a ∨ ¬c
¬a ∨ c
d ∨ ¬e

Notice that the first two clauses of ψ|b do not share any
variables with the third clause. This means that ψ|b can be
split up into the two components C1 = {a ∨ ¬c,¬a ∨ c} and
C2 = {d ∨ ¬e} such that |Rψ|b | = |RC1

||RC2
|.

After solving and computing the model count of a com-
ponent (lines 20–25), the result is cached so that the model
count can be reused for an identical component encountered
elsewhere in the search tree (line 9). The cache is indexed by
an encoding for a component ψ (Encode(ψ) in line 2). De-
signing efficient encodings for the components has been an
important research direction (Sang et al. 2004; Sang, Beame,
and Kautz 2005; Thurley 2006; Sharma et al. 2019). More
compact encodings improve cache utilization, allowing mem-
oization of more components for a given cache size.

There exist many branching heuristics that dictate the
selection of variables for branching decisions (line 6).
VSADS (Sang, Beame, and Kautz 2005) is a popular heuristic
that selects the decision variable by considering the number
of instances of a variable in the current subformula and giv-
ing priority to variables that are present in recently generated
conflict clauses. CSVSADS (Sharma et al. 2019) proposes
a component-cache aware heuristic that adapts VSADS by
discouraging variables appearing in cached components in
an attempt to improve the cache hit-rate.

The core #DPLL algorithm with component caching has
been optimised and extended with additional features over
the years. Such optimisations include conflict driven clause
learning (Sang et al. 2004), a variety of variable and phase
selection heuristics (Sharma et al. 2019; Thurley 2006), and
implicit BCP (Thurley 2006), along with many others. We
will touch on some of these later in the paper.
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Figure 1: Illustration of the graph representation of C1 and C2

4 Approach
In this section, we introduce symmetric component caching
as well as some additional heuristics and optimizations added
in SYMGANAK.

4.1 Symmetric Component Caching
Let us formally define the notion of symmetric components.

Definition 5 (Symmetric components). Two formulas ψ1

and ψ2 are said to be (semantically) symmetric if there is a
bijection π : lits(ψ1) → lits(ψ2) such that Rψ2 = Rπ(ψ1)

and ∀l ∈ lits(ψ1) : ¬π(l) = π(¬l).
Example 2. Suppose we observe the following two compo-
nents in different places in our search tree. We can show
that the two components are semantically symmetric: for the
mapping π = {a 7→ ¬c, c 7→ a, d 7→ b} (fixing all other
literals), we have RC2

= Rπ(C1).

C1
{
¬a ∨ c
a ∨ c ∨ d C2

{
¬c ∨ a ∨ b
a ∨ c

Detecting symmetries We can employ the following two-
step process to detect if two components are symmetric: (i)
first encode the formulas ψ1 and ψ2 as graphs Gr(ψ1) and
Gr(ψ2); then (ii) check whether their canonical labellings
are equal, i.e. Canon(Gr(ψ1)) = Canon(Gr(ψ1)). We first
outline the encoding in step (i).

Definition 6. (Aloul et al. 2002) The graph representation
of ψ, denoted Gr(ψ) = (V,E, P ), is a coloured graph con-
structed in the following manner:

1. Add a node nci to V with colour(nci) = red for each
clause ci in ψ.

2. Add a node nli to V with colour(nli) = blue for each
literal li in lits(ψ).

3. Add an edge (nli , nlj ) joining each literal li with its
negated counterpart lj .

4. Add an edge (nci , nli) if li occurs in the clause ci, thus
joining every clause node with its constituent literal nodes.

Example 3. Using the definition above, the graph represen-
tation of both C1 and C2 from Example 2 is shown in Figure 1.

We now state our primary soundness argument for the sym-
metric component cache:

Theorem 1. Given two components ψ1 and ψ2 if
Canon(Gr(ψ1)) = Canon(Gr(ψ2)) then |Rψ1

| = |Rψ2
|.

Algorithm 2: Encoding symmetric components
1 function Encode(ψ):
2 graph← Gr(ψ)
3 canonical label← Canon(graph)
4 h← Hcl(n,m)
5 return h(canonical label)

Proof Sketch. It will suffice to show that if
Canon(Gr(ψ1)) = Canon(Gr(ψ2)), then ψ1 and ψ2

are semantically symmetric. Any formula recovered from
a graph Gr(ψ1) (Gr(ψ2)) is semantically symmetric to
ψ1 (ψ2): this is because it is unique up to a reordering of
clauses and literals, and relabelling of literals. The same
statement holds after canonical labelling: that is, any formula
reconstructed from Canon(Gr(ψ1)) (Canon(Gr(ψ2))) is
semantically symmetric to ψ1 (ψ2), since a canonical
labelling of a graph yields a bijection on the nodes such that
colours and edges are preserved (cf. Definition 2 and 3).
Thus, putting the two statements together we get that if
Canon(Gr(ψ1)) = Canon(Gr(ψ2)), then ψ1 and ψ2 are
semantically symmetric.

Probabilistic symmetric component caching (PSCC)
To improve cache utilization, SYMGANAK calculates an m-
bit hash of each canonical labelling using the hash family
Hcl(n,m) mapping {0, 1}n → {0, 1}m (Lemire and Kaser
2016). While probabilistic component caching (PCC) was
initially proposed in GANAK, we adapt the scheme to work
with cached graphs. The string that is hashed is created from
the vertices and edges of the canonical labelling in sorted
order. This hash (rather than the canonical labelling itself) is
stored in the cache. Hashing makes the solver probabilistic
due to the risk of a hash collision, but the confidence δ (influ-
encing the hash length m) is configurable by the user and can
be set to a small value for high confidence. The probabilistic
guarantees proven for PCC in GANAK (Sharma et al. 2019)
continue to hold for PSCC in SYMGANAK.

Final scheme Algorithm 2 shows the final algorithm of
the Encode(·) function (referred in Algorithm 1) for SYM-
GANAK. To compute an encoding for a component ψ, SYM-
GANAK computes the canonical labeling of the graph repre-
sentation of ψ (line 3). SYMGANAK then randomly samples
a hash function from the hash function family Hcl(n,m)
(line 4), and finally computes a hash of the canonical la-
belling to add to the component cache (line 5).

4.2 Other Heuristics and Optimizations
In this section, we discuss additional optimizations in SYM-
GANAK that are directed at improving the efficacy of sym-
metric component caching.

Bounded component analysis Modern model counters
typically integrate some form of conflict-driven clause learn-
ing, recording failed search paths as conflict clauses that
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guide backtracking. SYMGANAK employs bounded compo-
nent analysis (Sang et al. 2004), such that, the learned clauses
are used to prune the search space but are not included in the
cached component representation. This is similar to what is
done in prior model counters (like SHARPSAT and GANAK).
However, note that even for “classical” component caching
schemes, as employed in previous solvers, bounded compo-
nent analysis is not trivial: Sang et al. (2004) showed that
extra care must be taken when integrating component caching
with clause learning. When exploring unsatisfiable parts of
the search tree, model counts found for components under
this part of the tree should be discarded from the cache, as
reusing them may lead to incorrect results. Fortunately, as
long as all components under a given assignment are satisfi-
able, the approach is sound: below, we prove that this result
continues to hold for caching of symmetric components.

Lemma 1. Let π be a partial assignment such that F |π
is satisfiable, and let A be a component of F |π, and G|π
a set of learned clauses of F reduced by π. Then |RA| =
|RA∧G|π↓vars(A)|.

Proof. This lemma follows from 1 and 2 below which re-
spectively prove that any projected model of A ∧G|π is also
a model of A, and vice versa.

1. Any model of RA∧G|π↓vars(A) is clearly a model of A
(because A ∧G|π implies A).

2. By Theorem 1 of Sang et al. (2004), any model ρA of
A can be extended to a model of F |π ∧ G|π. Now since
A ∧ G|π is implied by F |π ∧ G|π (A is component of
F |π), ρA can also be extended to a model of A ∧ G|π.
Hence, it follows that for any model ρA of A we have
ρA ∈ RA∧G|π↓vars(A).

Theorem 2. Symmetric component caching, in combination
with bounded component analysis and clause learning, still
yields the correct model count as long as we remove all
sibling components and their descendants from the cache
when encountering an unsatisfiable component.

Proof. Using clause learning, when encountering compo-
nent A as part of a satisfiable formula F |π, its model count
will be computed as |RA∧G|π↓vars(A)|. This is because the
model count is computed using guidance from the learned
clauses (which may contain variables not in vars(A)). In
bounded component analysis, this value will be cached as the
model count of component A: the soundness of this, even for
symmetric component caching, is guaranteed by Lemma 1
(subject to pruning unsatisfiable siblings and their descen-
dants). Any component B, symmetric to A, can safely reuse
this value because |RA| = |RB | by Theorem 1.

Handling binary clauses The component encoding
scheme used in CACHET, a precursor to SHARPSAT repre-
sents cached components as a combination of the unassigned
variables and an identifier for each clause in the compo-
nent (Sang et al. 2004). Thurley (2006) observed that the

presence of binary clauses can be inferred from the pres-
ence of the unassigned variables, and therefore proposed a
sound caching scheme that did not store the identifier cor-
responding to binary clauses. Interestingly, the arguments
about soundness of Thurley’s encoding scheme do not hold
under symmetric caching scheme. Therefore, in a signifi-
cant departure from SHARPSAT and its derivatives such as
GANAK, we store the identifiers corresponding to the binary
clauses. Fortunately, the probabilistic component caching
scheme introduced in GANAK alleviates potential space ef-
ficiency drawbacks as our cache consists of the hashes of
components. Designing an encoding scheme for symmetric
components without encoding the identifiers corresponding
to binary clauses is an interesting challenge for future work.

Hybrid thresholding Searching for a component in the
SYMGANAK cache is computationally expensive as com-
pared to previous caching schemes. Thus, there exists a del-
icate balance between the time spent on cache lookups and
the gains from a cache hit. For this purpose, SYMGANAK
employs the following scheme, which we call hybrid thresh-
olding: we fix configurable parameters l and u (empirically
determined), for the minimum and maximum number of vari-
ables a component must contain to be eligible for symmetric
component caching. If the number of variables in a com-
ponent lies outside of these bounds (either |vars(C)| > u
or |vars(C)| < l), SYMGANAK instead uses the traditional
caching scheme of GANAK. This scheme is motivated by the
following observations:

• the overhead of computing the canonical labeling for small
components is often higher than simply solving these com-
ponents from scratch;

• large components have a high cost of computing the canon-
ical labeling and a small likelihood of obtaining a cache
hit.

Hence, in both of the above cases, we ignore symmetry
detection and resort to PCC (as used in GANAK) which is
both fast and has high cache utilization.

Variable selection heuristics Along with packaging exist-
ing heuristics like VSADS (Sang, Beame, and Kautz 2005)
and CSVSADS (Sharma et al. 2019), we introduce a novel
variable selection heuristic, Isomorphic Cache State and Vari-
able State Aware Decaying Sum (ICSVSADS), that is moti-
vated by CSVSADS but is also symmetry aware. More con-
cretely, whenever a cache hit occurs, we decrease the scores
of all variables in that component, as well as the scores of all
variables that have previously formed a component symmet-
ric to it.

For example, in GANAK, when (x ∨ y ∨ z) yields a cache
hit under the CSVSADS heuristic, the score of x, y, and z
is decreased to discourage branching on those variables in
the future. If we were to branch on any of those variables in
the future, it would be impossible to obtain a cache hit on
the same component below that point in the search tree. We
extend this idea to SYMGANAK with ICSVSADS, such that
when (x∨y∨z) is hit as a result of the symmetric component
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(a ∨ ¬b ∨ c), we not only discourage branching on x, y and
z, but also on a, b and c. The heuristic is otherwise identical
to CSVSADS.

5 Experiments
We integrated the caching scheme proposed above on top
of the existing state-of-the-art model counter, GANAK1. The
code has been released as a branch of the mainline GANAK
implementation2. We employed NAUTY (McKay and Piperno
2014) to perform graph canonization. It is worth remarking
that SYMGANAK also provides an option to turn off PSCC,
and thereby behave as a deterministic counter. We performed
a detailed empirical evaluation on a large suite of benchmarks
arising from combinatorial instances, with the objective of
answering the following research questions:

1. How do different variable branching heuristics impact the
performance of SYMGANAK?

2. How does the runtime performance of SYMGANAK com-
pare with respect to the state of the art model counter
GANAK?

Our empirical study leads to a surprising conclusion: first,
we observed that the VSADS heuristic achieves better run-
time performance than the other branching heuristics. We
also observed that SYMGANAK outperforms GANAK, both
in terms of PAR-2 score3 and the number of instances solved.
Our results are in line with often-observed behaviour in the
context of SAT solving: the choice of heuristics depend on
the class of benchmarks. As pointed out in Section 1, combi-
natorial benchmarks not only serve as interesting problems
in their own right, but improvements in automated reasoning
have paved the way for discovery and proofs of challenging
mathematical theorems. In this context, we expect our em-
pirical study to motivate further work on designing efficient
counting schemes for combinatorial instances.

5.1 Implementation and Experimental Setup
We evaluated SYMGANAK on 212 instances from a wide
range of combinatorial benchmark classes: Battleships, n-
queens, grid Bayesian networks, k-colouring of grid graphs,
quasigroup (Latin square) completion, FPGA switch-boxes,
and logic synthesis, among several others.

We performed our experiments on a high-performance
computer cluster, with each node having an Intel Xeon E5-
2690 v3 CPU with 24 cores and 96GB of RAM. We used all
24 cores per node, with memory limit set to 4GB per core.
Every instance, for each tool, was executed on a single core.

For GANAK and SYMGANAK, we set the default value of
δ = 0.05, a maximum component cache size of 2GB, and a
timeout of 5000 seconds. For SYMGANAK, we empirically

1In the recent 1st International Competition on Model Counting
(https://mccompetition.org), the entry built on GANAK won the
model counting track.

2https://github.com/meelgroup/ganak
3The PAR-2 score (penalized average runtime), as used in the

SAT 2018 Competition (Heule, Järvisalo, and Suda 2019), is the
average runtime assigning a runtime of two times the time limit
(instead of a “not solved” status) for each unsolved benchmark.
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Figure 2: Cactus plot comparing different variable branching
heuristics in SYMGANAK

determined 10 and 250 to be good lower and upper bound
values for hybrid thresholding (see Section 4.2). SYMGANAK
(similar to GANAK) uses the independent support (IS) (Ivrii
et al. 2016) of the formula to accelerate the search; due to
cost considerations, IS is used only if fewer than 500 conflicts
are detected after 500 000 decisions. We ran both GANAK
and SYMGANAK with this setting. All other parameters were
set to their default values as in GANAK.

The cactus plots (Figures 2 and 3) show the number of
instances solved (x-axis) by the respective tool in a given
amount of time (y-axis); a point (x, y) on the plots represents
that x benchmarks were solved by the counter in y seconds.

5.2 Results

1: Comparing branching heuristics Figure 2 compares
the different branching heuristics available in SYMGANAK.
We found it surprising that VSADS outperforms both the
cache aware heuristics (CSVSADS and ICSVSADS). A de-
tailed analysis of these heuristics on our set of benchmarks
shows that these heuristics are incomparable: of all the in-
stances, VSADS, CSVSADS and ICSVSADS was found to
be the most effective heuristic in 34, 16 and 12 instances
respectively; they had comparable performance4 in 60 in-
stances, while they all timed out for 85 instances. So, though
VSADS is the dominant heuristic in 34 instances, one of
the two cache aware heuristics emerges as the winner in 28
instances.

Among CSVSADS and ICSVSADS, our symmetry
aware heuristic ICSVSADS has the same performance as
CSVSADS. A deeper examination revealed that SYMGANAK
(ICSVSADS) made fewer decisions on average than SYM-
GANAK (CSVSADS) (149 000 vs 181 000), suggesting that
the gains of improved cache utilization may have outweighed
by the additional bookkeeping required to keep track of vari-
ables used in each component. Translating this improved
cache performance to runtime improvements seems to be an
interesting challenge for future work.

4Finishing within one second of each other.
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Figure 3: Cactus plot comparing SYMGANAK and GANAK
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Figure 4: Scatter plot comparing SYMGANAK and GANAK

2: Impact of the symmetric component cache
(SYMGANAK versus GANAK) As the VSADS branching
heuristic performs the best for both SYMGANAK and
GANAK on our benchmarks, we compared both of these tools
with VSADS. Figure 3 shows that SYMGANAK outperforms
GANAK: while SYMGANAK solves 16 more instances and
achieves a lower PAR-2 score of 0.87× that of GANAK,
there was only a single instance solved by GANAK that timed
out on SYMGANAK. Figure 4 shows a scatter plot comparing
their runtime on individual instances.

The performance of SYMGANAK can be attributed to the
fact that by exploiting symmetries, SYMGANAK is able to
obtain both a higher number of cache hits as well as cache
hits on larger components5. Over all instances solved by
both GANAK and SYMGANAK, the average component size
of each cache hit was 79.7 for SYMGANAK and only 58.2
for GANAK; the mean number of decisions made by SYM-
GANAK was approximately 302 000, compared to 1.4 million
for GANAK.

To understand the results above in greater detail, Figure 5
shows a detailed distribution of cache hits for a representa-
tive n-queens instance: SYMGANAK has component cache

5We define the size of a component as the number of variables
appearing in it.
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Figure 5: Cache hit distribution for an n-queens instance
(n = 12, 144 variables). For each component size (x-axis),
the number of cache hits for components of that size (y-axis).
The figure was generated using the CSVSADS heuristics,
turning off both random restarts and hybrid thresholding for
easier analysis.

hits with over 100 variables, about an order of magnitude
larger than the largest components hit by GANAK. Even on
the smaller components, SYMGANAK manages to obtain
substantially more cache hits than GANAK.

6 Conclusion
We investigated the effect of caching symmetric components
in #DPLL-based model counting algorithms. To evaluate our
approach, we implemented the concept into a new counter
SYMGANAK, an extension of GANAK, and compared their
performance.

Although detection of symmetries comes with a compu-
tational cost, we showed that detecting larger components
more often can reduce the overall time needed to solve them,
as illustrated by a reduced PAR-2 score and a greater number
of benchmarks solved by SYMGANAK. This opens the door
to further research in faster methods for detecting symmetric
components. We also evaluated the performance of SYM-
GANAK under several variable selection heuristics. While we
made some first steps in identifying a novel variable selection
heuristic (ICSVSADS) that could work well with symmetric
component caching, improving this remains an open problem
for future research. In future work we would also like to in-
vestigate the extension of our approach to weighted counting.

While our choice of GANAK as the base tool was in line
with the typical practice in the SAT community where im-
provements are shown on top of winning solvers of recent
years, it would be interesting to pursue integration of sym-
metric component caching in other state-of-the-art model
counting systems such as D4 (Lagniez and Marquis 2017).
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