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Abstract
Branch and Bound (B&B) is the exact tree search method
typically used to solve Mixed-Integer Linear Programming
problems (MILPs). Learning branching policies for MILP has
become an active research area, with most works proposing
to imitate the strong branching rule and specialize it to dis-
tinct classes of problems. We aim instead at learning a policy
that generalizes across heterogeneous MILPs: our main hy-
pothesis is that parameterizing the state of the B&B search
tree can aid this type of generalization. We propose a novel
imitation learning framework, and introduce new input fea-
tures and architectures to represent branching. Experiments
on MILP benchmark instances clearly show the advantages
of incorporating an explicit parameterization of the state of
the search tree to modulate the branching decisions, in terms
of both higher accuracy and smaller B&B trees. The resulting
policies significantly outperform the current state-of-the-art
method for “learning to branch” by effectively allowing gen-
eralization to generic unseen instances.

1 Introduction
Many problems arising from transportation, healthcare, en-
ergy and logistics can be formulated as Mixed-Integer Lin-
ear Programming (MILP) problems, i.e., optimization prob-
lems in which some decision variables represent discrete or
indivisible choices. A MILP is written as

min
x
{cTx : Ax ≥ b, x ≥ 0, xi ∈ Z ∀i ∈ I}, (1)

where A ∈ Rm×n, b ∈ Rm, c, x ∈ Rn and I ⊆ {1, . . . , n}
is the set of indices of variables that are required to be inte-
gral, while the other ones can be real-valued. Note that one
can consider a MILP as defined by (c, A, b, I); we do not as-
sume any special combinatorial structure on the parameters
c, A, b. While MILPs are in generalNP-hard, MILP solvers
underwent dramatic improvements over the last decades
(Lodi 2009; Achterberg and Wunderling 2013) and now
achieve high-performance on a wide range of problems.
The fundamental component of any modern MILP solver
is Branch and Bound (B&B) (Land and Doig 1960), an ex-
act tree search method. Following a divide-and-conquer ap-
proach, B&B partitions the search space by branching on
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variables’ values and smartly uses bounds from problem re-
laxations to prune unpromising regions from the tree. The
B&B algorithm actually relies on expertly-crafted heuris-
tic rules for its two most fundamental decisions: branching
variable selection (BVS) and node selection. In particular,
BVS is a crucial factor for B&B’s success (Achterberg and
Wunderling 2013), and will be the main focus of the present
article.

Understanding why B&B works has been called “one of
the mysteries of computational complexity theory” (Lipton
and Regan 2012), and there currently is no mathematical the-
ory of branching; to the best of our knowledge, the only at-
tempt in formalizing BVS is the recent work of Le Bodic
and Nemhauser. One central reason why B&B is difficult to
formalize resides in its inherent exponential nature: millions
of BVS decisions could be needed to solve a MILP, and a
single bad one could result in a doubled tree size and no
improvement in the search. Such a complex and data-rich
setting, paired with a lack of formal understanding, makes
B&B an appealing ground for machine learning (ML) tech-
niques, which have lately been thriving in discrete optimiza-
tion (Bengio, Lodi, and Prouvost 2018). In particular, there
has been substantial effort towards “learning to branch”,
i.e., in using ML methods to learn BVS policies (Lodi and
Zarpellon 2017). Up to now, most works in this area focused
on learning branching policies by supervision or imitation
of strong branching (SB), a valid but expensive heuristic
scheme (see Sections 2 and 5). The latest and state-of-the-
art contribution to “learning to branch” (Gasse et al. 2019)
frames BVS as a classification problem on SB expert de-
cisions, and employs a graph-convolutional neural network
(GCNN) to represent MILPs via their variable-constraint
structure. The resulting branching policies improve on the
solver by specializing SB to different classes of synthetic
problems, and the attained generalization ability is to simi-
lar MILP instances (within the same class), possibly larger
in formulation size.

The present work seeks a different type of generalization
for a branching policy, namely a systematic generalization
across heterogeneous MILPs, i.e., across problems not be-
longing to the same combinatorial class, without any restric-
tion on the formulation’s structure and size. To achieve this
goal, we parameterize BVS in terms of B&B search trees.
On the one hand, information about the state of the B&B
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tree – abundant yet mostly unexploited by MILP solvers –
was already shown to be useful to learn resolution patterns
shared across general MILPs (Fischetti, Lodi, and Zarpel-
lon 2019). On the other hand, the state of the search tree
ought to have a central role in BVS – which ultimately de-
cides how the tree is expanded and hence how the search
itself proceeds. In practice, B&B continually interacts with
other algorithmic components of the solver to effectively
search the decision tree, and some algorithmic decisions
may be triggered depending on which phase the optimiza-
tion is in (Berthold, Hendel, and Koch 2017). In a highly
integrated framework, a branching variable should thus be
selected among the candidates based on its role in the search
and its various components. Indeed, state-of-the-art heuris-
tic branching schemes employ properties of the tree to make
BVS decisions, and the B&B method equipped with such
branching rules has proven to be successful across widely
heterogeneous instances.

Motivated by these considerations, our main hypothesis
is that MILPs share a higher order structure in the space of
B&B search trees, and parameterized BVS policies should
learn in this representational space. We setup a novel learn-
ing framework to investigate this idea. First of all, there is
no natural input representation of this underlying space. Our
first contribution is to craft input features of the variables
that are candidates for branching: we aim at representing
their roles in the search and its dynamic evolution. The di-
mensionality of such descriptions naturally changes with the
number of candidates at every BVS step. The deep neural
network (DNN) architecture that we propose learns a base-
line branching policy (NoTree) from the candidate variables’
representations and effectively deals with varying input di-
mensions. Taking this idea further, we suggest that an ex-
plicit representation of the state of the search tree should
condition the branching criteria, in order for it to flexibly
adapt to the tree evolution. We contribute such tree-state pa-
rameterization, and incorporate it to the baseline architec-
ture to provide context over the candidate variables at each
given branching step. In the resulting policy (TreeGate) the
tree state acts as a control mechanism to drive a top-down
modulation (specifically, feature gating) of the highly muta-
ble space of candidate variables representations. By training
in our hand-crafted input space, the signal-to-noise ratio of
the high-level branching structure shared amongst general
MILPs is effectively increased, enabling our TreeGate pol-
icy to rapidly infer these latent factors and dynamically com-
pose them via top-down modulation. In this sense, we learn
branching from parameterizations of B&B search trees that
are shared among general MILPs. To the best of our knowl-
edge, the present work is the first attempt in the “learning to
branch” literature to represent B&B search trees for branch-
ing, and to establish such a broad generalization paradigm
covering many classes of MILPs.

We perform imitation learning (IL) experiments on a
curated dataset of heterogeneous instances from standard
MILP benchmarks. We employ as expert rule relpscost,
the default branching scheme of the optimization solver
SCIP (Gleixner et al. 2018), to which our framework is inte-
grated. Machine learning experimental results clearly show

the advantage of the policy employing the tree state (Tree-
Gate) over the baseline one (NoTree), the former achieving
a 19% improvement in test accuracy. When plugged in the
solver, both learned policies compare well with state-of-the-
art branching rules. The evaluation of the trained policies
in the solver also supports our idea that representing B&B
search trees enables learning to branch across generic MILP
instances: over test instances, the best TreeGate policy ex-
plores on average trees with 27% less nodes than the best
NoTree one. In contrast, the GCNN framework of Gasse
et al. that we use as benchmark does not appear to be able
to attain such broad generalization goal: often the GCNN
models fail to solve heterogeneous test instances, explor-
ing search trees that are considerably bigger than those we
obtain. The comparison thus remarks the advantage of our
fundamentally new architectural paradigm – of represent-
ing candidates’ role in the search and using a tree-context to
modulate BVS – which without training in a class-specific
manner nor focusing on constraints structure effectively al-
lows learning across generic MILPs.

2 Background
Simply put, the B&B algorithm iteratively partitions the so-
lution space of a MILP (1) into sub-problems, which are
mapped to nodes of a binary decision tree. At each node,
integrality requirements for variables in I are dropped, and
a linear programming (LP) (continuous) relaxation of the
problem is solved to provide a valid lower bound to the op-
timal value of (1). When the solution x∗ of a node LP re-
laxation violates the integrality of some variables in I, that
node is further partitioned into two children by branching
on a fractional variable. Formally, C = {i ∈ I : x∗i /∈ Z}
defines the index set of candidate variables for branching
at that node. The BVS problem consists in selecting a vari-
able j ∈ C in order to branch on it, i.e., create child nodes
according to the split

xj ≤ bx∗jc ∨ xj ≥ dx∗je. (2)
Child nodes inherit a lower bound estimate from their par-
ent, while (2) ensures x∗ is removed from their solution
spaces. After extending the tree, the algorithm moves on to
select a new open node, i.e., a leaf yet to be explored (node
selection): a new relaxation is solved, and new branchings
happen. When x∗ satisfies integrality requirements, then it
is actually feasible for (1), and its value provides a valid
upper bound to the optimal one. Maintaining global up-
per and lower bounds allows one to prune large portions
of the search space. During the search, final leaf nodes are
created in three possible ways: by integrality, when the re-
laxed solution is feasible for (1); by infeasibility of the sub-
problem; by bounds, when the comparison of the node’s
lower bound to the global upper one proves that its sub-tree
is not worth exploring. An optimality certificate is reached
when the global bounds converge. See (Wolsey 1998; Lodi
2009) for details on B&B and its combination with other
components of a MILP solver.

Branching rules Usually, candidates are evaluated with
respect to some scoring function, and j is chosen for branch-
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ing as the (or a) score-maximizing variable (Achterberg,
Koch, and Martin 2005). The most used criterion in BVS
measures variables depending on the improvement of the
lower bound in their (prospective) child nodes. The strong
branching (SB) rule (Applegate et al. 1995) explicitly com-
putes bound gains for C. The procedure is expensive, but ex-
perimentally realizes trees with the least number of nodes.
Instead, pseudo-cost (PC) (Benichou et al. 1971) maintains
a history of variables’ branchings, averaging past improve-
ments to get a proxy for the expected gain. Fast in evalua-
tion, PC can behave badly due to uninitialization, so com-
binations of SB with PC have been developed. In reliability
branching, SB is performed until PC scores for a variable
are deemed reliable proxies of bound improvements. In hy-
brid branching (Achterberg and Berthold 2009), PC scores
are combined with other ones measuring the variables’ role
on inference and conflict clauses. Many other scoring crite-
ria have been proposed, and some of them are surveyed in
Lodi and Zarpellon from a ML perspective.

State-of-the-art branching rules can in fact be interpreted
as mechanisms to score variables based on their effective-
ness in different search components. While hybrid branch-
ing explicitly combines five scores reflecting variables’ be-
haviors in different search tasks, the evaluation performed
by SB and PC can also be seen as a measure of how effec-
tive a variable is – in the single task of improving the bound
from one parent node to its children. Besides, one can as-
sume that the importance of different search functionalities
should change dynamically during the tree exploration. 1 In
this sense, our approach aims at learning a branching rule
that takes into account variables’ roles in the search and the
tree evolution itself to perform a more flexible BVS, adapted
to the search stages.

3 Parameterizing B&B Search Trees
The central idea of our framework is to learn BVS by means
of parameterizing the underlying space of B&B search trees.
We believe this space can represent the complexity and the
dynamism of branching in a way that is shared across hetero-
geneous problems. However, there are no natural parameter-
ization of BVS or B&B search trees. To this end, our con-
tribution is two-fold: 1) we propose hand-crafted input fea-
tures to describe candidate variables in terms of their roles
in the B&B process, and explicitly encode a “tree state” to
provide a richer context to variable selection; 2) we design
novel DNN architectures to integrate these inputs and learn
BVS policies.

3.1 Hand-crafted Input Features
At each branching step t, we represent the set of vari-
ables that are candidates for branching by an input matrix
Ct ∈ R25×|Ct|. To capture the multiple roles of a variable
throughout the search, we describe each candidate xj , j ∈ Ct
in terms of its bounds and solution value in the current sub-
problem. We also feature statistics of a variable’s participa-
tion in various search components and in past branchings.

1Indeed, a “dynamic factor” adjusts weights in the default
branching scheme of SCIP (relpscost).

In particular, the scores that are used in the SCIP default
hybrid-branching formula are part of Ct.

Additionally, we create a separate parameterization
Treet ∈ R61 to describe the state of the search tree. We
record information of the current node in terms of depth and
bound quality. We also consider the growth rate and the com-
position of the tree, the evolution of global bounds, aggre-
gated variables’ scores, statistics on feasible solutions and
on bound estimates and depths of open nodes.

All features are designed to capture the dynamics of the
B&B process linked to BVS decisions, and are efficiently
gathered through a customized version of PySCIPOpt (Ma-
her et al. 2016). Note that {Ct,Treet} are defined in a way
that is not explicitly dependent on the parameters of each
instance (c, A, b, I). Even though Ct naturally changes its
dimensionality at each BVS step t depending on the highly
variable Ct, the fixed lengths of the vectors enable training
among branching sets of different sizes (see 3.2). The rep-
resentations evolve with the search: t-SNE plots (van der
Maaten and Hinton 2008) in Figures 1(a) and 1(b) synthesize
the evolution of Treet throughout the B&B search, for two
different MILP instances. The pictures clearly show the high
heterogeneity of the branching data across different search
stages. A detailed description of the hand-crafted input fea-
tures is reported in the supplementary material (SM).

3.2 Architectures to Model Branching
We use parameterizations Ct as inputs for a baseline DNN
architecture (NoTree). Referring to Figure 2, the 25-feature
input of a candidate variable is first embedded into a repre-
sentation with hidden size h; subsequently, multiple layers
reduce the dimensionality from h to an infimum INF by
halving it at each step. The vector of length INF is then
compressed by global average pooling into a single scalar.
The |Ct| dimension of Ct is conceived (and implemented)
as a “batch dimension”: this makes it possible to handle
branching sets of varying sizes, still allowing the parame-
ters of the nets to be shared across problems. Ultimately, a
softmax layer yields a probability distribution over the can-
didate set Ct, according to which a variable is selected for
branching.

We incorporate the tree-state input to the baseline archi-
tecture to provide a search-based context over the muta-
ble branching sets. Practically, Treet is embedded in a se-
ries of subsequent layers with hidden size h. The output
of a final sigmoid activation is g ∈ [0, 1]H , where H =
h+h/2+ · · ·+INF denotes the total number of units of the
NoTree layers. Separate chunks of g are used to modulate
by feature gating the representations of NoTree: [g1, . . . , gh]
controls features at the first embedding, [gh+1, . . . , gh+h/2]
acts at the second layer, . . . , and so on, until exhausting
[gH−INF , . . . , gH ] with the last layer prior the average pool-
ing. In other words, g is used as a control mechanism on vari-
ables parameterization, gating their features via a learned
tree-based signal. The resulting network (TreeGate) models
the high-level idea that a branching scheme should adapt to
the tree evolution, with variables’ selection criteria dynami-
cally changing throughout the tree search.
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(a) (b) (c)

Figure 1: Evolution of Treet throughout B&B as synthesized by t-SNE plots (perplexity=5), for instances (a) eil33-2 and (b)
seymour1. (c) Histogram of |Ct| in train, validation and test data.

Figure 2: Candidate variables input Ct is processed by
NoTree layers (in blue) to select a variable for branching.
For the TreeGate model, the Treet input is first embedded
and then utilized in gating layers (in orange) on the candi-
dates’ representations.

3.3 Imitation Learning

We train our BVS policies via imitation learning, specif-
ically behavioral cloning (Pomerleau 1991). Our expert
branching scheme is SCIP default, relpscost, i.e., a re-
liability version of hybrid branching in which SB and PC
scores are complemented with other ones reflecting the can-
didates’ role in the search; relpscost is a more realistic
expert (nobody uses SB in practice), and the most suited in
our context, given the emphasis we put on the search tree.
One of the main challenges of learning to imitate a com-
plex BVS expert policy is that it is only possible to partially
observe the true state of the solver. In our learning frame-
work, we approximate the solver state with our parameter-
ized B&B search tree state xt = {Ct,Treet} at branching
step t. For each MILP instance, we roll-out SCIP to gather
a collection of pairs D = (xt, yt)

N
t=1 where yt ∈ Ct is the

branching decision made by relpscost at branching step
t. Our policies πθ are trained to minimize the cross-entropy
categorical loss function:

L(θ) = − 1

N

∑
(x,y)∈D

log πθ(y | x). (3)

3.4 Systematic Generalization
Our aim is to explore systematic generalization in learn-
ing to branch. We measure systematic generalization by
evaluating how well trained policies perform on never-seen
heterogeneous MILP instances. To begin, we remark that
relpscost is a sophisticated ensemble of expertly-crafted
heuristic rules that are dependent on high-level branching
factors. Due to the systematic generalization failures cur-
rently plaguing even state-of-the-art DNNs (Lake and Ba-
roni 2017; Johnson et al. 2017; Goodfellow, Shlens, and
Szegedy 2015), we do not believe that current learning al-
gorithms are capable of inferring these high-level branching
factors from the raw MILP formulation data alone. Instead,
by opting to train BVS policies in our hand-crafted input
feature space: (1) the signal-to-noise ratio of the underly-
ing branching factors is effectively increased, and (2) the
likelihood of our models overfitting to superficial regular-
ities is vastly decreased as this tree-oriented feature space
is abstracted away from instance or class specific peculiari-
ties of the MILP formulation. However, in order to achieve
systematic generalization, inference of high-level latent fac-
tors must be paired with a corresponding composition mech-
anism. Here, the top-down neuro-modulatory prior of our
TreeGate model represents a powerful mechanism for dy-
namically composing the tree state and the candidate vari-
able states together. In summary, we hypothesize that BVS
policies trained in our framework are able to better infer and
compose latent higher order branching factors, which in turn
enables flexible generalization across heterogeneous MILP
instances.

4 Experiments
Our experiments are designed to carefully measure the in-
ductive bias of BVS learning frameworks. We echo the sen-
timent of Melis, Kočiský, and Blunsom that merely scal-
ing up a dataset is insufficient to explore the issue of sys-
tematic generalization in deep learning models, and we in-
stead choose to curate a controlled dataset with the following
properties:
- Train/test split consisting of heterogeneous MILP in-

stances. This rules out the possibility of BVS policies

3934



learning superficial class-specific branching rules and in-
stead forces them to infer higher order branching factors
shared across MILPs.

- A restricted set of training instances. While limiting the
sample complexity of the training set poses a significant
learning challenge, the learning framework with the best
inductive bias will be the one that best learns to infer and
compose higher order branching factors from such a dif-
ficult training set.
While we train our BVS policies to imitate the SCIP

default policy relpscost, our objective is not to out-
perform relpscost. Indeed, expert BVS policies like
relpscost are tuned over thousands of solvers’ propri-
etary instances: comprehensively improving on them is a
very hard task – impossible to guarantee in our purely-
research experimental setting – and should thus not be the
only yardstick to determine the validity (and practicality) of
a learned policy. Instead, we focus on evaluating how ef-
ficiently BVS learning frameworks can learn to infer and
compose higher order branching factors by measuring gen-
eralization from a controlled training set to heterogeneous
MILP test instances.

MILP dataset and solver setting In general, randomly-
generated generic MILPs are too easy to be of interest; be-
sides, public MILP libraries only contain few hundreds of
instances, not all viable for our setting, and a careful dataset
curation is thus needed. Comparisons of branching policies
become clearer when the explored trees are manageable in
size and the problems can be consistently solved to optimal-
ity. Thus we select 27 heterogeneous problems from real-
world MILP benchmark libraries (Bixby et al. 1998; Koch
et al. 2011; Gleixner et al. 2019; Mittelmann 2020), focus-
ing on instances whose tree exploration is on average rela-
tively contained (in the tens/hundreds of thousands nodes,
max.) and whose optimal value is known. We partition our
selection into 19 train and 8 test problems, which are listed
in Table 1(a) (see SM for more details).

We use SCIP 6.0.1. Modifying the solver configuration is
common practice in BVS literature (Linderoth and Savels-
bergh 1999), especially in a proof-of-concept setting in
which our work is positioned. To reduce the effects of the
other solver’s components on BVS, we work with a config-
uration specifically designed to fairly compare the perfor-
mance of branching rules (Gamrath and Schubert 2018). In
particular, we disable all primal heuristics and for each prob-
lem we provide the known optimal solution value as cutoff.
We also enforce a time-limit of 1h. Further details on the
solver parameters and hardware settings are reported in the
SM.

Data collection and split We collect IL training data from
SCIP roll-outs, gathering inputs xt = {Ct,Treet} and cor-
responding relpscost branching decisions (labels) yt ∈
Ct. Given that each branching decision gives rise to a single
data-point (xt, yt), and that the search trees of the selected
MILP instances are not extremely big, one needs to augment
the data. We proceed in two ways.

TRAIN: air04, air05, dcmulti, eil33-2, istanbul-no-cutoff,
l152lav, lseu, misc03, neos20, neos21, neos-476283,
neos648910, pp08aCUTS, rmatr100-p10, rmatr100-p5,
sp150x300d, stein27, swath1, vpm2

TEST: map18, mine-166-5, neos11, neos18, ns1830653,
nu25-pr12, rail507, seymour1

(a)

Total (s, k) pairs

Train 85,533 {0, 1, 2, 3} × {0, 1, 5, 10, 15}
Valid. 14,413 {4} × {0, 1, 5, 10, 15}
Test 28,307 {0, 1, 2, 3, 4} × {0}

(b)

Table 1: (a) List of MILP instances in train and test sets.
(b) For train, validation and test set splits we report the to-
tal number of data-points and the seed-k pairs (s, k) from
which they are obtained.

Policy h / d / LR Test acc (@5) Val acc (@5)

NT 128 / – / 0.001 64.02 (88.51) 77.69 (95.88)
TG 64 / 5 / 0.01 83.70 (95.83) 84.33 (96.60)

GCNN – / – / – 15.28 (44.16) 19.28 (38.44)

Table 2: Selected NoTree (NT) and TreeGate (TG) models
with corresponding hyper-parameters, and test and valida-
tion accuracy. For GCNN we report average scores across 5
seeds; validation means use the best scores observed during
training.

i. We exploit MILPs performance variability (Lodi and Tra-
montani 2013), and obtain perturbed searches of the same
instance by setting solver’s random seeds s ∈ {0, ..., 4}
to control variables’ permutations.

ii. We diversify B&B explorations by running the branch-
ing scheme random for the first k nodes, before switch-
ing to SCIP default rule and starting data collection. The
motivation behind this type of augmentation is to gather
input states that are unlikely to be observed by an ex-
pert rule (He, Daume III, and Eisner 2014). We select
k ∈ {0, 1, 5, 10, 15}, where k = 0 corresponds to a run
without random branching. We apply this type of augmen-
tation to train instances only.

One can quantify MILP variability by computing the coef-
ficient of variation of the performance measurements (Koch
et al. 2011); we report such scores and measure the effect of
k initial random branchings in the SM. Overall, both (i) and
(ii) appear effective to diversify our dataset. The final com-
position of train, validation and test sets is summarized in
Table 1(b). Train and validation data come from the same in-
stances; the test set contains samples from separate MILPs,
using only type (i) augmentations.

An important measure to analyze the dataset is given by
the size of the candidate sets (i.e., the varying dimension-
ality of the Ct inputs) contained in each split. Figure 1(c)
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shows histograms for |Ct| in each subset. While in train and
validation the candidate set sizes are mostly concentrated in
the [0, 50] range, the test set has a very different distribution
of |Ct|, and in particular one with a longer tail (over 300).
In this sense, the test instances present never-seen branch-
ing data gathered from heterogeneous MILPs, and we test
the generalization of our policies to entirely unknown and
larger branching sets.

IL optimization and GCNN benchmark We train both
IL policies using ADAM (Kingma and Ba 2015) with de-
fault β1 = 0.9, β2 = 0.999, and weight decay 1× 10−5.
Our hyper-parameter search spans: learning rate LR ∈
{0.01, 0.001, 0.0001}, hidden size h ∈ {32, 64, 128, 256},
and depth d ∈ {2, 3, 5}. The factor by which units of NoTree
are reduced is 2, and we fix INF = 8. We use PyTorch
(Paszke et al. 2019) to train the models for 40 epochs, reduc-
ing LR by a factor of 10 at epochs 20 and 30. To benchmark
our results, we also train the GCNN framework of Gasse
et al. on our MILP dataset. Data collection and experiments
are carried out as in Gasse et al., with full SB as expert, but
we fix the solver setting as discussed above.

4.1 Results
In our context, standard IL metrics are informative yet
incomplete measures of performance for a learned BVS
model, and one also cares about assessing the policies’ be-
haviors when plugged in the solver environment. This is why
in order to determine the best NoTree and TreeGate policies
we take into account both types of evaluations. We first se-
lect few policies based on their test accuracy score; next, we
specify them as custom branching rules in SCIP and per-
form full roll-outs on the entire MILP dataset, over five ran-
dom seeds (i.e., 135 evaluations each). To summarize the
policies’ performance in the solver, we compute the shifted
geometric mean (with a shift of 100) of the total number of
nodes, over the 135 B&B executions (ALL), and restricted
to TRAIN and TEST instances.

Both types of metrics are extensively reported in the SM,
together with the policies’ hyper-parameters. Incorporating
an explicit parameterization of the state of the search tree to
modulate BVS clearly aids generalization: the advantage of
TreeGate over NoTree is evident in all metrics, and across
multiple trained policies. What we observe is that best test
accuracy does not necessarily translate into best solver per-
formance. We select as best policies those yielding the best
nodes average over the entire dataset (Table 2). In the case
of TreeGate, the best model corresponds to that realizing the
best top-1 test accuracy (83.70%), and brings a 19% (resp.
7%) improvement over the NoTree policy, in top-1 (resp.
top-5) test accuracy. The GCNN models (trained, tested and
evaluated over 5 seeds, as in Gasse et al.) struggle to fit data
from heterogeneous instances: their average top-1 (resp. top-
5) test accuracy is only 15.28% (resp. 44.16%), and across
ALL instances they explore around three times the number
of nodes needed by our policies. Note that GCNN is a mem-
ory intensive model, and we had to drastically reduce the
batch size parameter to avoid memory issues when using our

instances. Learning curves and further details on training dy-
namics and test results can be found in the SM.

In solver evaluations, NoTree and TreeGate are also com-
pared to SCIP default branching scheme relpscost, PC
branching pscost and a random one. For relpscost
we also compute the fair number of nodes (Gamrath and
Schubert 2018), which accounts for those nodes that are pro-
cessed as side-effects of SB-like explorations, specifically
looking at domain reduction and cutoffs counts. In other
words, the fair number distinguishes tree-size reductions due
to better branching from those obtained by SB side-effects.
For rules that do not involve any SB, the fair number and the
usual nodes’ count coincide. The selected solver parametric
setting (the same used for data collection and GCNN bench-
mark) allows a meaningful computation of the fair number
of nodes, and a honest comparison of branching schemes.

Both NoTree and TreeGate policies are able to solve all
instances within the 1h time-limit, like relpscost. In
contrast, GCNN hits the limit on 7 instances (24 times in to-
tal), while random does so on 4 instances (17 times in total)
and pscost on one instance only (neos18), a single time.
Table 3 reports the nodes’ means for every test instance over
five runs (see SM for complete instance-specific results), as
well as measures aggregated over train and test sets, and the
entire dataset. In aggregation, TreeGate is always better than
NoTree, the former exploring on average trees with 14.9%
less nodes. This gap becomes more pronounced when mea-
sured over test instances only (27%), indicating the advan-
tage of TreeGate over NoTree when exploring unseen data.
Results are less clear-cut from an instance-wise perspective,
with neither policy emerging as an absolute winner, though
the reductions in tree sizes achieved by TreeGate are overall
more pronounced. While the multiple time-limits of GCNN
hinder a proper comparison in terms of explored nodes, re-
sults clearly indicate that the difficulties of GCNN exacerbate
over never-seen, heterogeneous test instances.

Our policies also compare well to other branching
rules: both NoTree and TreeGate are substantially better
than random across all instances, and always better than
pscost in aggregated measures. Only on one training in-
stance both policies are much worse than pscost (neos-
476283); in the test set, GCNN appears competitive with our
models only on neos11. As expected, relpscost still re-
alizes the smallest trees, but on 11 (out of 27) instances at
least one among NoTree and TreeGate explores less nodes
than the relpscost fair number. In general, our policies
realize tree sizes comparable to the SCIP ones, when SB side
effects are taken into account.

5 Related Work
Among the first attempts in “learning to branch”, Al-
varez, Louveaux, and Wehenkel perform regression to learn
proxies of SB scores. Instead, Khalil et al. propose to
learn the ranking associated with such scores, and train
instance-specific models (that are not end-to-end policies)
via SVMrank. Also Hansknecht, Joormann, and Stiller treat
BVS as a ranking problem, and specialize their models to
the combinatorial class of time-dependent traveling sales-
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Instance NoTree TreeGate GCNN random pscost relpscost (fair)

ALL 1241.79 1056.79 *3660.32 *6580.79 *1471.61 286.15 (719.20)
TRAIN 834.40 759.94 *1391.41 *2516.04 884.37 182.27 (558.34)
TEST 3068.96 2239.47 *33713.63 *61828.29 *4674.34 712.77 (1276.76)

map18 457.89 575.92 *3907.64 11655.33 1025.74 270.25 (441.18)
mine-166-5 3438.44 4996.48 *233142.25 *389437.62 4190.41 175.10 (600.22)
neos11 3326.32 3223.46 1642.07 29949.69 4728.49 2618.27 (5468.05)
neos18 15611.63 10373.80 40794.74 228715.62 *133437.40 2439.29 (5774.36)
ns1830653 6422.37 5812.03 *22931.45 288489.30 12307.90 3489.07 (4311.84)
nu25-pr12 357.00 86.80 *45982.34 1658.41 342.47 21.39 (105.61)
rail507 9623.05 3779.05 *75663.48 *80575.84 4259.98 543.39 (859.37)
seymour1 3202.20 1646.82 *319046.04 *167725.65 3521.47 866.32 (1096.67)

Table 3: Total number of nodes explored by learned and SCIP policies for test instances and aggregated over sets, in shifted
geometric means over 5 runs on seeds {0, . . . , 4}. We mark with * the cases in which time-limits were hit. For relpscost,
we also compute the fair number of nodes.

man problems. More recently, the work of Balcan et al.
learns mixtures of existing branching schemes for different
classes of synthetic problems, focusing on sample complex-
ity guarantees. In Di Liberto et al., a portfolio approach to
BVS is explored. Similarly to us, Gasse et al. frames BVS
as classification of SB-expert branching decisions and em-
ploys a GCNN model to learn branching. Proposed features
in Gasse et al. (as in Alvarez, Louveaux, and Wehenkel;
Khalil et al.) focus on static, parameters-dependent proper-
ties of MILPs and node LP relaxations, whereas our repre-
sentations aim at capturing the temporality and dynamism
of BVS. Although their resulting policies are specializations
of SB that appear to effectively capture structural character-
istics of some classes of combinatorial optimization prob-
lems, and are able to generalize to larger formulations from
the same distribution, we showed how such policies fail to
attain a broader generalization paradigm.

Still concerning the B&B framework, He, Daume III, and
Eisner employ IL to learn a heuristic class-specific node se-
lection policy; Song et al. propose instead a retrospective
approach on IL. A reinforcement learning (RL) approach for
node selection can be found in Sabharwal, Samulowitz, and
Reddy, where a Multi-Armed Bandit is used to model the
tree search.

Feature gating has a long and successful history in ma-
chine learning (see Makkuva et al.), ranging from LSTMs
(Hochreiter and Schmidhuber 1997) to GRUs (Chung et al.
2014). The idea of using a tree state to drive a feature gat-
ing of the branching variables is an example of top-down
modulation, which has been shown to perform well in other
deep learning applications (Shrivastava et al. 2016; Lin et al.
2016; Son and Mishra 2018). With respect to learning across
non-static action spaces, the most similar to our work is
Chandak et al., in the continual learning setting. Unlike the
traditional Markov Decision Process formulation of RL, the
input to our policies is not a generic state but rather includes
a parameterized hand-crafted representation of the available
actions, thus continual learning is not a relevant concern for
our framework. Other works from the RL setting learn repre-
sentations of static action spaces (Dulac-Arnold et al. 2015;
Chandak et al. 2019a), while in contrast the action space of

BVS changes dynamically with |Ct|.

6 Conclusions and Future Directions

Branching variable selection is a crucial factor in B&B suc-
cess, and we setup a novel imitation learning framework to
address it. We sought to learn branching policies that gen-
eralize across heterogeneous MILPs, regardless of the in-
stances’ structure and formulation size. In doing so, we un-
dertook a step towards a broader type of generalization. The
novelty of our approach is relevant for both the ML and the
MILP worlds. On the one hand, we developed parameter-
izations of the candidate variables and of the search trees,
and designed a DNN architecture that handles candidate
sets of varying size. On the other hand, the data encoded
in our Treet parameterization is not currently exploited by
state-of-the-art MILP solvers, but we showed that this type
of information could indeed help in adapting the branching
criteria to different search dynamics. Our results on MILP
benchmark instances clearly demonstrated the advantage of
incorporating a search-tree context to modulate BVS and aid
generalization to heterogeneous problems, in terms of both
better test accuracy and smaller explored B&B trees. The
comparison with the GCNN setup of Gasse et al. reinforced
our conclusions: experiments showcased the inability of the
GCNN paradigm alone to generalize to new instances for
which no analogs were available during training. One crucial
step towards improving over state-of-the-art solvers is pre-
cisely that of being able to generalize across heterogeneous
problems, and our work is the first paper in the literature
attaining this target.

There surely are additional improvements to be gained by
continuing to experiment with IL methods for branching,
and also by exploring innovative RL settings. Indeed, the
idea and the benefits of using an explicit parameterization of
B&B search trees – which we demonstrated in the IL setup
– could be expanded even more in the RL one, for both state
representations and the design of branching rewards.
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