
Extreme k-Center Clustering

MohammadHossein Bateni,1 Hossein Esfandiari,1 Manuela Fischer,2 Vahab Mirrokni1

1Google Research, NYC, New York, USA
2ETH, Zurich, Switzerland

bateni@google.com, esfandiari@google.com, manuela.fischer@inf.ethz.ch, mirrokni@google.com

Abstract

Metric clustering is a fundamental primitive in machine learn-
ing with several applications for mining massive datasets. An
important example of metric clustering is the k-center prob-
lem. While this problem has been extensively studied in dis-
tributed settings, all previous algorithms use Ω(k) space per
machine and Ω(nk) total work. In this paper, we develop the
first highly scalable approximation algorithm for k-center clus-
tering, with Õ(nε) space per machine and Õ(n1+ε) total work,
for arbitrary small constant ε. It produces an O(log log log n)-
approximate solution with k(1+o(1)) centers in O(log log n)
rounds of computation.

1 Introduction
Designing scalable algorithms has become increasingly criti-
cal in the new era of massive datasets. Many of the classic
efficient algorithms developed over decades are not effective
anymore in handling very large datasets. For example, the
simplest sequential greedy algorithms fail to work when they
need to make millions of iterations over billions of data points.
It is inevitable to resort to distributed algorithms. These, how-
ever, often come with a slightly worse solution quality. The
design of scalable algorithms is all about balancing the fea-
sibility of running the algorithm versus the accuracy of the
solution. The two main dimensions to scale an algorithm are
to improve its total work, or to distribute the work among
several machines.

In this paper, we develop scalable approximation algo-
rithms for metric clustering, where the high-level goal is to
identify k groups for given data points based on their proxim-
ity in a metric space. The k-center problem is an important
and well-studied formulation for metric clustering (Gonzalez
1985).

Problem Statement: In this problem, we are given a pa-
rameter k ≥ 1 and a set V of n points in a metric space. The
goal is to find a subset S ⊆ V of size k, called centers, such
that the maximum distance of any point in V to S is mini-
mized. This maximum distance (or radius) is called the value
or the cost of the solution. Let OPT denote the optimal cost
and C be a corresponding set of k centers. Throughout the

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

paper, we will slightly abuse the notation by using C ∈ C not
only for the center but also for the corresponding cluster. The
cluster of a center is a subset of V consisting of the center
as well as all the points that have this center as their closest
center.

We aim to select centers such that any point is close to
at least one center. This can be seen as compressing n data
points into k points.

Approximation Algorithms: The k-center problem is NP-
hard (Gonzalez 1985), hence the quest for approximation
algorithms. A set S ⊆ V of size k is an α-approximate so-
lution if the maximum distance of any point in V to a point
in S is at most αOPT. Gonzalez (1985) shows that a simple
O(kn)-time greedy algorithm produces a 2-approximate so-
lution, which is best possible unless P = NP. The running
time of this algorithm, however, might be prohibitively slow.

Scalable Distributed Algorithms: Recent work has fo-
cused on developing distributed approximation algorithms,
in particular in the Massively Parallel Computation (MPC)
model. Although inspired by MapReduce (Dean and Ghe-
mawat 2008), this model is also relevant for other distributed
computation frameworks, e.g., Spark, Hadoop, Pregel, and
Giraph. The aim is to design distributed algorithms that em-
ploy machines with sublinear space, and also run in a sub-
linear (and hopefully sublogarithmic) number of rounds of
computation. In addition to round and memory complexity,
this model takes into account the total work (including total
communication) as an important factor for the quality of the
algorithm.

In the MPC model, initially, Ene, Im, and Moseley (2011)
presented a constant-round 10-approximation algorithm for k-
center with Ω(

√
nεk2) space per machine. Later, Malkomes

et al. (2015) gave a two-round 4-approximation MPC al-
gorithm with O(

√
nk) space per machine and O(nk) total

work. Very recently in a surprising work, Ceccarello, Pietra-
caprina, and Pucci (2018) improved this result to a two-round
(2 + ε)-approximation MPC algorithm for the k-center prob-
lem using O

(√
nk
(

4
ε

)d)
space per machine and O(nk) total

work, where d indicates the dimension of the Euclidean space.
Indeed, this result is useful for low-dimensional spaces.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3941

All previous results in this area have two major shortcom-
ings: (i) a total work of Ω(nk) or Ω(nεk2), and (ii) con-
suming Ω(k) space per machine, which is a byproduct of
computing a core-set of size k on each machine. Such algo-
rithms are less practical for large n and k; e.g., to compress
n = 109 data points into k = 106 data points1 on 1000 ma-
chines, we’d have nk/1000 = 1012 operations per machine,
which include the costly computation of the distance of two
points. All in all, it is impossible to run an O(nk)-work al-
gorithm even in a distributed environment, hence the need to
develop a new algorithm for that scale.

Moreover, as k grows, we may not have enough space to
compute a core-set of size Ω(k) on a single machine, which
is nevertheless the case with all prior work. The importance
of algorithms with o(k) space per machine has been observed
very recently, in particular, for k-means (Bhaskara and Wije-
wardena 2018) and k-diversity maximization (Epasto, Mir-
rokni, and Zadimoghaddam 2019). However, to the best of
our knowledge there is no such algorithms for k-center.

In fact, k-center clustering has many applications with a
large k. In particular, in the context of semi-supervised learn-
ing, when we use label propagation, the number of clusters
can be much higher than the number of actual classes. Some
examples are spam detection and fraud detection (modeled
via binary classification), where many clusters are needed
for label propagation to produce a high-quality model. For
example, 100M emails labeled by users may easily translate
to 1M clusters. Another example in the context of unsuper-
vised learning is same-meaning query clustering for online
advertisement or document search (e.g., (Wang et al. 2009)).
Indeed, we design distributed algorithms that work on huge
datasets, which are orders of magnitude larger than what
was discussed in prior extremal clustering literature. See the
discussion in (Kobren et al. 2017) for more applications.

A natural technique to cope with large instances in dis-
tributed environments is extracting a small subset of the input,
called core-set, which captures the essence of the solution—
in the sense that any approximate solution in the subset is
also a good solution for the original instance—and applying
standard sequential algorithm on this smaller subset, where it
is much more efficient. This approach has led to the results
mentioned above. In particular, these core-sets use Ω(k) data
points per machine, leading to quadratic total work and large
local memory requirement.

1.1 Our Approach and Contribution
In this work, we aim to address the above issues by designing
the first highly scalable algorithm for the k-center problem
with a sublogarithmic number of rounds of computation,
sublinear space per machine, and small total work. Following
the lead of (Ceccarello, Pietracaprina, and Pucci 2018), we
focus on Euclidean space with constant dimensions.

Theorem 1.1. There is an O(log log n)-round MPC algo-
rithm with Õ(nε) space per machine and Õ(n1+ε) total work

1For the same-meaning query-clustering application or query-
intent modeling, k is often much larger (corresponding to small
average cluster size), which makes the problem more acute.

that w.h.p.2 computes an O(log log log n)-approximate solu-
tion toO(1)-dimensional Euclidean k-center with k(1+o(1))
centers.

This result significantly improves the total work and
the memory requirement per machine for large k, while
it bounds the approximation ratio by O(log log log n) with
minor increase in the number of centers. Notice that
log2 log2 log2 1077 ' 3 and log2 log2 log2 1019725 ' 4. Our
algorithm is designed for very large scale where total work
O(nk) is not feasible. As expected, the scalability comes at
the cost of losing slightly on solution quality.

The main ingredient of our algorithm is the development of
significantly smaller core-sets of truly sublinear size. More-
over, instead of purely random partitioning, we introduce
a proximity-based partitioning for this problem. Section 5
shows that the traditional core-set method, which distribute
the data arbitrarily or uniformly at random, cannot achieve
any approximation with core-sets of size less than k, which
makes more sophisticated partitioning approaches like ours
inevitable.

Finally, we provide an empirical study to corroborate our
theoretical guarantees, and demonstrate that the algorithm
performs well in practice. In particular, we show that com-
pared to the baselines, (1) our algorithms obtain up to more
than 100x speed-up, (2) the solution degrades by at most a
factor 2 (as opposed to the O(log log n) and O(log log log n)
bounds). This is provided in Section 6

1.2 Roadmap of the Paper
Theorem 1.1 is proved in Section 4 by presenting the algo-
rithm DISTRIBUTED-k-CENTER. As a warm-up, we intro-
duce the simplified algorithm UNIFORM-k-CENTER in Sec-
tion 3. Both algorithms rely on iteratively calling a sampling-
based subroutine SAMPLE-AND-SOLVE which we will out-
line in Section 2. This procedure basically samples a set
of hubs from the current points and sends each point to its
closest hub to form bags of points. Then, inside each bag,
it invokes the sequential greedy algorithm (i.e., the farthest-
point heuristic) for the k-center problem to select centers
(which we call centroids to distinguish them from the centers
in the optimum). The output is the union of these centroids
from all bags.

Repeated application of this procedure accumulates some
“error” in the final radius.

To adapt to the varying diameter of bags, we synchronize
the heuristic runs on their target radius. Notice that the radius
of the optimal solution can be guessed at the cost of running
O(log n) parallel algorithms (one of which has the correct
estimate of the optimal radius).

The main difference between the simplified algo-
rithm UNIFORM-k-CENTER and our final algorithm
DISTRIBUTED-k-CENTER is that the latter changes this esti-
mate of radius in the middle. Intuitively, then, the algorithm
first groups absolutely nearby points together (“compressing”
each optimal cluster into O(log n) points) and then solves
the k-center problem globally.

2With high probability, i.e., with probability at least 1 − 1
nc

, for
a sufficiently large constant c.

3942

1.3 Other Related Works
Introduced and studied by (Agarwal, Har-Peled, and
Varadarajan 2004), core-sets have been extensively used
in designing various distributed algorithms such as k-
center (Malkomes et al. 2015; Ceccarello, Pietracaprina, and
Pucci 2018), balanced partitioning (Bateni et al. 2014), sub-
modular maximization (Barbosa et al. 2015; Mirrokni and
Zadimoghaddam 2015), graph matching (Assadi et al. 2019),
k-means and related problems (Bachem, Lucic, and Krause
2015; Lucic, Bachem, and Krause 2016; Bachem et al. 2016;
Bachem, Lucic, and Krause 2018; Bhaskara and Wijewar-
dena 2018), and many others (Karloff, Suri, and Vassilvitskii
2010; Lattanzi et al. 2011; Balcan, Ehrlich, and Liang 2013;
Indyk et al. 2014). Core-sets have also played a major role in
the design of streaming algorithms (Agarwal, Har-Peled, and
Varadarajan 2004; Guha et al. 2003).

In the disitributed setting, k-means and k-median (Balcan,
Ehrlich, and Liang 2013; Bahmani et al. 2012) as well as
balanced clustering has been previously studied (Ugander
and Backstrom 2013; Rahimian et al. 2013; Bateni et al.
2014). In particular, Bateni et al. (2014) used a generalization
of composable core-sets to study balanced k-center.

Metric k-clustering problems have also been studied in
the streaming setting. Charikar et al. (2004) were the first to
study k-center in the streaming setting with both insertion
and deletion and gave a 8-approximation algorithm using
O(k) space. Guha et al. (2003) presented the first single-pass
constant-approximation algorithm for k-median in the stream-
ing setting. Despite extensive study of k-means in distributed
and streaming settings (Bachem, Lucic, and Krause 2015; Lu-
cic, Bachem, and Krause 2016; Bachem et al. 2016; Bachem,
Lucic, and Krause 2018; Bhaskara and Wijewardena 2018),
these algorithms are not applicable to the k-center problem.

2 A Proximity-based Sampling Procedure
In this section, we present and analyze a simple sampling-
based procedure called SAMPLE-AND-SOLVE, which will
serve as building block for our k-center algorithms later on.

The SAMPLE-AND-SOLVE procedure has two stages.
The bagging stage (lines 1–2 of Algorithm 1) partitions

the points V into bags Bh for hubs h ∈ H . We sample each
point from V independently with probability p, resulting in
the set of hubs H ⊆ V . Then, we assign each v ∈ V to its
closest hub, breaking ties arbitrarily. A hub h together with
the point assigned to it form a bagBh. We place all the points
from one bag Bh on the same machine.3

The solving stage (lines 3–9 of Algorithm 1) marks a set
of points in each bag as centroids of clusters. We perform the
sequential greedy algorithm for k-center (i.e., the farthest-
point heuristic) on each bag separately. More precisely, we
first mark the bag’s original hub as a centroid. Then, iter-
atively, we mark a non-centroid from the bag with largest
distance to the current centroids in the bag, provided that the
distance exceeds 2r.

The bagging stage requires that we efficiently search for
nearest neighbors, which is done by a classical application

3With limited number of machines, one may assign the task of
several bags to one machine.

Algorithm 1 SAMPLE-AND-SOLVE(V , p, r)
Input: points V , probability 0 < p < 1, radius r

1: Form H from an i.i.d. sample of V with probability p
2: Assign points in V to their closest hubs from H to form

bags {Bh : h ∈ H}
3: Process each bag in memory (one per machine)
4: for each hub h ∈ H , bag Bh of points assigned to it do
5: Sh ← {h}
6: while maxv∈Bh dist(v, Sh) > 2r do
7: Sh ← Sh ∪ {arg maxv∈Bh dist(v, Sh)}
8: end while
9: end for

Output: set of centroids S =
⋃
h Sh

of locality-sensitive hashing (LSH). Using LHS in parallel
adds a log(∆) factor to the total work, where ∆ is the ratio
of the minimum distance to the maximum distance. Due to
the space limit we defer the further details to the full version.

2.1 Analysis of Approximation Ratio
We first show that if we choose r = OPT and have b hubs,
we get a 2-approximation with bk centroids. Bear in mind
that p = O(b/n) is used in the algorithm. For the sake of
simplicity, the write-up assumes the knowledge of OPT. As
alluded to before, guessing its correct value only adds a
logarithmic factor in space usage and total work.
Lemma 2.1. SAMPLE-AND-SOLVE produces a solution of
cost 2r with |S| ≤ bk centroids, when working on b bags.

The number bk of potential centroids, however, might be
as large as Ω(n). Thus, despite the good approximation, the
set S does not serve as an acceptable core-set due to its large
size. This issue will be resolved by the algorithms UNIFORM-
k-CENTER and DISTRIBUTED-k-CENTER in Algorithms 3
and 4, respectively, which iteratively invoke this procedure
SAMPLE-AND-SOLVE.

2.2 Analysis of Local Memory Usage
To demonstrate that the local memory usage of SAMPLE-
AND-SOLVE is O

(
logn
p

)
w.h.p., we show that in every iter-

ation w.h.p. the size of each bag is O
(

logn
p

)
. The proof of

this lemma contains some novel geometric arguments that
simplified the proof. However, due to the space limit we defer
the proof to the full version.
Lemma 2.2. With high probability, SAMPLE-AND-SOLVE

uses O
(

logn
p

)
space per bag.

2.3 Number of Centroids in an Optimal Cluster
We conclude with an observation that relates the events of be-
ing sampled as hub and being selected as centroid in the
SAMPLE-AND-SOLVE with r = OPT. This observation
will play a crucial role later in the analysis of UNIFORM-
k-CENTER in Section 3. Recall that C denotes the optimal
clustering.
Lemma 2.3. The number of centroids in each optimal cluster
C ∈ C does not exceed the number of bags, i.e., |S ∩ C| ≤

3943

Algorithm 2 UNIFORM-k-CENTER(V , r)
Input: set V of n points, radius r

1: S1 ← SAMPLE-AND-SOLVE(V, 1
nε , r)

2: s0 ← n1−ε

3: for t← 1 to τ = 3 log log n do
4: st ←

√
st−1

5: St+1 ← SAMPLE-AND-SOLVE(St,
1
st
, r)

6: end for
Output: Sτ

|H|. Moreover, if at least one hub is sampled from C, then
no additional centroids are selected from C. In other words,
S ∩ C ⊆ H if H ∩ C 6= ∅.

The following lemma follows easily from the construc-
tion of the SAMPLE-AND-SOLVE procedure (in particular,
Lines 6–8).

Lemma 2.4. The clustering produced by SAMPLE-AND-
SOLVE costs at most 2OPT.

3 A Simplified Algorithm
In this section, we present a simplified algorithm called
UNIFORM-k-CENTER, which iteratively applies SAMPLE-
AND-SOLVE, each time collapsing all points of a cluster to its
centroid. This leads to a significant reduction of the number
of centers from Ω(nk) to k(1 + o(1)), while only increasing
the approximation ratio from 2 to O(log log n).

3.1 Algorithm Description
We let s0 = n1−ε, p0 = 1/nε, as well as si =

√
si−1

and pi = 1/si for all 1 ≤ i ≤ τ = 3 log log n. Starting
with S−1 = V , in iteration i ≥ 0, we apply SAMPLE-AND-
SOLVE on Si−1 with radius r and sampling probability pi to
obtain a set of centroids Si, which will be used as the input
set of points for the next iteration. We refer to Algorithm 2
for the pseudocode.

3.2 Analysis of Approximation Ratio
We first note that the centroids selected by this algorithm
(and the implicitly induced clustering) indeed approximate
the distance of the optimum k-center solution by a factor
O(log log n). This is a direct consequence of the following
lemma, which shows that in every iteration we lose at most
an additive 2OPT in the distance, implying that after τ =
3 log log n iterations, we have a 6 log log n-approximation.

Lemma 3.1. Any point in V has distance at most 2iOPT to
Si for each 0 ≤ i ≤ τ .

Proof. We prove the claim by induction on i. The statement
holds trivially for i = 0 where S0 = V . Now suppose, for
some 0 ≤ i ≤ τ that that any point v ∈ V has distance
at most 2iOPT to Si. Take a specific vertex v ∈ V and let
u ∈ Si be a point at distance at most 2iOPT from v. If
u ∈ Si+1, then v has distance at most 2iOPT ≤ 2(i+1)OPT
to Si+1. Consider the case u 6∈ Si+1. Lemma 2.4 guarantees
that u is at distance no more than 2OPT from Si+1.

3.3 Analysis of Number of Centers
We show that we select k[1 + o(1)] points as centers.

Lemma 3.2. The number of selected centers Sτ w.h.p. is
k +O(log3 n log4 log n).

Observe that if k = poly log(n), we can run one of the
previous algorithms since O(k) centers would fit in memory
and O(nk) total work would be small. So when k is large—
the focus of this work—the bound on the number of centers
in Lemma 3.2 is indeed k[1 + o(1)].

The proof of this lemma is split into two parts correspond-
ing to two phases of the algorithm (which are only relevant
for the analysis).

Phase 1: After the first O(log log n) iterations of the al-
gorithm, the “compressed” size of each optimum cluster will
w.h.p. shrink to Õ(log n). The following lemma is proved in
Section 3.3.

Lemma 3.3. For each optimal cluster C ∈ C, the remaining
number of centroids in C after O(log log n) iterations is
w.h.p. Õ(log n).

Phase 2: After each optimal cluster w.h.p. has shrunk to
Õ(log n), i.e., after the O(log log n) iterations of Phase 1,
O(log log n) additional iterations suffices to drop the total
number of selected centroids to k[1 + o(1)]. We prove the
following lemma in Section 3.3.

Lemma 3.4. After O(log log n) additional iterations, w.h.p.,
we have only k +O(k/ log n+ log2 n log2 log n) centroids.

Phase 1

Proof of Lemma 3.3. We show inductively for i ≥ 1 that
w.h.p. the remaining number |C ∩ Si| of centroids in any
optimal cluser C ∈ C before round i is at most fi−1 =
(1 + δ)i−1si−1 log n log2 log n, for a sufficiently small δ =
Θ(1/ log log n).

Before proving the above, let us argue it proves the lemma.
Notice that the first term in fi is (1 + δ)i which will be
(1 + δ)O(log log n) = exp(O(δ log log n)) = exp(O(1)) =

O(1). The second term is si = (n1−ε)1/2i which will be
O(n1/2O(log log n)

) = O(n1/O(log n)) = O(1). Therefore, the
size upper bound will be O(log n log2 log n) = Õ(log n), as
desired.

For the base case of the induction where i = 1, observe
that |C ∩ S1| is at most the number of hubs by Lemma 2.3.
The expected number of hubs is s0 = n1−ε since the sam-
pling probability is 1/nε. The Chernoff bound shows that the
probability that we sample more than s0 log n hubs is at most
e−

log n−1
3 n1−ε

= n−Ω(1). Thus, w.h.p. |C ∩ S1| ≤ s0 log n,
which proves the base case.

In the inductive step i > 0, we suppose |C ∩ Si| ≤ fi−1

and prove that |C ∩ Si+1| ≤ fi w.h.p. Notice that number of
centroids in an optimum cluster is decreasing across rounds,
i.e., C ∩ Si+1 ⊆ C ∩ Si, hence |C ∩ Si| ≤ fi is trivial.
Suppose |C ∩ Si| > fi.

Next we first argue that at least one hub is sampled from
each optimal cluster, and then we bound the number hubs
sampled from each. Using Lemma 2.3 we then conclude

3944

that no additional centroid is added to each optimum cluster,
which finishes the inductive proof.

Hubs are sampled from Si with probability pi = 1/si at
iteration i. Thus the probability that no hub is selected from
optimum clusterC is (1−pi)|C∩Si| ≤ exp(−pi|C∩Si|). We
already have a lower bound on the current compressed size
of C, i.e., |C ∩ Si| > fi ≥ si log n log2 log n. So the above
probability is at most exp(− log n log2 log n) = 1/nΩ(1),
that is, w.h.p. one hub is sampled from C.

On the other hand, the expected number of sampled hubs
from cluster C at iteration i is

pi|C ∩ Si| ≤ pifi−1 = pi(1 + δ)i−1si−1 log n log2 log n

=
1

si
(1 + δ)i−1si−1 log n log2 log n

=
1

si
(1 + δ)i−1s2

i log n log2 log n

= (1 + δ)i−1si log n log2 log n

= fi/(1 + δ) (1)

< log n log2 log n. (2)

We apply the Chernoff bound, along with (1) and (2), to
bound the probability that the number of sampled hubs from
cluster C is above fi as

exp(−δ
2

3
fi/(1 + δ)) < exp(−δ

2

3
log n log2 log n)

= n−
δ2

3 log2 logn,

which is n−Ω(1) for sufficiently small δ = 1/Θ(log log n).
As promised, Lemma 2.3 shows |C ∩ Si+1| ≤ fi w.h.p.

Taking union bound over all these small failure probabilities,
we conclude the Lemma.

Phase 2

Proof of Lemma 3.4. At the beginning of Phase 2, each
optimal cluster C ∈ C has compressed size at most
O(log n log2 log n), by Lemma 3.3. Hence, overall, we have
at most O(k` log n) centroids for ` = log2 log n.

Consider an iteration i in Phase 2. Let yC = |C ∩ Si| be
the compressed size of optimal cluster C at the beginning of
iteration i. Define CL = {C ∈ C : yC ≥ 2} as the set of large
clusters of compressed size at least 2. Let random variable
ZC denote the compressed size of cluster C after iteration i,
and let random variable XC denote the difference yC − ZC ,
i.e., how much the cluster shrinks. Define y =

∑
C∈CL yC

and X =
∑
C∈CL XC . The number of centroids in large

clusters drops from y to y −X during iteration i.
We will show that w.h.p. X ≥ γy, for a constant γ > 0,

provided that y = Ω(` log2 n) for a sufficiently large hidden
constant in Ω. Within O(log log n) iterations, y drops from
O(k` log n) to O(max{O(k/ log n, ` log2 n}). With at most
k centroids (by definition) in non-large clusters, we will have
a total of k+O(k/ log n) +O(` log2 n) centroids as a result,
proving the lemma.

Recall that pi = n−(1−ε)/2i in iteration i. As Phase 2
starts at a sufficiently large round Θ(log log n), we assume

pi > n−1/Θ(log n) > 2
3 . On the other hand, since Phase 2

takes another Θ(log log n) iterations, we can upper-bound pi
by some constant λ < 1.

Take an arbitrary large cluster C ∈ CL. We first argue that
the success probability of cluster C is Pr[1 ≤ ZC < αyC] ≥
β for constants α < 1 and β > 0. (In doing so, we try not to
optimize the parameters to keep the argument simple.) Below
we bound the number of sampled hubs in C instead of ZC ,
since Lemma 2.3 shows that if the former is positive, it serves
as an upper bound for the latter.

Let’s consider two cases. If yC ≤ 36/(1− λ)2, only look
at the outcome where among all the vertices in C, a particular
vertex of C is exclusively sampled as a hub. The success
probability is then at least pi(1 − pi)yC−1 ≥ β0 = 2

3 (1 −
λ)36/(1−λ)2 which is a constant (albeit small). Let α0 = 1

2
to have Pr[1 ≤ ZC < α0yC] ≥ β0. In the second case,
yC > 36/(1 − λ)2. The probability that no hub from C is
sampled in this case is at most 1 − pi ≤ 1

3 . When at least
one hub is sampled, the expected number of sampled hubs
is E[ZC |ZC > 0] = piyC ≤ λyC . We apply the Chernoff
bound to get

Pr
[
ZC >

λ+ 1

2
yC
∣∣ZC > 0

]
≤ exp(− (1− λ)2

12
piyC)

≤ exp(− (1− λ)2

12

2

3
yC)

≤ exp(− (1− λ)2

18
yC)

≤ exp(−2).

The success probability in this case is at least 1 − 1
3 −

e−2 > 0.53. Thus, in this case, we have Pr[1 ≤ ZC ≤
α1yC] > β1 = 0.53 for α1 = (λ + 1)/2. Therefore, for
α = max(α0, α1) and β = min(β0, β1), we have

Pr[1 ≤ ZC ≤ αyC] > β. (3)
Since C ∩ Si is decreasing through the algorithm, a non-

large cluster (of compressed size one) may not become large
again. Clearly XC ≥ 0 for any cluster C. We showed in (3)
that XC ≥ (1− α)yC with probability β for any large clus-
ter C. Taking expectations and summing over large clusters
yields E[X] ≥ β(1−α)y ≥ β(1−α)Θ(` log2 n), where the
last derivation uses the assumption y = Ω(` log2 n) when
we need to guarantee progress. Since 0 ≤ XC ≤ yC and
yC = O(` log n) by Lemma 3.3, the Hoeffding inequality
gives

Pr
[
X ≤ 1

2
E[X]

]
≤ exp

(
− 2|CL| E2[X]

4
(

maxC{yC}
)2
)

≤ exp

(
− Θ(`2 log4 n)

2O(`2 log2 n)

)
≤ exp(−Ω(log2 n)) = n−Ω(log n).

Therefore, provided that y = Ω(` log2 n) for a sufficiently
large hidden constant, Phase 2 reduces, w.h.p., the total num-
ber of centroids in large clusters by a constant factor, i.e.,
X ≥ γy where γ = β(1 − α)/2. This concludes the proof
of the lemma.

3945

Algorithm 3 DISTRIBUTED-k-CENTER(V , r)
Input: set V of n points, radius r

1: Phase 1:
2: S1 ← UNIFORM-k-CENTER(V, r

log log n)

3: Phase 2:
4: s1 ← log n log log n
5: for t← 1 to τ = ct log log log n do
6: St+1 ← SAMPLE-AND-SOLVE(St,

1
st
, r)

7: st+1 ← s
2/3
t

8: end for
Output: Sτ

4 The Final Algorithm
In this section, we prove Theorem 1.1 by showing
that DISTRIBUTED-k-CENTER, is an O(log log log n)-
approximation algorithm. This algorithm differs from
UNIFORM-k-CENTER of Section 3, in that it uses a non-
uniform estimate of the optimum throughout the algorithm.

4.1 Algorithm Description
The algorithm consists of two phases.
Phase 1: In the first phase, we run UNIFORM-k-CENTER

from Section 3 with r = OPT
log log n , to obtain a set S1 of initial

centroids. As we will see, this compresses each optimal clus-
ter to polylogarithmic size without significant effect on the
cost.

Phase 2: The second phase iteratively applies the
SAMPLE-AND-SOLVE procedure from Section 2 on Si
with r = OPT and sampling probabilities 1/si where
s1 = log n log log n and si = s

2/3
i−1 for i > 1. After

τ = ct log log log n iterations, for a sufficiently large con-
stant ct, we output the set of centroids Sτ .

The algorithm is analyzed in two steps, corresponding to
the phases of the algorithm.

4.2 Analysis of Phase 1
The first phase has the purpose of reducing the number of
centroids in each optimal cluster C ∈ C to Õ(log n), while
preserving the approximation.

Lemma 4.1. W.h.p. the set S1 of centroids induces a
constant-approximate clustering with the property that C ∩
S1 = O(log2 n log2 log n) for each C ∈ C.

4.3 Analysis of Phase 2
The second phase reduces the number of centroids to
k[1 + o(1)] in only O(log log log n) rounds, as opposed to
O(log log n) rounds of UNIFORM-k-CENTER, which then
yields an overall approximation ratio of O(log log log n), as
opposed to O(log log n).

Approximation Ratio: It follows from Lemma 3.1
that the final clustering Sτ is a 2τ = O(log log log n)-
approximation to the implicit solution in S1, as we lose an
additive factor in every iteration. Since, by Lemma 4.1, S1

is an O(1)-approximation to the optimum, the output of the
second phase is an O(log log log n)-approximation.

k T C L SC SL
5,000 7 34 8 4.9 1.1

10,000 7 63 13 8.5 1.7
20,000 8 123 31 15.6 3.9
50,000 8 304 130 36.2 15.4
100,000 9 614 393 67.5 43.2
200,000 11 1,267 1,206 120.0 114.1

k T C SC
1,000 63 380 6.0
5,000 129 698 5.4

10,000 289 1,096 3.8
50,000 321 4,282 13.4

100,000 322 8,585∗ 26.6
500,000 333 40,807∗ 122.6

Figure 1: Speed-up for en-wiki (top) and prod (bottom).
All times are rounded to the closest minute. The running
times of DISTRIBUTED-k-CENTER, classic greedy and lazy
greedy are denoted by T,C, L, respectively. The runtimes
marked with asterisks are extrapolated, as they would take
one or more weeks to finish. Then SC and SL show the
speed-up that DISTRIBUTED-k-CENTER achieves over the
particular greedy algorithm.

Number of Selected Centers: In order to prove Theo-
rem 1.1, it remains to show |Sτ | ≤ k[1 + o(1)]. This is
presented in the following lemma. The proof of this lemma
is partly similar to that of Lemma 3.4.
Lemma 4.2. After O(log log n) additional iterations, w.h.p.,
we have only (1 + o(1))k centroids.

5 Lower Bounds
In this section we state our lower bounds. Due to space limit
we defer the proofs to the full version. Next lemma states that
random partitioning leads to bad core-sets, hence our more
sophisticated partitioning method is necessary.
Lemma 5.1. With a random partition of points into m < k
bags, the core-set needs at least k points in each bag.

Next lemma states that our more sophisticated partitioning
technique does not immediately lead to smaller core-sets.
Lemma 5.2. SAMPLE-AND-SOLVE needs at least k cen-
troids from each bag—at least bk overall—to guarantee a
2-approximation.

6 Empirical Study

Dataset # points dimension norm
song 515,345 90 variable
en-wiki 3,831,716 100 1.0
prod 108,729,118 64 1.0

Table 1: Our datasets at a glance.

We run the proposed algorithms on public and private
datasets in order to demonstrate that (1) the new algorithms
are pretty scalable, and (2) they produce high-quality solu-
tions.

3946

Figure 2: Comparing quality of our algorithms to the baseline
sequential greedy algorithm on song dataset. The red curve
(at the bottom) shows the maximum radius of the solution
produced by the baseline for 11 values of k (i.e., number
of clusters) ranging from 500 to 150K. Right above the red
curve, the green curve plots the best solution we obtained
from either of our algorithms. The blue and orange dots
represent various runs of the two algorithms, with the curves
of same color fitting to the mean quality at each value of k.

Datasets. We employ 3 datasets in the experiments: two
publicly available datasets (song (Dheeru and Karra Taniski-
dou 2017) and en-wiki (Epasto, Mirrokni, and Zadimoghad-
dam 2017)) and a much larger private one (prod). We provide
further details of the datasets in the full version.

Solution quality. The approximation factors,O(log log n)
and O(log log log n), which we established for UNIFORM-k-
CENTER and DISTRIBUTED-k-CENTER, are small constants
for any imaginable dataset. For instance, both are less than
6 for a graph with 1018 vertices. The experiments show that
the hidden constants are not big either, as we can always
get within a factor 3 of the output of the sequential greedy
algorithm. As expected, DISTRIBUTED-k-CENTER comes
up a little ahead in terms of solution quality, at the cost of a
slight increase in running time.

We implemented the two algorithms in C++, and ran each
multiple times for every value of k, on a cloud platform (simi-
lar to Hadoop) which implements the MapReduce framework.
See Figure 2 for the results. The ratio of the quality of the
best solution we obtain over that of the greedy algorithm
ranges from 1.2 to 2.0 (corroborating the theoretical results
and bounding the hidden constants). The difference in quality
among results for each value of k is due to a couple of factors:
(1) We try a few ways to set the parameters (e.g., the precise
sampling factor), which adds some diversity to the results.
(2) Although the theoretical analysis of our algorithm (in par-
ticular, the LSH part) works for small dimensions, we try the
algorithms for real datasets with high dimensions. Despite
the resulting randomness, the experiments demonstrate the
desired concentration bounds hold. In fact, computing the
optimal radius given a fixed set of center points is not easy to
do precisely faster than the naive O(kn) brute-force method.
Therefore, in contrast to the sequential algorithm, the quality
of our solutions might be better than reported.

Scalability. We compare the running time of our imple-
mentation to that of the sequential greedy algorithm. The

Figure 3: Comparing the running time of our algorithms to
the baseline sequential greedy algorithm on song dataset.
The blue dots represent the running time (in seconds) of our
algorithm. The blue curve denotes the mean for different
values of k (i.e., number of clusters). The orange and green
curves show the running time of two implementations of the
sequential greedy algorithm (i.e., “lazy” and “classic”).

reported times for the sequential algorithm are from C++
implementations that ran on a dedicated computer without
any other computationally intensive task at the time: Intel(R)
Xeon(R) W-2135 CPU @ 3.70GHz with 6 cores and 8MB
cache. The reported times for distributed algorithms corre-
spond to running on a cloud platform, using no more than
100 machines, each of which has a weaker CPU than the ma-
chine used by the sequential algorithm. However, our code
did run in a silo, and in fact, it competed with many other
tasks using the same cloud infrastructure, so it suffered from
scheduling delays (for each MPC round) as well as preemp-
tions. Moreover, no attempt was made to optimize this code.
Therefore, the comparison is not apples to apples, and it over-
estimates the runtime of the distributed algorithm. As noticed
in Figure 3, the running time for a particular k typically has
a multiplicative range of 3. The actual running time of the
distributed algorithm would be even smaller than the fastest
sample point, if there were no competing tasks and we used
the 100 machines at all times.

In light of the above, we still see that our distributed algo-
rithms outperform the sequential algorithm, specially when
k is large. For k = 1.5× 105, our algorithm can run in less
than 200 seconds, while both greedy algorithms take more
than 5000 seconds—a 25x speed-up.

Figure 1 presents the speed-up numbers for en-wiki and
prod. For the prod dataset, we only ran the sequential greedy
algorithm for k ≤ 75, 000, in which case it took more than
100 hours. We extrapolated4 to obtain the latter two entries in
the corresponding table, as it would take a long time. Even
with the scheduling delays and shuffle times, the distributed
algorithm produces significant speed-up over the sequential
method. The speed-up ranges from about 5x to over 100x.

4This estimate is based on the actual runtimes for the song
dataset and the actual runtimes for the prod dataset (for k up to
75,000) as well as the amount of data in prod, and the O(kn) time
complexity of the greedy algorithm.

3947

References
Agarwal, P. K.; Har-Peled, S.; and Varadarajan, K. R. 2004.
Approximating extent measures of points. Journal of the
ACM (JACM) 51(4): 606–635.
Assadi, S.; Bateni, M.; Bernstein, A.; Mirrokni, V.; and Stein,
C. 2019. Coresets meet EDCS: algorithms for matching and
vertex cover on massive graphs. In Proceedings of the Thirti-
eth Annual ACM-SIAM Symposium on Discrete Algorithms,
1616–1635. SIAM.
Bachem, O.; Lucic, M.; Hassani, S. H.; and Krause, A.
2016. Approximate K-Means++ in Sublinear Time. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial In-
telligence, February 12-17, 2016, Phoenix, Arizona, USA.,
1459–1467. URL http://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/12147.
Bachem, O.; Lucic, M.; and Krause, A. 2015. Coresets for
Nonparametric Estimation - the Case of DP-Means. In Pro-
ceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, 209–
217. URL http://jmlr.org/proceedings/papers/v37/bachem15.
html.
Bachem, O.; Lucic, M.; and Krause, A. 2018. Scalable k
-Means Clustering via Lightweight Coresets. In Proceed-
ings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2018, London,
UK, August 19-23, 2018, 1119–1127. doi:10.1145/3219819.
3219973. URL https://doi.org/10.1145/3219819.3219973.
Bahmani, B.; Moseley, B.; Vattani, A.; Kumar, R.; and Vas-
silvitskii, S. 2012. Scalable k-means++. Proceedings of the
VLDB Endowment 5(7): 622–633.
Balcan, M.-F. F.; Ehrlich, S.; and Liang, Y. 2013. Distributed
k-means and k-median Clustering on General Topologies. In
Advances in Neural Information Processing Systems, 1995–
2003.
Barbosa, R.; Ene, A.; Nguyen, H.; and Ward, J. 2015. The
power of randomization: Distributed submodular maximiza-
tion on massive datasets. In International Conference on
Machine Learning, 1236–1244.
Bateni, M.; Bhaskara, A.; Lattanzi, S.; and Mirrokni, V. 2014.
Distributed balanced clustering via mapping coresets. In
Advances in Neural Information Processing Systems, 2591–
2599.
Bhaskara, A.; and Wijewardena, M. 2018. Distributed Clus-
tering via LSH Based Data Partitioning. In International
Conference on Machine Learning, 569–578.
Ceccarello, M.; Pietracaprina, A.; and Pucci, G. 2018. Solv-
ing k-center Clustering (with Outliers) in MapReduce and
Streaming, almost as Accurately as Sequentially. CoRR
abs/1802.09205.
Charikar, M.; Chekuri, C.; Feder, T.; and Motwani, R. 2004.
Incremental clustering and dynamic information retrieval.
SIAM Journal on Computing 33(6): 1417–1440.
Dean, J.; and Ghemawat, S. 2008. MapReduce: simplified
data processing on large clusters. Communications of the
ACM 51(1): 107–113.

Dheeru, D.; and Karra Taniskidou, E. 2017. UCI Machine
Learning Repository. URL http://archive.ics.uci.edu/ml, Ac-
cessed on 01/07/2019.

Ene, A.; Im, S.; and Moseley, B. 2011. Fast clustering using
MapReduce. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 681–689. ACM.

Epasto, A.; Mirrokni, V.; and Zadimoghaddam, M. 2019.
Scalable diversity maximization via small-size composable
core-sets. In 31st ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA).

Epasto, A.; Mirrokni, V. S.; and Zadimoghaddam, M. 2017.
Bicriteria Distributed Submodular Maximization in a Few
Rounds. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 25–33.
doi:10.1145/3087556.3087574. URL https://doi.org/10.1145/
3087556.3087574.

Gonzalez, T. F. 1985. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science 38: 293–
306.

Guha, S.; Meyerson, A.; Mishra, N.; Motwani, R.; and
O’Callaghan, L. 2003. Clustering data streams: Theory and
practice. IEEE transactions on knowledge and data engineer-
ing 15(3): 515–528.

Indyk, P.; Mahabadi, S.; Mahdian, M.; and Mirrokni, V. S.
2014. Composable core-sets for diversity and coverage
maximization. In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database sys-
tems, 100–108. ACM.

Karloff, H.; Suri, S.; and Vassilvitskii, S. 2010. A model of
computation for MapReduce. In Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algorithms,
938–948. SIAM.

Kobren, A.; Monath, N.; Krishnamurthy, A.; and McCallum,
A. 2017. A hierarchical algorithm for extreme clustering. In
Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 255–264.
ACM.

Lattanzi, S.; Moseley, B.; Suri, S.; and Vassilvitskii, S. 2011.
Filtering: a method for solving graph problems in mapreduce.
In Proceedings of the twenty-third annual ACM symposium
on Parallelism in algorithms and architectures, 85–94. ACM.

Lucic, M.; Bachem, O.; and Krause, A. 2016. Strong Core-
sets for Hard and Soft Bregman Clustering with Applications
to Exponential Family Mixtures. In Proceedings of the 19th
International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, 1–9. URL
http://jmlr.org/proceedings/papers/v51/lucic16.html.

Malkomes, G.; Kusner, M. J.; Chen, W.; Weinberger, K. Q.;
and Moseley, B. 2015. Fast distributed k-center clustering
with outliers on massive data. In Advances in Neural Infor-
mation Processing Systems, 1063–1071.

Mirrokni, V.; and Zadimoghaddam, M. 2015. Randomized
composable core-sets for distributed submodular maximiza-

3948

tion. In Proceedings of the forty-seventh annual ACM sym-
posium on Theory of computing, 153–162. ACM.
Rahimian, F.; Payberah, A. H.; Girdzijauskas, S.; Jelasity,
M.; and Haridi, S. 2013. Ja-be-ja: A distributed algorithm
for balanced graph partitioning. In Self-Adaptive and Self-
Organizing Systems (SASO), 2013 IEEE 7th International
Conference on, 51–60. IEEE.
Ugander, J.; and Backstrom, L. 2013. Balanced label propa-
gation for partitioning massive graphs. In Proceedings of the
sixth ACM international conference on Web search and data
mining, 507–516. ACM.
Wang, H.; Liang, Y.; Fu, L.; Xue, G.-R.; and Yu, Y. 2009.
Efficient query expansion for advertisement search. In Pro-
ceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, 51–58.
ACM.

3949

