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Abstract

Graph neural networks (GNNs) have been proven to be effec-
tive in various network-related tasks. Most existing GNNs usu-
ally exploit the low-frequency signals of node features, which
gives rise to one fundamental question: is the low-frequency
information all we need in the real world applications? In this
paper, we first present an experimental investigation assessing
the roles of low-frequency and high-frequency signals, where
the results clearly show that exploring low-frequency signal
only is distant from learning an effective node representa-
tion in different scenarios. How can we adaptively learn more
information beyond low-frequency information in GNNs? A
well-informed answer can help GNNs enhance the adaptability.
We tackle this challenge and propose a novel Frequency Adap-
tation Graph Convolutional Networks (FAGCN) with a self-
gating mechanism, which can adaptively integrate different
signals in the process of message passing. For a deeper under-
standing, we theoretically analyze the roles of low-frequency
signals and high-frequency signals on learning node represen-
tations, which further explains why FAGCN can perform well
on different types of networks. Extensive experiments on six
real-world networks validate that FAGCN not only alleviates
the over-smoothing problem, but also has advantages over the
state-of-the-arts.

Introduction
Networks, such as social networks, citation networks and
molecular networks, are ubiquitous in the real world. Re-
cently, the emerging graph neural networks (GNNs) have
demonstrated powerful ability to learn node representations
by jointly encoding network structures and node features (Wu
et al. 2020; Zhang, Cui, and Zhu 2020; Wang et al. 2020a).
This strategy has been proven to be effective in various tasks,
including link prediction (Zhang and Chen 2018), node clas-
sification (Kipf and Welling 2017; Velickovic et al. 2018)
and graph classification (Errica et al. 2020).

In general, GNNs update node representations by aggre-
gating information from neighbors, which can be seen as a
special form of low-pass filter (Wu et al. 2019; Li et al. 2019).
Some recent studies (NT and Maehara 2019; Xu et al. 2019a)
show that the smoothness of signals, i.e., low-frequency in-
formation, are the key to the success of GNNs. However, is
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the low-frequency information all we need and what roles
do other information play in GNNs? This is a fundamental
question which motivates us to rethink whether GNNs com-
prehensively exploit the information in node features when
learning node representation.

Firstly, the low-pass filter in GNNs mainly retains the com-
monality of node features, which inevitably ignores the differ-
ence, so that the learned representations of connected nodes
become similar. Thanks to the smoothness of low-frequency
information, this mechanism may work well for assortative
networks, i.e., similar nodes tend to connect with each other
(Xu et al. 2019a). However, the real-world networks are not
always assortative, but sometimes disassortative, i.e., nodes
from different classes tend to connect with each other (New-
man 2003). For example, the chemical interactions in proteins
often occur between different types of amino acids (Zhu et al.
2020). If we force the representation of connected proteins
to be similar by employing low-pass filter, obviously, the
performance will be largely hindered. The low-frequency
information here is insufficient to support the inference in
such networks. Under the circumstances, the high-frequency
information, capturing the difference between nodes, may
be more suitable. Even the raw features, containing both
low- and high-frequency information, are alternative solution
(Wang et al. 2020b). Secondly, it is well established that the
node representation will becomes indistinguishable when we
always utilize low-pass filter, causing over-smoothing (Oono
and Suzuki 2020). This reminds us that low-pass filter of cur-
rent GNNs is distant from optimal for real world scenarios.

To provide more evidence for the above analysis, we focus
on low-frequency and high-frequency signals as an example,
and present experiments to assess their roles (details can be
seen in Section ). The results clearly show that both of them
are helpful for learning node representations. Specifically,
we find that when a network exhibits disassortativity, high-
frequency signals perform much better than low-frequency
signals. This implies that the high-frequency information,
which is largely eliminated by the current GNNs, is not al-
ways useless, and the low-frequency information is not al-
ways optimal for the complex networks. Once the weakness
of low-frequency information in GNNs is identified, a nat-
ural question is how to use signals of different frequencies
in GNNs and, at the same time, makes GNNs suitable for
different type of networks?
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(a) Classification accuracy (b) Existing GNNs (c) FAGCN

Figure 1: (a) Classification accuracy of low-frequency signals, high-frequency signals and our model FAGCN. X-axis denotes
probability of inter-connection q. (b) Existing GNNs aggregate the low-frequency signals of neighbors. (c) FAGCN aggregates
the low-frequency signals of neighbors within the same class and high-frequency signals of neighbors from different classes,
where the color indicates the node label.

To answer this question, two challenges need to be solved:
(1) Both the low-frequency and high-frequency signals are
the parts of the raw features. Traditional filter is specifically
designed for one certain signal, and cannot well extract dif-
ferent frequency signals simultaneously. (2) Even we can
extract different information, however, the assortativity of
real-world networks is usually agnostic and varies greatly,
moreover, the correlation between task and different informa-
tion is very complex, so it is difficult to decide what kind of
signals should be used: raw features, low-frequency signals,
high-frequency signals or their combination.

In this paper, we design a general frequency adaptation
graph convolutional networks called FAGCN, to adaptively
aggregate different signals from neighbors or itself. We first
employ the theory of graph signal processing to formally
define an enhanced low-pass and high-pass filter to separate
the low-frequency and high-frequency signals from the raw
features. Then we design a self-gating mechanism to adap-
tively integrate the low-frequency signals, high-frequency
signals and raw features, without knowing the assortativity
of network. Theoretical analysis proves that FAGCN is a
generalization of most existing GNNs and it has a capability
to freely shorten or enlarge the distance between node repre-
sentations, which further explains why FAGCN can perform
well on different types of networks.

The contribution of this paper is summarized as follows:

• We study the roles of both low-frequency and high-
frequency signals in GNNs and verify that high-frequency
signals are useful for disassortative networks.

• We propose a novel graph convolutional networks FAGCN,
which can adaptively change the proportion of low-
frequency and high-frequency signals without knowing
the types of networks.

• We theoretically prove that the expressive power of
FAGCN is greater than other GNNs. Moreover, our pro-
posed FAGCN is able to alleviate the over-smoothing prob-
lem. Extensive experiments on six real-world networks
validate that FAGCN has advantages over state-of-the-arts.

An Experimental Investigation

In this section, taking the low-frequency and high-frequency
signals as an example, we analyze their roles in learning node
representations. Specifically, we test their performance of
node classification on a series of synthetic networks. The
main idea is to gradually increase the disassortativity of the
synthetic networks, and observe how the performance of
these two signals changes. We generate a network with 200
nodes and randomly divide them into 2 classes. For each node
in class one, we sample a 20-dimensional feature vector from
Gaussian distribution N (0.5, 1), while for the nodes in class
two, the distribution is N (−0.5, 1). Besides, the connections
in the same class are generated from a Bernoulli distribution
with probability p = 0.05, and the probability of connections
between two classes q varies from 0.01 to 0.1. When q is
small, the network exhibits assortativity; As q increases, the
network gradually exhibits disassortativity. We then apply the
low-pass and high-pass filters, described in Section , to node
classification task. Half of the nodes are used for training and
the remains are used for testing.

Figure 1(a) illustrates that with the increase of inter-
connection q, the accuracy of low-frequency signals de-
creases, while the accuracy of high-frequency signals in-
creases gradually. This proves that both the low-frequency
and high-frequency signals are helpful in learning node rep-
resentations. The reason why existing GNNs fail when q
increases is that, as shown in Figure 1(b), they only aggregate
low-frequency signals from neighbors, i.e., making the node
representations become similar, regardless of whether nodes
belong to the same class, thereby losing the discrimination.
When the network becomes disassortative, the effectiveness
of high-frequency signals appears, but as shown in Figure
1(a), a single filter cannot achieve optimal results in all cases.
Our proposed FAGCN, which combines the advantages of
both low-pass and high-pass filters, can aggregate the low-
frequency signals of neighbors within the same class and
high-frequency signals of neighbors from different classes,
as shown in Figure 1(c), thereby showing the best perfor-
mance on every synthetic network.
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Figure 2: The relations between eigenvalues and amplitudes in different filters.

Our Proposed Model: FAGCN
Consider an undirected graph G = (V,E) with adjacency
matrix A ∈ R

N×N , where V is a set of nodes with |V | = N
and E is a set of edges. The normalized graph Laplacian

matrix is defined as L = In − D−1/2AD−1/2, where
D ∈ R

N×N is a diagonal degree matrix with Di,i =
∑

j Ai,j

and In denotes the identity matrix. Because L is a real sym-
metric matrix, it has a complete set of orthonormal eigen-
vectors {ul}nl=1 ∈ R

n, each of which has a corresponding
eigenvalue λl ∈ [0, 2] (Chung and Graham 1997). Through
the eigenvalues and eigenvectors, we have L = UΛU�,
where Λ = diag([λ1, λ2, · · · , λn]).

Graph Fourier Transform. According to theory of graph
signal processing (Shuman et al. 2013), we can treat the
eigenvectors of normalized Laplacian matrix as the bases in
graph Fourier transform. Given a signal x ∈ R

n, the graph
Fourier transform is defined as x̂ = U�x, and the inverse
graph Fourier transform is x = Ux̂. Thus, the convolutional
∗G between the signal x and convolution kernel f is:

f ∗G x = U
((
U�f

)� (
U�x

))
= UgθU

�x, (1)

where � denotes the element-wise product of vectors and
gθ is a diagonal matrix, which represents the convolutional
kernel in the spectral domain, replacing U�f . Spectral CNN
(Bruna et al. 2014) uses a non-parametric convolutional
kernel gθ = diag({θi}ni=1). ChebNet (Defferrard, Bresson,
and Vandergheynst 2016) parameterizes convolutional ker-

nel with a polynomial expansion gθ =
∑K−1

k=0 αkΛ
k. GCN

defines the convolutional kernel as gθ = I − Λ.

Separation
As discussed in Section , both the low-frequency and high-
frequency signals are helpful for learning node representa-
tions. To make full use of them, we design a low-pass filter
FL and a high-pass filter FH to separate the low-frequency
and high-frequency signals from the node features:

FL = εI +D−1/2AD−1/2 = (ε+ 1)I − L,

FH = εI −D−1/2AD−1/2 = (ε− 1)I + L, (2)

where ε is a scaling hyper-parameter limited in [0, 1]. If we
use FL and FH to replace the convolutional kernel f in
Equation 1. The signal x is filtered by FL and FH as:

FL ∗G x = U [(ε+ 1)I − Λ]U�x = FL · x,
FH ∗G x = U [(ε− 1)I + Λ]U�x = FH · x. (3)

Therefore, the convolutional kernel of FL is gθ = (ε+1)I−
Λ, rewritten as gθ(λi) = ε + 1 − λi, shown in Figure 2(a).
When λi > 1 + ε, gθ(λi) < 0, which gives a negative ampli-
tude. To avoid this, we consider the second-order convolution
kernel F2

L with gθ(λi) = (ε+1−λi)
2, shown in Figure 2(b).

When λi = 0, gθ(λi) = (ε + 1)2 > 1 and when λi = 2,
gθ(λi) = (ε− 1)2 < 1, which amplifies the low-frequency
signals and restrains the high-frequency signals.

Remark 1. (Enhanced filters) As in Figure 2, compared
with traditional low-pass filters, e.g., GCN and SGC (Wu
et al. 2019), FL is an enhanced low-pass filter. Convolutional
kernel of second-order GCN is gθ(λi) = (1 − λi)

2. When
λi = 0, the amplitude of GCN is gθ(λi) = 1 < (1 + ε)2.
Hence, the value of FL is greater than GCN in low-pass
filtering. Similarly, FH is an enhanced high-pass filter, which
provides a greater value for the high-frequency signals.

Separating the low-frequency and high-frequency signals
from the node features provides a feasible way to deal with
different networks, e.g., low-frequency signals for assorta-
tive networks and high-frequency signals for disassortative
networks. However, this way has two disadvantages: One is
that selecting signals requires a priori knowledge, i.e., we
actually do not know whether a network is assortative or dis-
assortative beforehand. The other is that, as in Equation 3, it
requires matrix multiplication, which is undesirable for large
graphs (Hamilton, Ying, and Leskovec 2017). Therefore, an
efficient method that can adaptively aggregate low-frequency
and high-frequency signals is desired.

Remark 2. (Concrete meaning of signals) In Equation 2,
we have FL = εI + D−1/2AD−1/2 and FH = εI −
D−1/2AD−1/2. Therefore, the concrete meaning of low-
frequency signal FL ·x is the sum of node features and neigh-
borhood features in spatial domain, while high-frequency
signal FH ·x represents the difference between node features
and neighborhood features in spatial domain.

Aggregation
Before introducing the details, we first compare the aggrega-
tion process of existing GNNs and FAGCN in Figure 3. The
left shows that existing GNNs consider learning the impor-
tance (αij) of each node in aggregation. The right is FAGCN

that uses two coefficients (αL
ij and αH

ij ) to aggregate low-
frequency and high-frequency signals from the neighbors,
respectively.
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Figure 3: Left: The aggregation process of existing GNNs,
and αij indicates the importance of node j to node i. Right:

The aggregation process of FAGCN, and αL
ij , αH

ij denote the
proportions of low-frequency and high-frequency signals of
node j to node i, respectively.

The input of our model are the node features, H =
{h1,h2, · · · ,hN} ∈ R

N×F , where F is the dimension of
the node features. For the purpose of frequency adaptation,
a basic idea is to use the attention mechanism to learn the
proportion of low-frequency and high-frequency signals:

h̃i = αL
ij(FL·H)i+αH

ij (FH ·H)i = εhi+
∑

j∈Ni

αL
ij − αH

ij√
didj

hj ,

(4)

where h̃i is the aggregated representation of node i. Ni and di
denote the neighbor set and degree of node i, respectively. αL

ij

and αH
ij represent the proportions of node j’s low-frequency

and high-frequency signals to node i. We set αL
ij + αH

ij = 1

and αG
ij = αL

ij − αH
ij . In the following, we show that αG

ij can
be interpreted from two perspectives.

Remark 3. (Two perspectives of αG
ij) One is that αG

ij indi-
rectly represents the proportion of low-frequency and high-
frequency signals. αG

ij > 0, i.e., αL
ij > αH

ij , means that
low-frequency signals dominate the representations and vice
versa. Based on αG

ij , we can calculate the value of αL
ij and

αH
ij , so as to achieve the proportions of signals. Another is

that αG
ij denotes the coefficients of neighbors in aggregation.

αG
ij > 0 represents the sum of node features and neighbor-

hood features, i.e., hi + hj , while αG
ij < 0 represents the

difference between them, i.e., hi−hj , as explained in Remark
2. Besides, when αG

ij ≈ 0, the contributions of neighbors will
be limited, so the raw features will dominate the node repre-
sentations.

In order to learn the coefficients αG
ij effectively, we need to

consider the features of both the node itself and its neighbors.
Therefore, we propose a shared self-gating mechanism R

F ×
R

F → R to learn the coefficients:

αG
ij = tanh

(
g� [hi ‖ hj ]

)
, (5)

where ‖ denotes the concatenation operation, g ∈ R
2F can

be seen as a shared convolutional kernel (Velickovic et al.
2018) and tanh(·) is the hyperbolic tangent function, which
can naturally limits the value of αG

ij in [−1, 1]. Besides, to
make use of the structural information, we only calculate the
coefficients among the node and its first-order neighbors Ni.

After calculating αG
ij , we can aggregate the representations

of neighbors:

h
′
i = εhi +

∑

j∈Ni

αG
ij√
didj

hj , (6)

where h
′
i denotes the aggregated representation of node i.

Note that when aggregating information from neighbors, the
degrees are used to normalize the coefficients, thus preventing
the aggregated representations from being too large.

The Whole Architecture of FAGCN
In the previous section, we introduce the message passing
process of FAGCN. Here, we formally define the whole ar-
chitecture of FAGCN. Some recent studies (Wu et al. 2019;
Cui et al. 2020) emphasize that the entanglement of filters
and weight matrices may be harmful to the performance and
robustness of the model. Motivated by this, we first use a mul-
tilayer perceptron (MLP) to apply the non-linear transform
to the raw features. Then we propagate the representations
through Eq. 6. The mathematical expression of FAGCN is
defined as:

h
(0)
i = φ(W1hi) ∈ R

F ′×1

h
(l)
i = εh

(0)
i +

∑

j∈Ni

αG
ij√
didj

h
(l−1)
j ∈ R

F ′×1

hout = W2h
(L)
i ∈ R

K×1, (7)

where W1 ∈ R
F×F ′

,W2 ∈ R
F ′×K are the weight matrices,

φ is the activation function, F
′

denotes the dimension of
hidden layers, l indicates the layers, ranging from 1 to L,
and K represents the number of classes. The complexity
of a single layer FAGCN is O((N + |E|) × F ′), which is
approximately linear with the number of edges and nodes.

Theoretical Analysis
Connection to Existing GNNs
FAGCN is a generalization of most existing GNNs. Specifi-
cally, when we set the coefficients αG

ij to 1, FAGCN acts like

GCN and when we use softmax function to normalize αG
ij ,

FAGCN becomes GAT. Therefore, as indicated in Remark 2,
because the coefficients in GCN and GAT are both greater
than zero, they prefer to aggregate the low-frequency signals.
However, FAGCN can learn a coefficient that can be posi-
tive or negative, to adaptively aggregate low-frequency and
high-frequency signals.

Expressive Power of FAGCN
We analyze the expressive power of FAGCN from the per-
spective of the distance between node representations. As-
sume that (u, v) is a pair of connected nodes, and hu,hv are
the node features. Let D,DL,DH be the distance of node
features, low-frequency signals of node features and high-
frequency signals of node features, respectively.

D = ‖hu − hv‖2.
DL = ‖(εhu + hv)− (εhv + hu)‖2 = |1− ε|D.

DH = ‖(εhu − hv)− (εhv − hu)‖2 = |1 + ε|D.

3953



Dataset Assortivity Nodes Edges Classes Features
Cora 0.771 2,708 5,429 7 1,433
Citeseer 0.671 3,327 4,732 6 3,703
Pubmed 0.686 19,717 44,338 3 500

Chameleon 0.180 2,277 36,101 3 2,325
Squirrel 0.018 5,201 217,073 3 2,089
Actor 0.003 7,600 33,544 5 931

Table 1: The statistics of datasets

Proposition 1. Low-pass filtering makes the representations
become similar, while high-pass filtering makes the represen-
tations become discriminative.

Proof. It is easy to see that DH > D > DL. This indi-
cates that compared with the original distance D, the distance
DL induced by low-frequency signals is smaller, implying
that low-frequency signals can make the representations of
connected nodes become similar. While the distance DH

induced by high-frequency signals is larger, implying that
high-frequency signals can make the representations of con-
nected nodes become discriminative.

We have analyzed the roles of low-frequency and high-
frequency signals in representation learning. Obviously,
FAGCN can choose to shorten or enlarge the distance be-
tween node representations flexibly, while most existing
GNNs cannot.

Proposition 2. Most existing GNNs, e.g., GCN, only have the
capability to make representations of nodes become similar.

Proof. The filter used in GCN is: (D + I)−1/2(A+ I)(D +
I)−1/2. Hence, the distance of representations learned by
GCN is: DG ≈ ‖( 1

du
hu+hv)−( 1

dv
hv+hu)‖2 ≈ |1− 1

d |D <
D (s.t. du ≈ dv ≈ d).

Experiments
Datasets
Assortative datasets. We choose the commonly used cita-
tion networks, e.g., Cora, Citeseer and Pubmed for assortative
datasets. Edges in these networks represent the citation re-
lationship between two papers (undirected), node features
are the bag-of-words vector of the papers and labels are the
fields of papers. In each network, we use 20 labeled nodes per
class for training, 500 nodes for validation and 1000 nodes
for testing. Details can be found in (Kipf and Welling 2017).
Disassortative datasets. We consider the Wikipedia net-
works1 and Actor co-occurrence network (Tang et al. 2009)
for disassortative datasets. Chameleon and Squirrel are two
Wikipedia networks. Edges represent the hyperlinks between
two pages, node features are some informative nouns in the
pages and labels correspond to the traffic of the pages. In
Actor co-occurrence network, each node represents an ac-
tor, and the edges denote the collaborations of them. Node
features are the keywords in Wikipedia and labels are the
types of actors. Since there is no standard division for these

1http://snap.stanford.edu/data/wikipedia-article-networks.html

Method Cora Citeseer Pubmed
SGC 81.0% 71.9% 78.9%
GCN 81.5% 70.3% 79.0%
GWNN 82.8% 71.7% 79.1%
ChebNet 81.2% 69.8% 74.4%
GraphHeat 83.7% 72.5% 80.5%
GIN 77.6% 66.1% 77.0%
GAT 83.0% 72.5% 79.0%
MoNet 81.7% - 78.8%
APPNP 83.7% 72.1% 79.2%
GraphSAGE 82.3% 71.2% 78.5%

FAGCN 84.1±0.5% 72.7±0.8% 79.4±0.3%

Table 2: Summary of node classification results (in percent).

networks. To verify the effectiveness and robustness, we use
20% for validation, 20% for testing and change the training
ratio from 10% to 60%.

More detailed characteristics of the datasets can be found
in Table 1. Note that a higher value of the second column
represents a more obvious assortativity (Newman 2003).

Experimental Setup
We compare FAGCN with two types of representative GNNs:
Spectral-based methods, i.e., SGC (Wu et al. 2019), GCN
(Kipf and Welling 2017), ChebNet (Defferrard, Bresson, and
Vandergheynst 2016) and GWNN (Xu et al. 2019b); Spatial-
based methods, i.e., GIN (Xu et al. 2019c), GAT (Velickovic
et al. 2018), MoNet (Monti et al. 2017), GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017) and APPNP (Klicpera, Bo-
jchevski, and Günnemann 2019). For disassortative networks,
we add Geom-GCN (Pei et al. 2020) and MLP as new bench-
marks. All methods were implemented in Pytorch with Adam
optimizer (Kingma and Ba 2015). We run 10 times and report
the mean values with standard deviation. The hidden unit is
fixed at 16 in assortative networks and 32 in disassortative
networks. The hyper-parameter search space is: learning rate
in {0.01, 0.005}, dropout in {0.4, 0.5, 0.6}, weight decay in
{1E-3, 5E-4, 5E-5}, number of layers in {1, 2, · · · , 8}, ε in
{0.1, · · · , 1.0}.

In assortative datasets, we use hyper-parameters in previ-
ous literature for baselines. For FAGCN, the hyper-parameter
setting is: learning rate = 0.01, dropout = 0.6, weight decay
= 1E-3, layers = 4. ε = 0.2, 0.3, 0.3 for Cora, Citeseer and
Pubmed. The patience of early stop is set to 100. In disassor-
tative datasets, the hyper-parameter for FAGCN is: learning
rate = 0.01, dropout = 0.5, weight decay = 5E-5, layers =
2. ε = 0.4, 0.3, 0.5 for Chameleon, Squirrel and Actor, re-
spectively. Besides, we run 500 epochs and choose the model
with highest validation accuracy for testing.

Classification on Different Types of Networks
The performance of different methods on assortative net-
works is summarized in Table 2. GraphHeat designs a low-
pass filer through heat kernel, which can better capture the
low-frequency information than GCN (Xu et al. 2019a).
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(a) Chameleon (b) Squirrel (c) Actor

Figure 4: Classification accuracy of different methods under different label rates on disassortative networks.

(a) Cora (b) Citeseer

(c) Pubmed (d) Chameleon

(e) Squirrel (f) Actor

Figure 5: Classification accuracy with different model depth.

Therefore, it performs best in the baselines. But we can see
that FAGCN exceed the benchmarks on most networks due to
the enhanced low-pass filter, which validates the importance
of low-pass filters in the assortative networks.

Besides, the performance on disassortative networks is il-
lustrated in Fig. 4. Note that we do not choose all baselines
because the methods focus on low-pass filtering have poor
performance, and we use GCN and GAT as representatives.
In addition, APPNP leverages residual connection to preserve
the information of raw features, ChebNet uses ChebNet poly-
nomials to approximate arbitrary convolution kernels and
Geom-GCN is the state-of-the-art on disassortative networks.
Therefore, comparing FAGCN with these baselines can re-

flect the superiority of FAGCN. From Fig. 4, we can see that
GCN and GAT perform worse than other methods, which
indicates that only using low-pass filters is not suitable for
disassortative networks. APPNP and ChebNet perform better
than GCN and GAT, which shows that the raw features and
polynomials can preserve the high-frequency information to
some extent. Finally, FAGCN performs best in most datasets
and label rates, which reflects the superiority of our method.

Alleviating Over-smoothing Problem
To validate whether FAGCN can alleviate the over-smoothing
problem, we compare the performance of GCN and FAGCN
under different model depth. The results are shown in Fig.
5. It can be seen that GCN achieves the best performance
at two layers. As the number of layers increases, the per-
formance of GCN drops rapidly, which indicates that GCN
suffers from over-smoothing seriously. Instead, the results
of FAGCN are stable and significantly higher than GCN on
different types of networks. The reasons are two-folds: one is
that in Section we show that negative weights can prevents
node representations from being too similar, which benefits
deeper network architecture. Another is that we add the raw
features, containing both low-frequency and high-frequency
information, to each layer, which further keeps node repre-
sentations from becoming indistinguishable. Through these
two designs, when the model going deep, the performance of
FAGCN is significantly better than GCN, which indicates that
FAGCN has a good capability to alleviate over-smoothing.

Visualization of Edge Coefficients
In order to verify whether FAGCN can learn different edge
coefficients to adapt to different networks, we visualize the
coefficients αG

ij , extracted from the last layer of FAGCN.
Specifically, we divide the edges into intra-edges and inter-
edges based on whether two connected nodes have the same
label. It can be seen from Fig. 6(a) that in the networks
with large assortativity, i.e., Cora, Citeseer and Pubmed, all
edges are concentrated at the positive weights, which implies
that the low-pass filter plays a major role in classification.
However, in Fig. 6(b) and 6(c), a lot of inter-edges are dis-
tributed in negative weights, which shows that in the network
with small assortativity, the high-frequency signal plays an
important role in node classification. Moreover, there is an
interesting phenomenon that in Fig. 6(d) the coefficients of
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(a) Cora, Citeseer and Pubmed (b) Chameleon (c) Squirrel (d) Actor

Figure 6: Visualization of edge coefficients on different networks.

Method
This paper (Pei et al. 2020)

Cham-3 Squi-3 Cham-5 Squi-5
FAGCN 76.1% 66.7% 61.7% 39.7%
Geom-GCN 73.2% 63.3% 60.9% 38.1%

GCN 72.3% 61.9% 59.8% 36.9%
MLP 74.3% 63.1% 46.4% 29.7%

Table 3: Classification accuracy with different label division.

edges are concentrated at zero. One possible reason is that the
assortativity of Actor is quite small, which implies that the
structures contributes less to the results of node classification,
instead, the raw features dominate the classification results.

Details of Wikipedia Networks
In this section, we aim to give more details of Wikipedia net-
works. First of all, Chameleon and Squirrel were originally
collected for regression task, i.e., traffic prediction (Rozem-
berczki, Allen, and Sarkar 2019). We divide the traffic into
three categories: less than 1000, between 1000 and 10000
and more than 10000, so that they can be applied to node
classification task. Secondly, labels of Chameleon and Squir-
rel are different from those in Geom-GCN. The reason is that
in the disassortative networks provided by (Pei et al. 2020),
i.e., Cham-5 and Squi-5 in Table 3, we find that GCN per-
forms much better than MLP. This is a strange phenomenon,
because MLP uses raw features as input, which contains high-
frequency information, so its performance should be better
than GCN (Zhu et al. 2020). Therefore, we redivide the labels
based on traffic, i.e., Cham-3 and Squi-3 in Table 3, where the
performance of GCN and MLP is more reasonable. Besides,
we can see that FAGCN perform best on all four datasets, so
its effectiveness is still guaranteed across different datasets.

Related Work
Spectral Graph Neural Networks. Spectral GNNs aim to
define the convolution kernel in spectral domain, by lever-
aging the theory of graph signal processing. Spectral CNN
(Bruna et al. 2014) treats the convolution kernel as a trainable
diagonal matrix and directly learns the amplitudes of signals.
However, it requires the decomposition of Laplacian ma-
trix, which is inefficient. To deal with this problem, ChebNet

(Defferrard, Bresson, and Vandergheynst 2016) uses the poly-
nomial of Laplacian matrix to approximate the convolution
kernel and make better performance. GCN (Kipf and Welling
2017) is the first-order approximation of ChebNet with a
self-loop mechanism. GraphHeat(Xu et al. 2019a) designs a
more powerful low-pass filter through heat kernel. Besides,
GWNN (Xu et al. 2019b) replaces the eigenvectors with
wavelet bases so as to further improve the efficiency of the
model. Generally, spectral methods have good interpretability
for the signal processing on graph, but lack generalization
(Hamilton, Ying, and Leskovec 2017).

Spatial Graph Neural Networks. Spatial GNNs focus on
the design of aggregation function. GraphSAGE (Hamilton,
Ying, and Leskovec 2017) designs a permutation-invariant
aggregator for message passing; GAT (Velickovic et al. 2018)
employs self-attention to calculate the coefficients of neigh-
bors in aggregation; MoNet (Monti et al. 2017) provides
a unified generalization of graph convolutional architec-
tures in spatial domain; PPNP (Klicpera, Bojchevski, and
Günnemann 2019) incorporates personalized PageRank to
the aggregation function; Geom-GCN (Pei et al. 2020) uti-
lizes the structural similarity to capture the long-range depen-
dencies in disassortative graphs. H2GNN (Zhu et al. 2020)
separates the raw features and aggregated features so as to
preserve both high-frequency and low-frequency information,
but it lacks adaptability; Non-Local GNN (Liu, Wang, and
Ji 2020) designs an attention-guided sorting mechanism to
transform the disassortative networks into assortative net-
works, which costs a lot of computations. Generally, spatial
methods are more flexible and scalable, but lack interpretabil-
ity. It is worth noting that FAGCN is a spatial method, but it
still has good interpretability, which combines the advantages
of both spectral and spatial methods.

Conclusion
In this paper, we make the attempt to study the roles of low-
frequency and high-frequency signals in GNNs and show
that both of them are helpful in learning node representations.
Based on this observation, we design a novel frequency adap-
tation graph convolutional network to adaptively combine
the low-frequency and high-frequency signals. Theoretical
analysis shows that the expressive power of our model is
greater than most existing GNNs. An important direction of
future work is to use more signals with different frequencies,
e.g., the intermediate frequency signals.
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