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Abstract

Dynamic load balancing lies at the heart of distributed
caching. Here, the goal is to assign objects (load) to servers
(computing nodes) in a way that provides load balancing
while at the same time dynamically adjusts to the addition
or removal of servers. Load balancing is critical to many ar-
eas including cloud systems, distributed databases, and dis-
tributed and data-parallel machine learning. A popular and
widely adopted solution to dynamic load balancing is the
two-decade-old Consistent Hashing (CH). Recently, an ele-
gant extension was provided to account for server bounds.
In this paper, we identify that existing methodologies for CH
and its variants suffer from cascaded overflow, leading to poor
load balancing. This cascading effect leads to decreasing per-
formance of the hashing procedure with increasing load. To
overcome the cascading effect, we propose a simple solution
to CH based on recent advances in fast minwise hashing. We
show, both theoretically and empirically, that our proposed
solution is significantly superior for load balancing and is op-
timal in many senses. On the AOL search dataset and Indiana
University Clicks dataset with real user activity, our proposed
solution reduces cache misses by several magnitudes.

Introduction
Load balancing is critical to achieve low latency with few
server failures and cache misses in networks and web ser-
vices (Karger et al. 1997; Stoica et al. 2001, 2003). The goal
of load balancing is to assign objects (or clients) to servers
(computing nodes referred to as bins) so that each bin has
roughly the same number of objects. The load of a bin is de-
fined as the number of objects in the bin. In practice, objects
arrive and leave dynamically due to spikes in popularity or
other events. Bins may also be added and removed due to
server failures. The holy grail of distributed caching is to
balance load evenly with minimal cache misses and server
failures. Poor load balancing directly increases latency and
cost of the system (Chawla et al. 2011).

Caching servers often use hashing to implement dynamic
load assignment. Traditional hashing techniques, which as-
sign objects to bins according to fixed or pre-sampled hash
codes, are inappropriate because bins are frequently added
or removed. Standard hashing and Cuckoo hashing (Fotakis
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et al. 2005; Pagh and Rodler 2009, 2001, 2004) are ineffi-
cient because they reassign all objects when a bin is added
or removed.

Consistent Hashing (CH) (Karger et al. 1997) is a widely
adopted solution to this problem. In CH, objects and bins are
both hashed to random locations on the unit circle. Objects
are initially assigned to the closest bin in the clockwise di-
rection (see Figure 1 and Section ). CH is efficient for the
dynamic setting because the addition or removal of a bin
only affects the objects in the closest clockwise bin.

In practice, we cannot assign an unlimited number of ob-
jects to a bin without crashing the corresponding server.
In (Mirrokni, Thorup, and Zadimoghaddam 2018), the au-
thors address the problem by setting a maximum bin capac-
ity C =

⌈
(1 + ε)nk

⌉
, where n objects are assigned to k bins,

each with a capacity parameter ε ≥ 0. Their hashing scheme
ensures assigns new objects to the closest non-full bin in the
clockwise direction and ensures that the maximum load is
bounded by C. There are also many heuristics, such as time-
based expiry and eviction recommended in ASP.net (Ander-
son, Luo, and Smith 2019), Microsoft (Buck et al. 2017),
Mozilla (Bengtsson et al. 2020), which are used to comple-
ment the implementation of Consistent Hashing in practice.
In addition, upon on server failure the cache is usually wiped
and is empty when the server comes back online.

Applications: Dynamic load assignment is a fundamen-
tal problem with a variety of concrete, practical applica-
tions. CH is a core part of Discord’s 250 million user chat
app (Vishnevskiy 2017), Amazon’s Dynamo storage system
(DeCandia et al. 2007) and Apache Cassandra, a distributed
database system (Lakshman and Malik 2010). Google cloud
and Vimeo video streaming both use CH with load bounds
(Mirrokni and Zadimoghaddam 2017; Rodland 2016). Dy-
namic load assignment is also a critical topic in ML, partic-
ularly in distributed systems, data caching and data parallel
for accelerated ML (Pinto et al. 2018; Mayer and Jacobsen
2020; Ovalle, Ramos-Pollan, and González 2014; Lessley
and Childs 2020; Xing et al. 2016), which is directly re-
lated to energy efficiency and other areas. CH is also used
for information retrieval (Grossman and Frieder 2004), dis-
tributed databases (Ozsu and Valduriez 2011; Carlson 2013;
Nishtala et al. 2013), and cloud systems (Karger et al. 1999;
Nasri and Sharifi 2009; Wang and Loguinov 2007). Further-
more, CH resolves similar load-balancing issues that arise in
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peer-to-peer systems (Rowstron and Druschel 2001; Castro
et al. 2002), and content-addressable networks (Ratnasamy
et al. 2001).

Our Contributions: We propose a new dynamic hashing
algorithm with superior load balancing behavior. To mini-
mize the risk of overloading a bin, all bins should ideally
have approximately the same number of objects at all times.
Existing algorithms experience a cascading effect that un-
evenly loads bins with the clockwise object assignment pro-
cedure.

Our algorithm improves upon the load balancing prob-
lem both in theory and practice. In our experiments on real
user logs from the AOL search dataset and Indiana Univer-
sity Clicks dataset (Meiss et al. 2008), the algorithm reduces
cache misses by several orders of magnitude. We prove op-
timality for several criteria and show that the state-of-the-art
method stochastically dominates the proposed method. The
experiments and theory show that our algorithm provides the
most even distribution of bin loads.

Background
2-Universal Hashing
A hash function huniv : [l] → [m] is 2-universal if for all
i, j ∈ [l] with i 6= j, we have the following property for any
z1, z2 ∈ [m],

Pr(huniv(i) = z1 and huniv(j) = z2) =
1

m2
.

Consistent Hashing
CH is a dynamic load balancing method that utilizes hashing
without consideration of bin capacities. In the CH scheme,
objects and bins are hashed to random locations on the unit
circle as shown in Figure 1a. Objects are assigned to the
closest bin in the clockwise direction, shown in Figure 1b,
with the final object bin assignment in Figure 1c.

(a) Initial place-
ment.

(b) Objects are as-
signed to the closest
bin in clockwise di-
rection.

(c) After assign-
ment.

Figure 1: Consistent Hashing object and bin assignment. Ob-
jects are red.

When a bin is removed, its objects are deposited into the
next closest bin in the clockwise direction the next time they
are requested. When a bin is added, it is used to cache in-
coming objects. Both procedures only reassign objects from
one bin, unlike the naive hashing scheme. The arc length be-
tween a bin and its counter-clockwise neighbor determines
the fraction of objects assigned to the bin. In expectation, the

Figure 2: New object ar-
rives. CH-BL with bin ca-
pacity of 3.

Figure 3: CH-BL cas-
caded overflow: Effective
arclength of each non-full
bin.

arc lengths are all the same because the bins are assigned to
the circle via a randomized hash function. With equal arc
lengths, each bin has the ideal load of n/k. However, CH
seldom provides ideal load balancing because the arc lengths
have high variance, leading to poor load balancing perfor-
mance.

To ensure that each bin receives closer to an equal ar-
clength of the unit circle, the authors of CH suggest the use
of virtual bins. With virtual bins, each bin hashes to multiple
locations on the unit circle, each of which is called a virtual
bin. For a particular bin, all objects assigned to its virtual
bins are assigned to the bin itself. Typically, O(log(k)) vir-
tual bins are needed to achieve good performance. However,
this still leaves a lot of improvement in load balancing and
in practice bins have a limited capacity.

Consistent Hashing with Bounded Loads
Consistent Hashing with Bounded Loads (CH-BL) was pro-
posed by (Mirrokni, Thorup, and Zadimoghaddam 2018) to
model bins with finite capacity. CH-BL extends CH with a
maximum bin capacityC =

⌈
(1 + ε)nk

⌉
. Here, n is the num-

ber of objects, k is the number of bins, and ε ≥ 0 controls
the bin capacity.

In CH-BL, if an object is about to be assigned to a full bin,
it overflows or cascades into the nearest available bin in the
clockwise direction. Figure 2 uses the bin object assignment
from Figure 1 as the initial assignment with a maximum bin
capacity of 3. A new object is hashed into the unit circle,
but the closest bin in the clockwise direction is unavailable
because it is full. Therefore, this object is assigned to the
nearest available bin.

On bin removal, CH-BL performs the same reallocation
procedure as CH, but with bounded loads. Objects from a
deleted bin are cached in the closest available bin in the
clockwise direction the next time the object is requested. Bin
addition is handled the same as CH.

Cascaded Overflow of Consistent Hashing and
Variants
CH-BL solves the bin capacity problem but introduces an
overflow problem. Recall that the expected number of ob-
jects assigned to a particular bin is proportional to the bin’s
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arc length. As bins fill up in CH-BL, the nearest available
(non-full) bin has a longer and longer effective arc length.
The arc lengths for consecutive full bins add, causing the
nearest available bin to fill faster. We call this phenomenon
cascaded overflow.

Figure 3 shows cascaded overflow for the non-full bins
in Figure 3 using the final object bin assignment in Fig-
ure 2 with a maximum bin capacity of 3. One bin now owns
roughly 75% of the arc, so it will fill quickly while other bins
are underutilized. The cascading effect creates an avalanche
of overflowing bins that progressively cause the next bin to
have an even larger arc length.

Cascaded overflow is a liability in practice because over-
loaded servers often fail and pass their loads to the near-
est clockwise server. Cascaded overflow can trigger an
avalanche of server failures as an enormous load bounces
around the circle, crashing servers wherever it goes. In se-
vere cases, this can bring down the entire service (Chawla
et al. 2011).

Simple Rehashing
At first glance, one reasonable approach is to rehash objects
that map to a full bin rather than use the nearest clockwise
bin. We reassign an object to bin h(i) rather than i+ 1 if bin
i is full. However, linear probing with random probes fails
because it effectively rearranges the unit circle. Bin i always
overflows into h(i), preserving the cascaded overflow effect.

Random Jump Consistent Hashing
Our proposal is motivated by Optimal Densification (Shri-
vastava 2017), a technique introduced to quickly compute
minwise hashes in information retrieval. We break the cas-
cade effect by introducing Random Jumps for Consistent
Hashing (RJ-CH). In practice, the segments of the unit cir-
cle are mapped to an array. RJ-CH continuously rehashes
objects until they reach an index associated with an avail-
able bin. Unlike simple rehashing, the RJ-CH hash function
takes two arguments: the object and the failed attempts to
find an available bin. The second argument breaks the cas-
cading effect because it ensures that two objects have a low
probability of overflowing to the same location. This proba-
bility is 1/m, where m is the length of the array.

Figure 4a shows RJ-CH in a situation without full bins,
which evolves into Figure 4b when a bin becomes full. RJ-
CH prevents cascaded overflow because objects are assigned
to any of the available bins with uniform probability by the
universal hashing property. RJ-CH cannot be implemented
with a dynamically changing array size, but this limitation
is common to RJ-CH, CH-BL and CH. We also note that
load balancing methods are usually accompanied by hueris-
tics like time-based expiry and eviction of stale objects (An-
derson, Luo, and Smith 2019; Buck et al. 2017; Bengtsson
et al. 2020) to evict duplicates and unused objects. Objects
are commonly deleted when they are unused for some time.
Many implementations, such as (Anderson, Luo, and Smith
2019), impose stringent eviction criteria. It is also common
practice to wipe the cache of a failed server and repopulate
the cache as needed when the server is back online. RJ-CH

is compatible with all such techniques, since deleting an el-
ement simply frees space in the bin.

We emphasize here that while RJ-CH requires accessing a
random bin, while CH-BL accesses a subsequent bin, the ac-
cess time is very much implementation dependent and seems
to rarely affect final results, since most of the array can fill
an L3 cache so contiguous memory access is not an issue.
Furthermore, RJ-CH differs from the non-linear probing dis-
cussed in (Mirrokni, Thorup, and Zadimoghaddam 2018),
since non-linear probes can still land in a cycle.

(a) Initial assign-
ment method.

(b) New object ar-
rives (later).

(c) Final assign-
ment.

Figure 4: RJ-CH object/bin assignment (bin capacity of 3).

Discussion: Object Removal, Bin Removal and Bin
Addition Schemes
When a bin is added, we may encounter a situation where
an object is cached in the new bin while also existing some-
where else in the array. In practice, this is not a problem
because the system will no longer request the duplicate and
it will eventually be evicted by its bin. When a bin is re-
moved, its objects will be cached in the available bin chosen
by RJ-CH the next time the objects are requested.

Theoretical Analysis
In this section, we prove that the bin load under CH-BL
stochastically dominates that of RJ-CH, showing that RJ-CH
has lower bin load variance, fewer full bins and other desir-
able properties. In addition, the variance of CH-BL increases
exponentially as bins become full. RJ-CH also achieves an
algorithmic improvement over CH-BL for object insertion.

Bin Load Following CH-BL Stochastically
Dominates RJ-CH
When reassignments are necessary, RJ-CH reassigns objects
uniformly to the available bins, while CH-BL reassigns ob-
jects to the nearest clockwise bin. Even before a CH-BL bin
fills, the object assignment probabilities are unequal as dis-
cussed in sections and . Here, we assume that the CH-BL
assignment probabilities are initially equal, corresponding to
optimal initial bin placements. Let n objects be assigned to
k bins with a maximum capacity C. Our main theoretical re-
sult is as follows. It shows that RJ-CH is superior to CH-BL
in terms of smaller variance of the number of objects in each
bin, and in terms of the mean number of full bins. Detailed
proofs are provided in the Appendix. The main result is as
follows:

3978



Theorem 1. LetX(CH−BL)
i (X(RJ−CH)

i ) denote the num-
ber of objects in bin i when placing n objects into a ring of
k bins with CH-BL or RJ-CH. Then,

var(X
(RJ−CH)
i ) ≤ var(X(CH−BL)

i ), for i = 1, ..., k.
(1)

Moreover,

E(L(RJ−CH)) ≤ E(L(CH−BL)), (2)

whereL(CH−BL) (L(RJ−CH)) is the number of full bins fol-
lowing the CH-BL (RJ-CH) method.

Theorem 1 is a straightforward special case of the below
Theorem 2. Proof is given in the Appendix.

Theorem 2. Let f(·) be a convex function defined on
{0, 1, ..., C}. Then,

k∑
i=1

E[f(X
(RJ−CH)
k )] ≤

k∑
i=1

E[f(X
(CH−BL)
i )]. (3)

And the symmetry implies

E[f(X
(RJ−CH)
i )] ≤ E[f(X

(CH−BL)
i )], for i = 1, ..., k.

(4)

The main idea of the proof of Theorem 2 is to consider a
scheme where the first j + 1 objects are assigned using CH-
BL and the rest are assigned using RJ-CH. Such a scheme
is worse than, stochastically dominates, a scheme where the
first j objects are assigned using CH-BL and the rest are
assigned using RJ-CH. Only the j + 1th object of the two
schemes follow a different assignment method. One key dif-
ficulty in the analysis lies in the fact that the differing assign-
ment of that j + 1th object affects the assignment of the re-
maining objects. Lemma 1 proves an equivalent assignment
method which allows the j + 1th object to be assigned last.
Therefore, for the two schemes we only need to consider the
”badness” of the last object, since all previous n − 1 ob-
jects are assigned the same way. Lemmas 2, 3, 4 give us the
assignment probability of that last object and tools to deter-
mine the stochastic dominance of the bin load of one scheme
over the other. Lemma 5 completes the proof.

Lemma 1. Suppose bin i already contains bi objects, with
bi < C for i = 1, ...,K . Distribute N more objects into the
K bins in the following scheme indexed by m: All objects
are assigned uniformly to K bins and relocated following
RJ-CH, except for the m-th object, which is assigned to bin
1, and reassigned following RJ-CH. Then, the final joint dis-
tribution of the numbers of objects in the K bins will be the
same regardless of the value of m = 1, ..., N .

Consider again the scheme in which the first j+ 1 objects
are assigned following CH-BL and the remaining n−(j+1)
objects are assigned following RJ-CH. The implication of
Lemma 1 is given that the j + 1th object was assigned to a
bin i, it can equivalently be assigned as the nth object to bin
i. If bin i is full, then the object is reassigned using RJ-CH.

DenoteM(n; p1, ..., pk) the multinomial distribution for
the number of objects in k bins when assigning n objects to
k bins where each object has probability pi of being assigned

to bin i. LetMC(n; p1, ..., pk) be the constrained multino-
mial distribution for the number of objects in k bins when
assigning n objects to k bins where each object has proba-
bility pi of being assigned to bin i under the condition that
each bin has at most C − 1 objects. Let Xi be the random
number of objects in bin i.
Lemma 2. If (X1, ..., Xk) ∼ M(n; p1, ..., pk), the condi-
tional distribution of (Xi1 , ..., XiJ ) subject to

∑J
j=1Xij =

n∗ is M(n∗; p∗1, ..., p
∗
J) where p∗j = pij/

∑J
l=1 pil . More-

over, if (X1, ..., Xk) ∼ MC(n; p1, ..., pk), the conditional
distribution of (Xi1 , ..., XiJ ) subject to

∑J
j=1Xij = n∗ is

MC(n∗; p∗1, ..., p
∗
J).

Lemma 2 can be understood as the distributions describ-
ing the results of assigning n objects randomly to k bins.

A random variableX is stochastically smaller than Y , de-
noted as X ≺ Y , if P (X > x) ≤ P (Y > x) for all x, or,
equivalently, if E(g(X)) ≤ E(g(Y )) for any bounded in-
creasing function g.
Lemma 3. Let ∆i, i = 1, ..., n, be independent random
binary random variables taking value 1 with probability pi
and taking value 0 with probability qi = 1 − pi. Assume
pi ≤ 1/2 ≤ qi. Let ξ1 =

∑n
i=1 ∆i and ξ2 = n− ξ1. Then,

P (ξ1 = x) ≤ P (ξ2 = x)

and P (ξ1 = n− x) ≥ P (ξ2 = n− x) for n/2 ≤ x ≤ n.
(5)

Moreover,

P (ξ1 = x|ξ1 < C, ξ2 < C) ≤ P (ξ2 = x|ξ1 < C, ξ2 < C),

for max(n/2, n− C) ≤ x < C.
(6)

Consequently, ξ1 ≺ ξ2 and

ξ1 | (ξ1 < C, ξ2 < C) ≺ ξ2 | (ξ1 < C, ξ2 < C). (7)

If we know the assignment probability p of a bin is greater
than another, then Lemma 3 can be used to determine the
stochastic dominance of the bin load of one bin over the
other.
Lemma 4. Place n objects into k bins following CH-BL. Let
Xi be the number of objects in bins i, and Li be the length
of cluster of full bins to the right of bin i, for i = 1, ..., k.
Li = 0 if the bin to the right hand side of bin i is non-
full. Let i1, ..., iJ be all the non-full bins. Then, conditioning
on Lij , j = 1, ..., J , and

∑J
j=1 xij = n∗, (Xi1 , ..., XiJ )

follows the constrained multinomial distribution, i.e.,

the conditional distribution of
(Xi1 , ..., XiJ ) ∼MC(n∗; p∗1, ..., p

∗
J), (8)

where p∗j = (Lij +1)/k for j = 1, ..., J , and n∗ = n−(k−
J)C.

Lemma 4 proves that in expectation bins on the left of
longer clusters of full bins have more objects.
Lemma 5. Assign n = m+ 1 + (n− (m+ 1)) total objects
into k bins in a scheme with following three steps:
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1. Assign m objects following CH-BL. Let N = {i1, ..., iJ}
denote all the non-full bins, with Lij as the length of the
cluster of full bins to the right of bin ij . For notational
simplicity, assume Li1 ≤ ... ≤ LiJ .

2. Assign one object into bins ij with probability qj , j =

1, ..., J , such that
∑J
j=1 qj = 1 and 0 ≤ q1 ≤ ... ≤ qJ ,

and qj depends on Lij only.
3. Assign n− (m+1) objects into the bins 1, ..., k following

RJ-CH.

LetX1, ..., Xk be the numbers of objects in bins 1, ..., k, and
let f(·) be any convex function on {0, ..., C}. Then,

k∑
i=1

E[f(Xi)] is minimized when the distribution in Step 2

is uniform, i.e., q1 = · · · = qJ = 1/J.
(9)

Proof of Theorem 2 In Lemma 5 if all qj are equal, Steps
1-3 are the same as assigning the first m objects follow-
ing CH-BL and rest n − m objects following RJ-CH. If
the first m + 1 objects are assigned following CH-BL then
qj ∝ Lij + 1, and the rest n − (m + 1) objects are as-
signed following RJ-CH. For the first scheme, we denote
by X(m)

1 , ..., X
(m)
k as the final numbers of objects in bins

1, ..., k. With this notation, X(m+1)
1 , ..., X

(m+1)
k are the fi-

nal numbers of objects in bins 1, ..., k by the latter method.
Then, Lemma 5 proves that

k∑
i=1

E[f(X
(m)
i )] ≤

k∑
i=1

E[f(X
(m+1)
i )],

for all 0 ≤ m ≤ n− 1. Hence,

k∑
i=1

E[f(X
(0)
i )] ≤

k∑
i=1

E[f(X
(n)
i )]. (10)

Note that (X
(0)
1 , ..., X

(0)
k ) are the final numbers of objects

in bins 1, ..., k when all n balls are distributed following RJ-
CH, while (X

(n)
1 , ..., X

(n)
k ) are the final numbers of objects

in bins 1, ..., k when all n balls are distributed following CH-
BL. Therefore (10) implies (3). �

Fewer Bin Searches
Bin searches are defined as the total number of bins (or
servers) that must be searched to assign an object. It should
be noted that this is not the total number of indexes in the
array searched. We make this distinction because the latter
tends to be implementation-specific. We will later provide
experimental results for both metrics, but here we analyze
object insertion as object removals in practice are taken care
of by time-based decay and more stringent measures (See
Appendix for more details). Let the number of bin searches
be denoted as S. Recall that there are n objects, k bins and
a maximum capacity C =

⌈
(1 + ε)nk

⌉
for some ε ≥ 0.

When inserting another object, CH-BL achieves the fol-
lowing upper bounds on the expected value of S as a func-
tion of ε:

f(ε) =

{
2/ε2 ε < 1 ,
1 + log(1+ε)

1+ε ε ≥ 1 .
(11)

For RJ-CH, we assume a worst case scenario of bn/Cc bins
full, and we prove the following theorem.

Theorem 3. Under RJ-CH, the expected value of S is upper
bounded by 1 + 1/ε.

Observe that,

f(ε) =

{
1 + 1

ε � 2/ε2 ε < 1 and ε small ,
1 + 1

ε � 1 + log(1+ε)
1+ε ε ≥ 1 and ε large .

(12)
Setting a maximum capacity has a much greater impact

for small ε and for small ε, RJ-CH is an order of a magni-
tude better. For large ε, RJ-CH is log(1 + ε) better. For ε
slightly larger than 1, the methods are comparable. In prac-
tice, RJ-CH results in significantly fewer percentage of full
bins which, in addition to the improved upper bound, results
in an even more pronounced improvement in S.

Expected Number Of Objects Until First Overflow
Stateless addressing is one of the key requirements (Chawla
et al. 2011), which is that the assignment process should be
independent of the number of objects in the non-full bins.
Methods that, for example, always assign new objects to the
bin with the least objects are not viable for consistent hash-
ing because keeping track of object distribution in a dynamic
environment is too slow and requires costly synchronization.

In this section, we look at the expected number of objects
that can be assigned before any bins are full. If all bins have
the same capacity, then lower expected number of objects
indicates poor load balancing since one of the servers was
overloaded prematurely. RJ-CH produces the uniform distri-
bution which is optimal under stateless addressing (Chawla
et al. 2011). LetN1 be the number of objects assigned before
any bin is full.

Theorem 4. Both the probability of no full bin and E[N1]
are maximized by the uniform distribution for all stateless
addressing, which is achieved by RJ-CH.

Lower Initial Bin Load Variance
In this section we argue that even without the cascading ef-
fect, RJ-CH is still superior to the state-of-the-art. Recall that
bin load is defined as the number of objects in a bin. The-
orem 5 shows that RJ-CH minimizes bin load variance be-
fore the first full bin. This result applies over all distributions
which satisfies the requirements of stateless addressing. Let
Xi be the random number of objects in bins bi and pi be the
probability of an object being assigned to bin bi.

Theorem 5. Assume a fixed number of objects are assigned
and no bins are full. V ar(Xi) is minimized by the uniform
distribution for all stateless addressing, which is achieved
by RJ-CH.
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Cascaded overflow starts when we hit the first full bin.
Theorem 5 suggests that even before the start of the cascad-
ing effect, CH has poor variance compared to RJ-CH. This
is important as even heavily loaded servers are undesirable
practically.

Object Assignment Probability Variance
We define the object assignment probability of a bin as the
probability that a new object lands in that bin. Note that this
probability is dependent on the previous object assignments
seen so far, and hence is a random variable. We are con-
cerned with the variance of the object assignment probabil-
ity for the non-full bins. We will use pji to refer to the ran-
dom probability that a new object lands in the ith non-full
bin when there are j full bins. It should be noted that when
there are j full bins and k total bins, we have pj1, ..., p

j
k−j

assignment probabilities. The variance of this random vari-
able, or the object assignment probability variance, is a mea-
sure of load balancing performance. In the ideal case with
perfect load balancing, all assignment probabilities should
be the same and the variance should be zero. It follows
from universal hashing that RJ-CH has this property, with
pj1 = ... = pjk−j = 1/(k − j). Therefore, we claim that RJ-
CH is optimal in terms of this load balancing metric. CH-
BL, on the other hand, has higher variance as it reassigns
objects to the closest non-full bin in the clockwise direction.
We obtain the following theorem:
Theorem 6. Assume that each non-full bin has an equal
probability of being full. For CH-BL, V ar(pji ) strictly in-
creases exponentially with rate at least 1/(3k) for j =
1, ..., k − 3.

The above theorem shows that the method of reassigning
objects to the closest non-full bin in the clockwise direction
is not only sub-optimal but also progressively worsens as
more bins become full due to the cascading effect. We pro-
vide empirical results to support Theorem 6 in the Appendix.

Experimental Evaluations
For evaluation, we provide both simulation results and re-
sults on real server logs. We emphasize that the cascaded
overflow effect is the major differentiator between RJ-CH
and CH-BL and is the largest source of of difference in per-
formance.

Simulation Results
We generate n objects and k bins where each bin has capac-
ity C =

⌈
n
k (1 + ε)

⌉
. We hash each of the bins into a large

array, resolving bin collisions by rehashing. Bins are popu-
lated according to the two methods of RJ-CH and CH-BL.
We sweep ε finely between 0.1 and 3, performing 1000 trials
from scratch for each ε. We present results on percentage of
bins full and wall clock time with 10000 objects and 1000
bins. Other results on variance of bin loads, bin searches, and
objects till first full bin are given in the Appendix.Another
setting with less load is also given in the Appendix, and re-
sults are similar. Exact implementation details are given in
the Appendix.

Figure 5: Percentage of total
bins full.

Figure 6: Wall clock time for
adding n+ 1th object.

epsilon CH-BL mean std RJ-CH mean std
0.1 .828 0.050 .626 .099
0.3 .601 0.041 .249 .046
1 .224 0.021 .004 .002
3 .025 0.005 .000 .000

Table 1: Mean and standard deviation of percentage of bins
full, with objects and bins arriving and leaving.

Figure 5 shows the percentage of bins that are full. For
most ε, RJ-CH has a 20% - 40% lower percentage of total
bins that are full. For the case of ε = 0.3, only 25% of bins
are full for RJ-CH as opposed to 60% for CH-BL. Clearly,
this implies that CH-BL causes servers to overload earlier
than required, indicating poor load balancing.

Empirical results on the wall clock time for inserting the
n + 1th object are given in Figure 6. For wall clock time,
RJ-CH attains between a 2x and 7x speedup for small ε. The
speedup results from the fewer number of full bins, practical
considerations of hashing, and cascaded overflow of CH-BL.

The results of wall clock time should be considered in
the context of previous discussion on access cost. Namely,
whilst RJ-CH requires accessing a random bin and CH-BL
accesses a subsequent bin, the cost of RJ-CH is not necessar-
ily much larger than CH-BL depending on implementation,
and the fact that the array can usually be fit into an L3 cache
which means contiguous memory access is not an issue.

Dynamic Simulation Results
We performed the same simulations as above with dynamic
objects and bins to compare CH-BL with RJ-CH. After plac-
ing all n objects, objects and bins arrive and leave at a rate
of n/k of objects to bins. We then observe the load balance
metrics after an additional n objects have arrived or left. We
present results for the percentage of bins full in Table 1, and
further results in the Appendix. General results mirror that of
the previous section. RJ-CH has a lower percentage of bins
full at every epsilon, and this indicates better load balancing.

AOL Search Logs Experiments
In this section we present results with real AOL search logs.
This is a dataset of user activity with 3,826,181 urls clicked,
of which 607,782 are unique. We selected a wide range of
configurations, see Table 2, used in practice, such as reflect-
ing the 80% of internet usage being video (Cisco 2020).
Servers can come and go - as in practice, they will fail when
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Setting Config 1 Config 2 Config 3 Config 4

Number of servers 150 1000 100 20
Cache size 100 15 100 300

Minutes for stale urls to be evicted 300 300 120 120
Minutes requests are served 10 10 5 3

Minutes for failed server to recover 20 10 10 10
Number of concurrent requests till server failure 50 15 50 500

Table 2: Distributed caching configuration for AOL search dataset.

Configuration CH-BL RJ-CH

Config 1 35780 312
Config 2 52403 4680
Config 3 12223 104
Config 4 48571 9

Table 3: Additional cache misses on AOL search dataset.

overloaded, and will come back online after a certain period
of time.

Definitions:

• Cache size: Following the definitions in (Mirrokni, Tho-
rup, and Zadimoghaddam 2018; Mirrokni and Zadi-
moghaddam 2017) and implemented in practice for
Vimeo (Rodland 2016) and Google (Mirrokni and Zadi-
moghaddam 2017), cache size is defined as the maximum
number of objects a cache server can hold.

• Time-based eviction: Stale urls are evicted after they
have not been requested for a certain period of time. This
is the most common eviction strategy in practice (Ander-
son, Luo, and Smith 2019; Buck et al. 2017; Bengtsson
et al. 2020).

• Cache miss: A cache miss is defined as a request for an
object from a non-full bin where it has not already been
cached (Buck et al. 2017; Karkhanis and Smith 2002).
This captures the resource intensive process of the cache
server requesting and caching the object from a main
server.

We emphasize here that in practice object deletion is easy
to handle due to the common implementation of time-based
eviction. In addition, server deletion usually occurs when it
fails, and thus there is no time in practice to transfer the con-
tents.

Results are evaluated in cache misses, given in Table 3.
Cache misses are presented as additional cache misses, since
there is a large number of unavoidable cache misses for a
given eviction time even with no server failures and infi-
nite capacity. In all configurations, RJ-CH significantly de-
creases the number of cache misses by several orders of
magnitude. The only major difference between RJ-CH and
CH-BL is the cascaded overflow and this is the primary fac-
tor in the difference in performance.

Configuration CH-BL RJ-CH

Config 1 72989 5549
Config 2 98712 9054
Config 3 105499 8641
Config 4 49304 3498

Table 4: Additional cache misses on Indiana University
Clicks dataset.

Indiana University Clicks Search Logs
Experiments
In this section we present results using Indiana University
Clicks search logs. This is a dataset of user activity, where
we use the first 1,000,000 urls clicked of which 26,062 are
unique. For this dataset, we again selected a wide range of
configurations used in practice, see Table in the Appendix.

Again, results are evaluated in cache misses, given in Ta-
ble 4. In all configurations, RJ-CH significantly decreases
cache misses by roughly one order of magnitude.

Conclusion
From both theoretical and empirical results, RJ-CH signifi-
cantly improves on the state-of-the-art for dynamic load bal-
ancing. With this method, objects are much more evenly dis-
tributed across bins and bins rarely hit maximum capacity.
In terms of bin load, we also prove the stochastic dominance
of CH-BL over RJ-CH and a corollary is RJ-CH has lower
expected number of full bins and bin load variance. On the
AOL search dataset and Indiana University Clicks dataset
with real user data, RJ-CH reduces cache misses by several
orders of magnitude.
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