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Abstract

Sequential recommender systems (SRS) have become a re-
search hotspot in recent studies. Because of the requirement
in capturing user’s dynamic interests, sequential neural net-
work based recommender models often need to be stacked
with more hidden layers (e.g., up to 100 layers) compared
with standard collaborative filtering methods. However, the
high network latency has become the main obstacle when de-
ploying very deep recommender models into a production en-
vironment. In this paper, we argue that the typical prediction
framework that treats all users equally during the inference
phase is inefficient in running time, as well as sub-optimal
in accuracy. To resolve such an issue, we present SkipRec,
an adaptive inference framework by learning to skip inac-
tive hidden layers on a per-user basis. Specifically, we de-
vise a policy network to automatically determine which lay-
ers should be retained and which layers are allowed to be
skipped, so as to achieve user-specific decisions. To derive the
optimal skipping policy, we propose using gumbel softmax
and reinforcement learning to solve the non-differentiable
problem during backpropagation. We perform extensive ex-
periments on three real-world recommendation datasets, and
demonstrate that SkipRec attains comparable or better accu-
racy with much less inference time.

1 Introduction
The past decade has seen a remarkable progress in deep
learning and their applications in recommender systems
(RS). A variety of neural network models with larger and
deeper architectures are proposed to model user-item be-
havior interactions from online systems. Among them, se-
quential recommendation models (Hidasi et al. 2016; Yuan
et al. 2019; Kang and McAuley 2018) have become espe-
cially popular due to their powerful capacity in modeling
user’s dynamic interests. In addition, sequential models are
well-suited to do self-supervised learning by predicting the
next interaction in the sequence (Yuan et al. 2020b,c), and
thereby require less feature engineering and manually la-
beled data.
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(a) (b)

Figure 1: Recommendation accuracy (MRR@5) w.r.t. the
number of layers of NFM and NextItNet on the Weishi (Sun
et al. 2020) dataset. On (a), the left(right) label of x-axis
represents the number of layers for NFM and NextItNet,
respectively. (a) Compared with NFM, deepening NextIt-
Net results in significantly better accuracy; (b) the 128-layer
NextItNet converges better than other shallower NextItNets.
Experimental settings are given in Section 4.

In fact, compared with standard collaborative filtering
(CF) methods, sequential recommender models enjoy ex-
cellent model expressivity by stacking very deep layers. As
shown in Figure 1, we compare two representative recom-
mendation models, namely, neural factorization machines
(NFM) (He and Chua 2017) for standard CF and NextIt-
Net (Yuan et al. 2019) (with a slight change as described
in Section 3.3) for sequential recommendations. As shown,
on (a), we clearly observe that NFM yields no accuracy gain
by deepening the number of network layers, and it performs
largely worse than NextItNet. In contrast, the performance
of NextItNet is gradually improved by stacking more layers.
To our surprise, NextItNet converges the best with up to 128
layer, achieving around 1% improvement on MRR@5 over
the same model with 64 layers, as shown in (b).

However, as the network becomes deeper, a real problem
arises, that is, the inference cost largely increases, leading to
an inevitable time delay for online service. In this paper, we
argue that users in recommender systems are unique (i.e.,
personalized), passing all of them through hidden layers of
the same depth is non-optimal and computationally ineffi-
cient. Instead, as shown in Figure 2, we believe that for many
‘easy’ users (or user input sequences), neural network mod-
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Figure 2: Skipping inactive layers on a per-user basis. For
user 1, five of eight layers can be skipped, which is regarded
as an easy user, As a comparison, user 3 is thought of as a
relatively hard user since only two layers are allowed to skip.

els with a few hidden layers are already expressive enough,
while for these ‘hard’ users, more layers are often necessary
so as to capture complex preferences. Unfortunately, to the
best of our knowledge, thus far all existing deep neural net-
work based recommender models assign fixed structures for
users when generating recommendations.

To address the aforementioned issue, we propose
SkipRec, an adaptive inference framework for deep sequen-
tial recommender models, which defines the network struc-
ture adaptively on a per-user basis. Specifically, we devise
a policy network to automatically determine which layers
in the backbone network should be retained and which lay-
ers are skipped, so as to obtain the user-specific decision in
SRS. SkipRec is a general network depth selection frame-
work which directly applies to a broad range of deep recom-
mendation models, such as NextItNet (Yuan et al. 2019) and
SASRec (Kang and McAuley 2018).

We summarize our main contributions as follows:

• We are the first to emphasize the unnecessity in executing
the same number of hidden layers for all users in a deep
recommender model.

• We propose SkipRec, a user-specific depth selection
framework where the number of network layers can be
selected on a per-user basis. SkipRec enables each user
to have their own skipping policies, which is the first per-
sonalized depth selection method for the recommendation
task.

• We propose SkipRec-Gumbel and SkipRec-RL to derive
the optimal skipping policy (skipping or retaining) with-
out suffering from the non-differentiable problem during
backpropagation.

• Extensive experiments show that the proposed SkipRec
attains competitive or better performance with less infer-
ence time in three real-world SRS datasets.

2 Related Work
Sequential recommender systems (SRS), a.k.a. session-
based RS, take user’s past behaviors as input and generate
recommendations by analyzing, modeling and representing
these behaviors. In this paper, we simply categorize SRS into
conventional SRS and deep learning (DL) based SRS.

Early work of SRS mostly rely on the Markov Chain
(MC) (Shani, Heckerman, and Brafman 2005) and factoriza-
tion models (Rendle, Freudenthaler, and Schmidt-Thieme
2010). Specifically, Shani, Heckerman, and Brafman (2005)
introduced Markov Decision Processes (MDPs) based meth-
ods to model the sequential nature of the recommendation
process. Rendle, Freudenthaler, and Schmidt-Thieme (2010)
proposed factorized personalized Markov chains to combine
the transition information between the adjacent behaviors
and the item latent factors for the next item recommenda-
tion. Another representative work in Wang et al. introduced
a hierarchical representation method to capture both sequen-
tial patterns and the general taste of users by involving rep-
resentations and sequential transactions in prediction. The
major problems of these methods are that they merely char-
acterize the local sequential patterns of user behavioral se-
quence and adopt static representations for user preference.
Thereby, such methods often show poor performance when
modeling complicated and dynamic relations in the sequen-
tial session data.

Driven by the great success of DL, recurrent neural net-
works (RNNs) (Hidasi et al. 2016; Wu et al. 2017; Ying
et al. 2018) have been successfully adapted in SRS and
shown obvious improvements compared with conventional
non-DL models. For example, Hidasi et al. (2016) pro-
posed GRU4Rec, which used the gated recurrent unit (GRU)
to model the short-term preference based on user’s previ-
ous purchasing or clicking behaviors. Subsequently, a va-
riety of RNN variants have been proposed to improve the
performance of the SRS tasks, such as personalized SRS
(Ying et al. 2018), content- and context-based SRS (Gu
et al. 2016; Smirnova and Vasile 2017). Despite the ef-
fectiveness of RNN-based methods, they rely heavily on
hidden states of entire past items, neglecting the parallel
processing resources (e.g., GPU and TPU). Convolutional
neural networks (CNNs) and self-attention models are pro-
posed to mitigate such limitations (Tang and Wang 2018;
Yuan et al. 2019, 2020a; Sun et al. 2019). Tang and Wang
(2018) developed a convolutional sequence embedding rec-
ommendation method (Caser) for SRS, which embeds a se-
quence of user-item interaction into an “image” and learn
sequential patterns as local features of the image using wide
convolutional filters. Yuan et al. (2019) developed a deep
CNN-based sequential recommendation model (NextItNet)
to learn the complex conditional distribution in both short-
and long-range item sequences. In parallel, self-attention
based models, such as SASRec (Kang and McAuley 2018)
and BERT4Rec (Sun et al. 2019) also obtained competitive
results.

As revealed by Yuan et al.; Yuan et al.; Sun et al.; Bach-
lechner et al.; Wang et al., CNNs and self-attention models
can perform better than RNN-based sequential models since
their performance can be boosted by stacking more hidden
layers with the residual block architecture. However, very
deep networks are always accompanied with increased pre-
diction cost and latency (Wang et al. 2018). Distinct from ex-
isting work, we propose a user-specific adaptive network to
dynamically select which layers of a CNN or self-attention
model should be skipped during inference based on user’s
historical behaviors.
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3 Our Methodology
3.1 Problem Definition
Given a sequence of historical user behaviors Xu =
[xu1 , x

u
2 , . . . x

u
t ], where xut denotes the t-th interacted item

of user u, the goal of sequential recommendation (SR) is to
predict item xut+1 that the user will interact with at time t+1.
Note that it is straightforward to change the above task set-
ting into a basket-based setting by replacing each item xui
with an item subset (i.e., basket) (Yu et al. 2016). For sim-
plicity, we keep the next-item recommendation as our major
task setting. Meanwhile, given that users often merely care
about the first few items, the top-N items are recommended.

3.2 The Overall Architecture
In the paper, we describe SkipRec using NextItNet-like
(Yuan et al. 2019) learning algorithm as the backbone model
given its superior recommendation performance. It is note-
worthy that SkipRec is model-agnostic and potentially ap-
plicable for any SR model with a deep network architecture.
Figure 3 illustrates the overall architecture of the proposed
method. To be specific, SkipRec consists of two primary
modules: backbone network and policy network. The back-
bone network is a slightly modified NextItNet model (de-
scribed later), which is more powerful than the original ver-
sion. We devise a policy network to automatically determine
which layers in the backbone network should be retained and
which layers should be skipped on a per-user basis, so as to
truly achieve user-specific decision. Next, we will first reca-
pitulate the backbone network and then introduce our policy
network in detail.

3.3 Backbone Network
NextItNet is composed of a stack of holed convolutional
layers, which are wrapped by a residual block structure
every two layers. Specifically, each input item xu is con-
verted into an embedding vector eu, and the interaction se-
quence Xu is thereby represented by an embedding matrix
Eu = [eu1 . . . e

u
t ]. The item embeddings are then passed into

a stack of dilated convolutional (DC) layers to learn feature
vector Eu

l which is expected to capture the long-range de-
pendencies. Here, l represents the l-th residual block in the
backbone network. A residual block is employed to connect
every two consecutive DC layers. Formally, the l-th residual
block with the DC operation is formalized as:

Eu
l = λ×Fl(E

u
l−1) + Eu

l−1 (1)

where Eu
l−1 and Eu

l are input and output of the l-th residual
block considered. λ × Fl(E

u
l−1) + Eu

l−1 is a shortcut con-
nection by element-wise addition. Similar to (Wang et al.
2020), we add a learnable coefficient λ (initialized with zero
1 ) to the residual mappings Fl(E

u
l−1), so that the model can

stack more layers, even more than 100 layers, and get bet-
ter results than the standard version with λ as 1. Fl(E

u
l−1)

represents the residual mapping, which is defined as:

Fl(E
u
l−1) = σ

(
LN2

(
ψ2

(
σ
(
LN1

(
ψ1(Eu

l−1)
)))))

(2)

1We empirically find that initializing λ to zero always helps the
model converge better and faster than other bigger values.

where ψ1 and ψ2 represent the casual convolution opera-
tions. LN1 and LN2 represent layer normalization func-
tions. σ is the ReLU activation function.

Finally, a softmax output layer is applied to predict the
probability distribution for the next item xut+1:

p(xut+1|xu1:t) = softmax(WEu
l + b) (3)

where W is a projection matrix, and b is a bias term.
The joint probability p (Xu; Ω) of each user-item se-

quence is computed by the product of conditional distribu-
tions over interacted items as follows:

p (Xu; Ω) =
t∏

i=2

p
(
xui |xu1:i−1; Ω

)
p (xu1 ) (4)

where p
(
xui |xu1:i−1; Ω

)
is the predicted probability for the

i-th item xui conditioned on all its previous interactions
[xu1 , . . . , x

u
i−1], and Ω is the set of parameters.

3.4 Policy Network
In this subsection, we design a user-specific policy network
to output a binary policy vector Il(Eu), representing the ac-
tions to retain or skip the l-th residual block in the backbone
network based on user sequence Eu. In particular, the pol-
icy network is implemented using a lightweight NextItNet
model with dilations of {1, 2, 4, 8} (4 layers or 2 resid-
ual blocks). Without any restrictions, the policy network can
also be implemented with any deep neural networks, e.g., a
RNN model.

Specifically, for the l-th residual block in the backbone
network, we learn a policy Il(E

u) through the policy net-
work to decide whether or not to skip Eu

l during training.
The adaptive output Eu

l adaptive of the l-th residual block in
SkipRec is computed as:

Eu
l adaptive = Il(E

u)Eu
l + (1− Il(E

u))Eu
l−1adaptive

(5)

where Il(E
u) is a binary variable indicating whether the

residual block Eu
l could be retained or skipped based on user

sequence Eu. During training, the input user sequence can
either retain the current block Eu

l or skip it by directly us-
ing the output of the previous residual block Eu

l−1adaptive
in

SkipRec. Il(Eu) draws samples from a discrete distribution
of two classes (retain or skip), which could be parameter-
ized by the output of a small-sized policy network. To be
more specific, the l-th residual block in backbone network is
skipped if Il(Eu) = 0; otherwise, the l-th residual block is
retained.

Since the policy Il(E
u) is a discrete binary variable, it is

intractable to optimize the policy network with backprop-
agation due to the non-differentiable problem. To resolve
this issue, we propose two methods to generate the actions
(retain or skip) from a discrete distribution: the Gumbeling
Softmax sampling method (Maddison, Mnih, and Teh 2017)
and the reinforcement learning method (Rennie et al. 2017).

Gumbeling Softmax Sampling We employ the Gumbel-
ing Softmax sampling method (Maddison, Mnih, and Teh
2017) to produce the actions (retain or skip) from a dis-
crete distribution (called SkipRec-Gumbel). Specifically,
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Figure 3: Model architecture. The proposed SkipRec consists of two primary modules: backbone network and policy network. In
backbone network, we adopt a modified NextItNet model to capture important information in user-item interaction sequences.
In policy network, we learn a user-specific adaptive skipping strategy to automatically determine which layers in the backbone
network should be retained and which layers should be skipped on a per-user basis.

SkipRec-Gumbel draws samples z from a categorical dis-
tribution with class probabilities {π1, π2, . . . , πk}. Here, we
have k = 2, indicating the retaining or skipping actions.
That is, each residual block is associated with two scalars
π1 & π2 that correspond to final output of policy network.

z = one−hot
(

arg max
i

[gi + log πi]
)

(6)

where z is a one-hot vector and {g1, g2, . . . , gk} are i.i.d.
samples drawn from Gumbel(0, 1) distribution. In particu-
lar, we sample the Gumbel(0, 1) distribution using inverse
transform sampling by drawing u from a uniform distribu-
tion (Jang, Gu, and Poole 2016), i.e. u ∼ Uniform(0, 1)
and compute g = − log(− log(u)).

The arg max operation in Eq. (6) is non-differentiable,
but we can resort to the Gumbel Softmax distribution, which
adopts softmax as a continuous relaxation to arg max in or-
der to alleviate the non-differentiable problem. We relax the
one-hot encoding of z to a real-valued vector α using:

αi =
exp ((log πi + gi) /τ)∑k

j=1 exp ((log πj + gj) /τ)
for i = 1, . . . , k

(7)
where τ is a temperature parameter to control the discrete-
ness of the output vector α. Here we set τ to 10 by default.

We can solve the non-differentiable problem by sampling
the skipping policy Il(E

u) from the Gumbel Softmax dis-
tribution, since the Gumbel Softmax distribution is smooth
when τ > 0 and thus has well-defined gradients in terms
of the parameters πi. Similar to (Wu et al. 2018; Guo et al.
2019), we generate all skip/retain policies for all residual
blocks at once for the trade-off of efficiency and accuracy.
During the forward pass, we sample the skipping policy
Il(E

u) using Eq. (6) for the l-th block. As for the backward
pass, we are able to estimate the gradients of the discrete

samples by computing the gradients of the continuous soft-
max relaxation in Eq. (7).

By using the above approach, we are able to optimize the
SkipRec in a differentiable way and obtain the policy regard-
ing which layers in backbone network should be skipped.
The policy network is simultaneously trained with the back-
bone network in an end-to-end way. We use the standard
cross-entropy objective function as in the original NextItNet
model.

Reinforcement Learning As an alternative to the
SkipRec-Gumbel method, we learn the policy network by
employing the reinforcement learning algorithm (called
SkipRec-RL). The main idea is to learn the policy network
that outputs the posterior probabilities of all the binary deci-
sions for retaining or skipping each block in the backbone
network. The policy network is optimized via curriculum
learning (Bengio 2013; Wu et al. 2018) to maximize a re-
ward that incentivizes the use of blocks as few as possible
while maintaining the prediction performance. In this re-
gard, we can consider the potential trade-offs between com-
putational cost and prediction accuracy.

Let A = {0/1}N ∈ RN denotes the skipping policies
predicted by the policy network, where N represents the
number of residual blocks in the backbone network. In par-
ticular, A ∼ p(πi), where πi ∈ {π1, π2}, indicating the
retaining or skipping actions. In order to evaluate the advan-
tage of an action Al, we define the reward function as the
following formula:

R(A) =
{

1−
(∑

l 1(Al)/N
)2 if correct

−γ otherwise
(8)

where 1(·) is an indicator function, Al represents the skip
or retain policy applied on the l-th block, γ is a hyper pa-
rameter to penalize the wrong policy. The motivation be-
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hind the Eq. 8 is two fold: (1) enabling the policy net-
work to control the backbone network so as to generate
well-recommended items; (2) achieving a significant infer-
ence speedup to meet the requirement of online service.
Specifically, (

∑
l 1(Al)/N)

2 measures the percentage of
blocks that are utilized. When a correct recommendation
is produced, we incentivize the skipped block by assign-
ing a larger reward to a policy which utilizes fewer blocks.
In addition, we penalize incorrect recommendations with γ,
which determines the trade-off between efficiency and effec-
tiveness. γ is simply set to 1 in this paper.

To optimize the policy network, we adopt self-critical se-
quence training (SCST) (Rennie et al. 2017), which is a
form of REINFORCE (Williams 1992) algorithm, for model
training. In details, the exploration action As

l is obtained
by sampling from the categorical distribution p(πi) through
modeling the user-item interaction sequence, while the self-
critical baseline is calculated by the greedy search, and the
policy takes action by Âl = arg max

i
p(πi). To optimize the

parameters of policy network, we minimize the below SCST
loss:

LRL = −
N∑
l=1

log p(As
l )
(
R(As

l )−R(Âl)
)

(9)

where p(As
l ) represents the probability to sample the explo-

ration action As
l . Since the self-critical baseline is based on

testing time estimation under the current model, the SCST is
encouraged to boost the performance of the model under the
inference algorithm at testing time (Rennie et al. 2017). At
inference stage, we obtain the actual skipping policy Il(E

u)
by the greedy search arg max

i
p(πi).

Finally, we jointly train the policy network and backbone
network in an end-to-end way and optimize the weighted-
sum of the cross-entropy loss and SCST loss in the SkipRec-
RL method:

L = LCE + βLRL (10)
where LCE and LRL represent the standard cross-entropy
loss and the SCST loss respectively, and β is a hyper param-
eter to control the weight of the SCST loss, which is set to 1
in our experiments.

3.5 Training Procedure
In the training procedure, we propose two ways to train our
SkipRec model: one-stage and two-stage. In one-stage train-
ing, the parameters of the policy network and the backbone
network are initialized randomly and trained jointly. While
in the two-stage training, we first pre-train the NextItNet
model with training data and initialize the backbone net-
work with pre-trained parameters, which can help the back-
bone network obtain better feature representation ability at
the beginning and make the training of the policy network
more conducive.

4 Experimental Setup
4.1 Experimental Datasets
We conduct extensive experiments on three real-world
datasets: ML20, ML100, and Weishi (Sun et al. 2020). The
statistics of these three datasets are reported in Table 1.

Dataset #items #interactions #sequences Length t

Weishi 66K 10M 1,048,575 10
ML20 54K 27.7M 1,491,478 20

ML100 54K 27.7M 457,350 100

Table 1: Dataset statistics (after pre-processing). “K” and
“M” are short for thousand and million, respectively.

• ML20 and ML100: The MovieLens2 dataset is widely
used for both standard collaborative filtering and sequen-
tial recommendations, which consists of approximately
280,000 users, 58,000 videos (full movies and clips) and
27 million time-stamped user-item interactions. Similar
to (Rendle et al. 2009; Sun et al. 2020), we remove the
users with less than 10 items and the interactions with less
than 5 users so as to alleviate the impact of cold users and
items, respectively. Afterwards, the maximum length of
each interaction sequence is set to be t. We split the se-
quences longer than t into multiple sub-sequences, while
the sequences shorter than t are padded with zero in the
beginning of each sequence, similar to (Yuan et al. 2019).
In this paper, we set t to be 20 (denoted as ML20) and 100
(denoted as ML100) as short- and long-range sequences,
respectively.

• Weishi3: This is a short-video (around 20 seconds per
video) recommendation dataset provided by Tencent (Sun
et al. 2020). It contains more than 60,000 videos and
around 1 million users. Following (Sun et al. 2020), we
handle it as a short-range sequential dataset by extracting
the latest 10 videos per user.

4.2 Baselines and Evaluation
While the main purpose of this work is to demonstrate the
effectiveness of SkipRec, we compare its accuracy with sev-
eral other well-known recommendation methods for refer-
ence, including NFM (He and Chua 2017), GRU4Rec (Tan,
Xu, and Liu 2016), Caser (Tang and Wang 2018), NextIt-
Net (Yuan et al. 2019) and its advanced variant as described
in Section 3.3, termed as NextItNet+ in the remaining. Note
that NFM is also suited for the sequential recommendation
settings by treating user interactions as common features.
As for GRU4Rec, we report results with the autoregressive
training method (Yuan et al. 2020a) for fair comparison with
NextItNet. All methods use the cross-entropy loss for mean-
ingful evaluation.

We measure the performance of top-N accuracy follow-
ing previous works including MRR@N (Mean Reciprocal
Rank) and HR@N (Hit Ratio) (Hidasi et al. 2016; Yuan
et al. 2019). Here N is set to 5. We report the inference
speedup compared to the backnone network NextItNet+ to
reflect its inference efficiency. Note that we only evaluate
the prediction accuracy of the last item in each user-item
interaction sequence in testing set, similarly to (Yuan et al.
2019; Sun et al. 2020).

2https://grouplens.org/datasets/movielens/
3https://weishi.qq.com
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4.3 Implementation Details
We divide the number of user sessions in each dataset into
training (80%), validation (5%) and test (15%) sets. For fair
comparison with previous works, SkipRec adopts the same
values as NextItNet+ for the shared hyper-parameters. For
policy network, we use dilation factors of {1, 2, 4, 8} (4 lay-
ers or 2 residual blocks), which is a lightweight neural net-
work. We use a batch size (denoted by b) of 256 and di-
lation factors (denoted by l) of 16 × {1, 2, 4, 8} (64 layers
or 32 residual blocks) for the backbone network on Weishi
and ML20. Note that we use 64 layers on Weishi and ML20
so as to verify that SkipRec works well even the model has
not fulfill its total capacity since the best performance is
achieved up to 128 layers. On ML100, we set b to 256 and l
to 24×{1, 2, 4, 8} (96 layers). The size of item embeddings
d is set to be 256 for all datasets. For other baselines, we
use the same item embedding size and hidden dimensions.
We employ Adam optimizer to train all models with learning
rate η of 0.001 given their good behaviors on the validation
set. All the experiments are implemented in TensorFlow and
trained on a single TITAN RTX GPU.

5 Experimental Results
5.1 Quantitative Evaluation
Table 2 reports the results of SkipRec and all baselines on
the three datasets. From the results, we can make the follow-
ing observations. First, we observe that NextItNet performs
better than NFM, GRU4Rec and Caser with substantial im-
provements in terms of recommendation accuracy among
the three SRS datasets, which is consistent with the previ-
ous work (Yuan et al. 2019; Sun et al. 2020). Second, the
modified NextItNet+ can achieve better recommendation ac-
curacy than NextItNet across all datasets with exactly the
same hyper-parameters. Third, SkipRec with the proposed
Gumbel Softmax sampling method (SkipRec-Gumbel) and
reinforcement learning method (SkipRec-RL) attains com-
parable or better accuracy, especially when we pre-train the
backbone network (i.e., Gumbel w/pre and RL w/pre) in ad-
vance. For example, on Weishi and ML20, SkipRec-Gumbel
with pre-training obtains 2.7% and 3.5% improvements in
terms of MRR@5, respectively. More importantly, SkipRec
achieves a notable inference speedup relative to NextItNet+
(e.g., 2.01× and 2.30× inference speedup with SkipRec-RL
with pre-training on Weishi and ML20).

5.2 Ablation Studies on the Policy Network
In the remaining ablation studies, we only report partial ex-
periments for saving space.

Random Policy In order to verify the effectiveness of the
policy network, we compare it with a random policy net-
work, and the results are shown in the Table 3. The random
policy network is implemented with a Bernoulli random dis-
tribution which can make the probability that the policy
Il(E

u) equals 0 or 1 as 0.5. The results demonstrate that
a well-optimized policy largely performs better than a ran-
dom policy. Moreover, a random policy degrades the origi-
nal backbone network clearly since the network connectivity
has been broken.

Policy Network with GRU As mentioned before, the ar-
chitecture of our policy network can be implemented with
any deep neural networks without any restrictions. In order
to verify the flexibility of the policy network, we replace the
original lightweight NextItNet with a gated recurrent unit
(GRU) for the policy network, and the results are shown in
the Table 4. The results show that designing the policy net-
work by a gated recurrent unit (GRU) can also achieve com-
parable performance.

Visualization of Policies To better understand the skip-
ping policies learned by policy network, we visualize them
on the three datasets in Figure 4. For saving space, we only
show SkipRec-Gumbel while simply omitting SkipRec-RL
due to their similarities. The illustration shows that differ-
ent datasets have different skipping policies. SkipRec al-
lows NextItNet+ to automatically identify the right policy in
determining which layers in the backbone network should
be retained and which layers should be skipped on a per-
user basis, which would be infeasible through a manual ap-
proach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Weishi

ML20

ML100
0.50

0.55

0.60

0.65

0.70

Figure 4: Visualization of the policy. x-axis denotes the
residual blocks (i.e., every two CNN layers) from 1st to 16th.
The color means the rate of utilization of residual blocks for
all users in average. i.e., dark blue means a higher utilization
rate, whereas light yellow denotes a lower rate.

5.3 Convergence Behavior Analysis
Here we investigate the convergence behaviors of SkipRec.
In particular, we visualize the learning curves of NextIt-
Net+ and proposed SkipRec-Gumbel & SkipRec-RL. As il-
lustrated in Figure 5, we observe that (1) SkipRec-Gumbel
and SkipRec-RL (i.e., the no pre-training versions) pre-
vent overfitting better than the NextItNet+ on both Weishi
(left) and ML20 (right); (2) NextItNet+ converges faster
than SkipRec given that more parameters are updated in
each round of backpropagation. For instance, on Weishi,
the MRR@5 of NextItNet+ starts to decrease sharply after
4 epochs, whereas SkipRec (including the pre-trained ver-
sions) keeps relatively stable after convergence. These re-
sults are basically in accordance with the model structures
and theoretical expectations.

5.4 Adaptability Experiment
To verify the generality of SkipRec, we specify it with SAS-
Rec (Kang and McAuley 2018) and report results in Table 5.
Similar to NextItNet+, we also add a learnable coefficient to
the residual mappings, so that the model can stack even more
than 100 layers (i.e.,128 layers for both Weishi and ML20) ,
and get the optimal results. We term it as SASRec+. Regard-
ing the policy network, we implement it with a lightweight
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Model Weishi ML20 ML100
MRR@5 HR@5 Speedup MRR@5 HR@5 Speedup MRR@5 HR@5 Speedup

MostPop 0.0050 0.0187 \ 0.0044 0.0134 \ 0.0040 0.0124 \
NFM 0.0734 0.1307 \ 0.0483 0.0856 \ 0.0341 0.0573 \

GRU4Rec 0.1001 0.1649 \ 0.0938 0.1577 \ 0.0973 0.1611 \
Caser 0.0911 0.1498 \ 0.0915 0.1509 \ 0.0927 0.1505 \

NextItNet 0.1025 0.1669 \ 0.1019 0.1686 \ 0.1073 0.1752 \
NextItNet+ 0.1091 0.1767 1.00× 0.1067 0.1784 1.00× 0.1117 0.1819 1.00×

SkipRec-Gumbel 0.1105 0.1796 1.66× 0.1091 0.1783 1.92× 0.1122 0.1827 1.35×
Gumbel w/ pre 0.1121 0.1826 1.74× 0.1104 0.1800 1.72× 0.1147 0.1862 1.30×

SkipRec-RL 0.1098 0.1788 2.00× 0.1087 0.1773 2.28× 0.1111 0.1799 2.08×
RL w/ pre 0.1117 0.1813 2.01× 0.1101 0.1793 2.30× 0.1136 0.1852 2.03×

Table 2: Performance comparison on Weishi, ML20 and ML100. MostPop returns top-N items ranked by popularity.

Data Model MRR@5 HR@5

Weishi

NextItNet+ 0.1091 0.1767
SkipRec-Gumbel 0.1121 0.1826

SkipRec-RL 0.1117 0.1813
Random policy 0.1056 0.1727

ML20

NextItNet+ 0.1067 0.1784
Skip-Gumbel 0.1104 0.1800
SkipRec-RL 0.1101 0.1793

Random policy 0.1018 0.1676

Table 3: Results with a random policy on Weishi and ML20.

Data Model MRR@5 HR@5

Weishi

NextItNet+ 0.1091 0.1767
SkipRec-Gumbel 0.1121 0.1826

SkipRec-Gumbel-GRU 0.1123 0.1816
SkipRec-RL 0.1117 0.1813

SkipRec-RL-GRU 0.1112 0.1801

ML20

NextItNet+ 0.1067 0.1784
SkipRec-Gumbel 0.1104 0.1800

SkipRec-Gumbel-GRU 0.1100 0.1818
SkipRec-RL 0.1101 0.1793

SkipRec-RL-GRU 0.1096 0.1780

Table 4: Results with the policy network using CNN and
GRU on Weishi and ML20.

multi-head self-attention network, i.e., one standard atten-
tion residual block.

As shown, similar conclusions can be made as discussed
in Section 5.1. SkipRec with adaptive policies yields com-
petitive recommendations compared with the original SAS-
Rec+. Particularly, we observe that SkipRec with the Gum-
bel strategy and pre-training obtains around 2.4% improve-
ment on Weishi. As analyzed before, the main benefits of
SkipRec come from the attention policy, which is as power-
ful as the convolutional and recurrent networks.

6 Conclusion and Future Work
In this paper, we have proposed an adaptive layer selection
framework (SkipRec), whereby the number of network lay-

Figure 5: Convergence behaviors,w.r.t. MRR@5, on Weishi
(left) and ML20 (right).

Data Model MRR@5 HR@5 Speedup

Weishi

SASRec+ 0.1076 0.1749 1.00×
SkipRec-Gumbel 0.1089 0.1770 1.52×
Gumbel w/ pre 0.1102 0.1778 1.37×

SkipRec-RL 0.1086 0.1761 1.46×
RL w/ pre 0.1094 0.1768 1.58×

ML20

SASRec+ 0.1154 0.1890 1.00×
SkipRec-Gumbel 0.1151 0.1872 1.57×
Gumbel w/ pre 0.1189 0.1910 1.31×

SkipRec-RL 0.1147 0.1861 1.69×
RL w/ pre 0.1175 0.1879 1.53×

Table 5: Results by applying SASRec+ for SkipRec.

ers can be selected on a per-user basis. We devise a policy
network to automatically determine which layers should be
retained and which layers should be skipped in the backbone
network. We also demonstrate that deep recommender mod-
els can be stacked with more than 100 layers and thereby
it is necessary to come up strategies for efficient inference.
We expect our studies will inspire new research in exploring
deep, effective and efficient recommender models.

A small drawback of SkipRec is that it converges slightly
slower than the backbone network due to fewer parameters
are trained in each round. In the future, we would explore
advanced techniques to speedup the training of such deep &
large recommender models (such as in (Wang et al. 2020;
Sun et al. 2020)) so as to free up more computational re-
sources.
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