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Abstract

For personalized recommendations, collaborative filtering
(CF) methods aim to recommend items to users based on
data of historical user-item interactions. Deep learning has
indicated success in improving performance of CF methods in
recent works. However, to generate an item recommendation
list for each user, a lot of deep learning-based CF methods
require every pair of users and items to be passed through
multiple neural layers. This requires intensive computation
and makes real-time end-to-end neural recommendations very
costly. To address this issue, in this paper, we propose a new
deep learning-based hierarchical decision network to filter
out irrelevant items to save computation cost while maintain-
ing good recommendation accuracy of deep CF methods. We
also develop a distillation-based training algorithm, which
uses a well-trained CF model as a teacher network to guide
the training of the decision network. We conducted extensive
experiments on real-world benchmark datasets to verify the
effectiveness and the efficiency of our decision network for
making recommendations. The experimental results indicate
that the proposed decision network is able to maintain or even
improve the recommendation quality in terms of various met-
rics and meanwhile enjoy lower computational cost.

Introduction
In personalized recommendation, users’ preferences are usu-
ally modeled from historical user-item interactions. Specifi-
cally, factor-based collaborative filtering (CF) methods model
each user and each item as latent factors hu and hv, respec-
tively, to capture the characteristics of users and items, and
the outcome of their dot product is considered as a relevance
score between the item and the user for recommendation.

In the past decade, deep learning (LeCun, Bengio, and
Hinton 2015) has been widely applied in various application
domains, from computer vision and speech recognition to nat-
ural language processing and cybersecurity. Recently, deep
learning has also raised attention in recommender systems,
especially for CF methods. In general, deep learning-based
CF has been explored in mainly two directions: representa-
tion learning and matching function learning. In the direction
of representation learning (Xue et al. 2017; Wang et al. 2019),

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the embeddings of users and items are learned through a deep
neural network. After the representations are learned, the
inner product between the embeddings of users and items
is used to compute the user-item relevant score for recom-
mendation. In this way, computation in the inference (i.e.,
recommendation) phase is efficient, but the interactions be-
tween the embeddings of users and items are modeled linearly
as the inner product is a linear operation.

To address the limitation of representation learning CF
approaches, matching function learning has been proposed
to capture nonlinear interactions between the embeddings
hu and hv beyond the inner product by designing a deep ar-
chitecture. The Neural Collaborative Filtering (NCF) frame-
work (He et al. 2017) is a representative in the direction of
matching function learning. In NCF, a deep neural network
of multiple Generalized Matrix Factorization (GMF) layers
and Multi-Layer Perceptron (MLP) layers is used as a black-
box to capture the underlying interactions between users and
items. Later, various neural network architectures have been
proposed to model user-item interactions (He et al. 2018; Xue
et al. 2019). Recently, a unified framework that integrates
the two approaches of representation learning and matching
function learning is proposed (Deng et al. 2019).

Intuitively, if the deep neural network has a deeper archi-
tecture, it is able to capture deeper interactions between users
and items. Empirically, it has also been shown in previous
work that the depth of the deep architecture has a propor-
tional effect on the recommendation quality (He et al. 2017).
However, the depth of the architecture is a double-edged
sword. On one hand, a deeper architecture makes capturing
deeper interactions between users and items for more accu-
rate recommendation possible, on the other hand, a deeper
architecture causes higher computation cost in real-time in-
ference, which makes it less practical in real time. To be
specific, to recommend items to a target user, most state-of-
the-art deep learning-based methods require a full forward
pass to retrieve a rating score for every pair of the user and all
the items. When the item set is very large, this inference or
recommendation process is highly time intensive, especially
when the recommender system runs on a server with limited
computational resources.
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Figure 1: The Hierarchical Decision Network, where γ(n)
represents the rejection ratio associated with the n-th decision
module.

Our Novelty
To address the aforementioned issue of deep CF methods, in
this paper, we propose a novel network architecture, Hierar-
chical Decision Networks (HDNs). In our designed architec-
ture as shown in Figure 1, the network consists of multiple
stacked decision module and a final scoring module. The
goal of a hierarchical decision module is to provide an early
decision on whether the item should be rejected (i.e., not
recommended to the user) or need to be further passed to the
next decision module or to the scoring module to compute
the final relevant score for recommendation.

Different from previous deep CF networks, the proposed
HDNs do not only recommend items based on relevance
scores, but also utilizes decision modules to quickly decide
whether an item should be further “investigated” for recom-
mendation. By using the stacked decision modules, HDNs
are able to quickly filter a large portion of items that are
most unlikely matched with the user’s preferences before
forwarding them to the next layers for further computation.
As a result, for each user, there may be only a few items that
are finally passed to the scoring layer to compute relevant
scores. As a result, HDNs do not only save computation time
in forward computation, but also save the time for ranking
item candidates for each user.

In addition to the new proposed architecture, we also de-
velop a distillation-based training algorithm to train a HDN.
In deep learning, knowledge distillation (Hinton, Vinyals,
and Dean 2015) is a technique which aims to transfer knowl-
edge from a large and well-trained teacher network to train
a smaller student network. In CF, the key knowledge is the
ranking information of items for each user. Therefore, we
first train a deep and precise neural network by using a deep
CF method as the teacher network, and consider a HDN as
the student network. The outputs of the teacher network, i.e.,
scores of user-item pairs, are distilled to guide the learning of
the rejection thresholds of each decision modules. To the best
of our knowledge, paired with the distillation-based train-

ing algorithm, HDNs are the first deep learning architecture
that aims to reduce inference cost of deep matching function
models for CF.

Related Work
One similar approach to this problem is by using a two-step
process (Covington, Adams, and Sargin 2016), which has
an extra candidate generation step before the ranking step.
Items that are likely to be interacted by a certain user are
pre-selected in the candidate generation step. An extra model
is built for fine-grained user preference modeling, which pro-
vides scores to re-rank the selected items. This two-stage
approach can avoid running a large model for a large batch of
items. However, it does not enable end-to-end training of the
network, where the network training information does not
flow from each other, and requires extra manual tuning of the
two steps. Re-ranking based methods improve the two-stage
method by using the ranking information of the first stage to
help the model in the second stage. A deep learning-based re-
ranking model, PRM, has been proposed in (Pei et al. 2019).
PRM is an attention based deep network to re-rank the items
after candidate generation. It has performance improvement
over two-staged process without re-ranking as well as previ-
ous re-ranking methods. Although the re-ranking methods
have improvements on the second fine-grained step, the po-
tential loss of items from the first step could not be recovered.
We have implemented a naive two-staged recommendation
and PRM as baseline methods to compare with HDN for
recommendation quality.

In (Tang and Wang 2018), a distillation-based method
named Ranking Distillation (RD) is proposed for ranking
problems, which utilizes the top-K ranked items from the
teacher model for distillation. Comparing to RD, our work
does not focus on general knowledge transfer for learning-
to-rank tasks, but one tailored to our designed network archi-
tecture. Our distillation-based method for the decision units
also allows user preference information for the lower-ranked
items transferred from the teacher model, besides the top-K
items from RD. For the scoring unit, we do not use ranking-
based distillation, the combination of our work and RD could
be possible for further exploration.

Quantization (Hubara et al. 2017) of neural network is also
a common approach to reduce the computation cost. In (Kang
et al. 2020), the authors have applied the quantization method,
KD encoding (Chen, Min, and Sun 2018), on the embeddings
layer for both users and items. Their proposed method MGQE
has achieved performance that matches and sometimes im-
proves over original models. Although quantization reduces
the storage space of the user and item embeddings, all the
user-items pairs are still passed through the whole neural net-
work, which still requires the same computational resources.
In (Lian et al. 2020), the authors used a codebook-based
approach to represent items as a combination of the closest
codeword. The quantization of the representation enables
smaller storage space and faster inference, while sacrificing
representation power compared with the deep learning based
user-item matching methods. In addition, ideas from both
of the above quantization methods can also be added to our
proposed network by altering the embedding layer.
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Methodology
Neural Collaborative Filtering Framework
In classical matrix factorization-based CF methods, given a
pair of a user and an item (ut, vt), the relevance score ŷut,vt
is obtained by computing the inner product between their
embeddings hut and hvt :

ŷut,vt = 〈hut ,hvt〉 . (1)

The idea of the Neural Collaborative Filtering (NCF) frame-
work (He et al. 2017) is to use a neural network to replace
the inner product, such that deeper interactions between the
user-item pair can be captured:

ŷut,vt = NeuralNetwork (hut
,hvt) . (2)

Recently, various network architecture have been proposed
based on the NCF framework (He et al. 2017; Xue et al.
2017; He et al. 2018; Xue et al. 2019). For instance, in (He
et al. 2017), a neural matrix factorization network (NeuMF)
is proposed as follows:

ŷut,vt = w>


hut
� hvt

MLP

([
hut

hvt

])
 , (3)

where � is the element-wise product and hut
� hvt is to

model the linear or nonlinear interaction between hut
and

hvt based on Generalized Matrix Factorization, and MLP
denotes one or more Multiple Layer Perceptron layer(s) to
capture “deep” interactions between hut

and hvt . The learn-
able parameter w is introduced to generate the relevant score
ŷut,vt . In (He et al. 2018), deep networks are designed based
on “interaction maps”, which are the outer products of the
user and the item embeddings hut ⊗ hvt . For instance, Con-
vNCF (He et al. 2018) employs a 2D Convolutional Neural
Network (CNN) on the “interaction maps”, and uses the in-
ner product between the vector generated by the CNN and a
parameter vector to generate the final score:

ŷut,vt = w> CNN(hut ⊗ hvt), (4)

where CNN may contain multiple convolutional layers. For
inference or making recommendation for each target user,
one needs to first compute outer product between the user
embedding and the embeddings of every item, and pass them
through the CNN to compute a relevant score for each item
for the user. Along with the deeper network, it results in more
computational cost for inference.

Hierarchical Decisions Network
An HDN consists of N decision modules and a scoring mod-
ule. Similarly to classical factor-based CF, in a HDN the user
and the item are first embedded into vectors as hu and hv,
respectively, and then passed to the first decision module,
followed by subsequent decision modules and the scoring
module if necessary.

Decision Module For a target user ut and an item vt, their
embeddings hut and hvt are passed to the first decision
model D(1), which outputs a decision d̂rej of whether to filter
or reject this item for the user, and a user-item interaction
embedding h(1):[

d̂
(1)
rej ,h

(1)
]

= D(1)(hut
,hvt). (5)

If d̂rej > 0, then the item is rejected and the pair of embed-
dings will not be passed to the subsequent module. Other-
wise, the pair of embeddings hut

and hvt together with the
generated interaction embedding h(1) will be passed to the
second layer. A subsequent decision module D(n), where
1 < n ≤ N , takes the user and the item embeddings, hut

and hvt , and the interaction embedding h(n−1) generated by
D(n−1) as input and outputs the rejection decision and a new
interaction embedding for the next layer:[

d̂
(n)
rej ,h

(n)
]

= D(n)(hut
,hvt ,h

(n−1)). (6)

In the HDN architecture, one may design various architecture
for the decision module D, e.g., design a specific architecture
for certain applications. In this paper, as our focus is to verify
the effectiveness of main architecture of HDNs, we imple-
ment a simple decision block design for the decision module.
To be specific, we first aggregate the user and the item em-
beddings by using the element-wise product, hut � hvt , and
then concatenate it with the user-item interaction embedding
h(n−1) from the previous layer to generate a unified vector:

h
(n)
uni =

[
hut � hvt
h(n−1)

]
. (7)

The rejection decision is obtained by computing the inner
product between the unified embedding h

(n)
uni and a weight

vector θ:

d̂
(n)
rej = θ

(n)>
rej h

(n)
uni . (8)

And the interaction embedding is obtained by passing through
a fully-connected layer:

h(n) = a
(
W (n)h

(n)
uni

)
, (9)

where a(·) is the activation function. In this work, we adopt
RELU (LeCun, Bengio, and Hinton 2015) for a(·).

Scoring Module The scoring module takes hut ,hvt and
the interaction embedding from the last decision layer h(N)

as input, and outputs the relevance score ŷut,vt via

ŷut,vt = Wscore

[
hut � hvt

h(N)

]
, (10)

which is similar to the design of the decision module.

Training HDN: Decision Distillation
For all the decision modules at different layers, we aim to
obtain a decision on whether certain items for the target user
should be rejected. Since there is a trade-off between speed
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and accuracy for different application scenarios, we introduce
the rejection ratio γ(n), which is the ratio of rejected items
to all the items being passed to the decision module D(n).
A higher rejection ratio enables less computation as less
items are passed to the subsequent modules, while a lower
rejection ratio may enable better recommendation accuracy
as the chance of filtering relevant items becomes smaller.

However, it requires very intensive manual loss tuning
to reach the desired rejection ratio for early decision mod-
ules, which is undesirable. Alternatively, a reinforcement
learning-based algorithm may work, where rewards can only
be computed at the scoring layer and the decision ratio up-
dates are defined as actions, but its training process is expen-
sive. Instead, here, we propose a distillation-based algorithm,
which considers a HDN as a student network, and aims to
transfer ranking information from a teacher network, i.e., a
precise deep CF model, to help training the student network.
In this way, it becomes possible to calculate the direct loss
of each decision module. In our distillation-based algorithm,
any existing CF method (including black-box models) can be
used as the teacher network as long as it is able to output a
relevance score for a given user-item pair.

Distillation of the relevance score Similar to knowledge
distillation (Hinton, Vinyals, and Dean 2015), all possible
pairs of hu and hv , including those having historical interac-
tions (a.k.a., positive instances) and those having no historical
interactions (a.k.a., negative instances), can be sampled to
be fed to the student and the teacher networks for training.
For each sampled user-item pair (ut, vt), the teacher and the
student networks compute a relevant score tut,vt and ŷut,vt ,
respectively. The difference of distribution between them
measured via the Kullback–Leibler(KL) divergence is used
as the loss. For rating recommendation problems, the ratings
can be relaxed to a continuous score that follows a Gaus-
sian distribution. Let the scores of the teacher model and
the student network be in p ∼ N (µ, σ) and p̂ ∼ N (µ̂, σ̂),
respectively. The loss of the final score is:

`S = KL(p, p̂) = log
σ̂

σ
+
σ2 + (µ− µ̂)2

2σ̂2
− 1

2
(11)

For implicit feedback cases, we model a relevance score as
the probability p of a Bernoulli variable by letting p = σ(t)
and p̂ = σ(ŷ), where σ is the sigmoid function. The loss `S
is: ∑
ut∈U,vt∈V

put,vt log p̂ut,vt + (1− put,vt) log(1− p̂ut,vt),

(12)

where U and V denote all the users and the items in the
historical interaction set, respectively.

Item Rejection as Binary Classification For a user ut,
denote by d̂vt > 0 a rejection of the item vt and by d̂vt ≤ 0
not rejecting the item. Since we hope to keep a rejection ratio
γ(n) for all the users at the decision module D(n), the number
of decisions

∑
vt∈Vt

I(d̂(n)vt > 0) on layer n must satisfy the

following: ∑
vt∈Vt

I(d̂(n)vt > 0)

|Vt|
= γ(n), (13)

where Vt is the set of all the items in the query.
For each target user, during the distillation training process,

the teacher can provide the final relevant score κvt for each
item candidate vt. However, in order to obtain a reference
decision dvt,γ ∈ {−1,+1} from the teacher network, where
“+1” denotes a rejection, while “-1” denotes acceptance, we
need to define a threshold score κ̄γ for each rejection ratio γ.
In this work, the threshold score κ̄γ is obtained by ranking
the scores for all items from the teacher network, and setting
the value to be the score of the K-th top item, where K =∑
vt∈Vt

I(d̂vt < 0) = (1−γ)|Vt|. This is done independently
for each user, and each user shares the same threshold score
for all the decision modules.

After obtaining the threshold score, a hinge loss is used
for the binary decisions for user-item pairs:

`D(n),ut,vt
= max(0, 1− d̂(n)ut,vtdvt,γ(n)), (14)

where d(n)
vt,γ(n) =

{
1, κvt ≥ κ̄γ(n)

−1, κvt < κ̄γ(n)
(15)

By combining the decision and the scoring loss, we have
the final loss for decision distillation of HDNs as follows,

` = `S +
∑

ut∈U,vt∈V

N∑
n=1

`D(n),ut,vt
. (16)

All the parameters of a HDN can be learned by minimiz-
ing (16) by gradient decent. The overall training algorithm is
summarized in Algorithm 1.

Computational Cost for HDN Inference
To analyze the computational cost reduction of HDN for deep
CF based recommendation, we assume that a general deep
network with M layers has an average computational cost
of C FLOPs (number of floating-point operations). For T
user-item pairs to recommend, the computational cost is for
inference of the deep neural network is in O(CMT ).

For simplicity for comparison analysis, we assume HDN
has the same number of layers as the teacher network, i.e.,
N + 1 = M (a HDN has N decision layers and 1 scoring
layer). In pratice, N can be smaller than M . When using
HDN with a fixed rejection rate γ, since the items are rejected
by previous layers, the computational cost for layer k is

(1− γ)k−1CT. (17)

Let α = 1 − γ. The total inference cost of HDN is CT +
αCT + α2CT + . . . + αMCT , which can be simplified
as CT (1−αM+1)

1−α . Let f(α) = 1−αM+1

1−α , we can observe that
f(α) is monotonically increasing from 0 to 1. When 1 >
γ ≥ 0.5, i.e. 0 < α ≤ 0.5, we have

f(α) ≤ 1− 0.5αM+1

1− 0.5
= 2− αM+1 < 2. (18)
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Algorithm 1 Distillation based training on HDN
Given teacher model T , Set of all users and items U and
V , Interaction data D, HDN student model S with γ(n)
Train T using D
Obtain threshold score κ̄γ
Initialize S and hu,hv for all user and items
while epoch < MAX do

Sample user u and item v from D
p = σ(T (u, v))
n = 1
while n < N do

Calculate d(n)vt using T and γ(n)(
d̂
(n)
rej ,h

(n)
)

= D(n)(u, v,h(n−1))

`D(n) = max(0, 1− d̂(n)dvt,γ(n))
n+ = 1

end while
p̂ = σ(S(u, v,h(n)))
Construct `S based on (11) or (12)
` = `S +

∑
ut∈U,vt∈V

∑N
n=1 `D(n),ut,vt

gradient decent on∇`
epoch += 1

end while

Hence the computational cost of HDN is

CT (1− αM+1)

1− α
< 2CT, (19)

given a rejection rate γ that is larger than or equal to 1
2 .

In summary, for any deep neural network with any cost
of C per layer, the final computation cost is proportional
to the number of layers, which is in O(CMT ). In HDN,
due to the rejection of the items, although having the same
depth and cost per layer, the computation cost is reduced to
O(2CT ) = O(CT ), which is irrelevant to the depth of the
network. By using HDN, the network can enjoy the benefit of
the learning power of deep networks without suffering from
the cost when performing recommendations.

Experiments
We investigated the performance of HDN in four experiments
to verify if HDN has the capability to reject unrelated items
in the hierarchical structure, reduce the inference time and
maintain the recommendation quality. Additionally, we tested
the effectiveness of our distillation method.

Experiment Datasets
The experiments are performed in the following datasets:

• MovieLens: MovieLens datasets are widely-used among
the recommendation system community (Harper and Kon-
stan 2016). We have used both the 1 million and 20 million
version. MovieLens-1M contains 1 million movie ratings
by 6,040 users and 3,760 movies as items, and MovieLens-
20M contains 20 million interactions of 138,493 users and
26,744 items.

• Pinterest: The Pinterest dataset is constructed by (Geng
et al. 2015) using data from pinterest.com. There are
55,187 users, 9,916 items and 1,500,809 interactions, in
this dataset.

• Yelp: The Yelp dataset is originally published on Yelp
Dataset Challenge. It consists of user reviews on restau-
rants. It is quite sparse: 25,677 users and 25,815 reviews
ratings as items, with only 730,790 user-item interactions.

We followed the same setups for the NCF paper(He et al.
2017), where only the implicit feedbacks are used in all
datasets. For datasets with ratings, if an item is rated by a
user, it is labeled as 1, otherwise, it is labeled as 0. The actual
ratings are not used in our experiments.

For all the datasets, we sampled 20% of the items of each
user as testing-set from the original interaction data, the rest
is used as training-set. In order to evaluate the collaborative
filtering performance and avoid the accidentally cold-start
scenario due to arbitrary sampling, the sampled items that
only appears in testing-set are moved back to the training-set.
We first trained the teacher model using the training-set, then
perform our distillation method to train HDN with a well-
trained teacher network. The testing is then performed on the
testing-set for both the teacher method and our method.

Implementation Details
In the experiments, we constructed a HDN with N = 3 deci-
sion modules and RELU is used as activation unit between
modules. We have used a factor size of 32 for user and item
embedding in both the teacher model and HDN, and 32 for
user-item embedding h(n) in all the modules.

We have used NeuMF and ConvNCF as teacher models for
our distillation-based training on HDN. For both the teacher
models, we have trained using the same parameters and the
pretraining technique mentioned (He et al. 2017, 2018).

Although our distillation model allows training using
any possible teacher-student pair, it would be very time-
consuming. Instead, we used a scheme similar to negative
sampling during distillation, and used the score information
for negative samples from the teacher model. We used a
positive to negative ratio of 1 : 5.

We implemented HDN and the baseline method using Py-
Torch(Paszke et al. 2017). Gradient descent of minibatch size
of 512 and Adam(Kingma and Ba 2014) optimizer with a
learning rate of 0.001 was used. 50 epochs of distillation
training were performed for all datasets. The timing experi-
ments were performed in a NVIDIA DGX-1 machine.

Experiment on Item Rejection Rate
Different rejection ratios γ(n) would affect the trade-off be-
tween the inference time and recommendation accuracy. With
a user-defined γ(n), HDN would learn to reject items at a
fixed rate in different layers. We test the actual rejection ratio
versus the proposed γ to see if HDN is actually rejecting the
amount of item requested in all datasets and found out num-
ber of filtered items are similar with rejection ratio specified.

The results from MovieLens-1M with different rejection
rations are shown as an example in Figure 2, the values shown
are the ones after item rejection of the previous layers.
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Figure 2: The actual rejection rate during distillation

Experiment on Inference Time
Besides our analysis in the previous sessions, we would like
to show the theoretical reduction of inference computation
cost in real life. If the inference is done sequentially, the
computation cost can be measured as total compute time.
However, for deep learning based applications, the computa-
tion is usually done in parallel, where the computational cost
reflects on both computational time and memory. Testing the
recommendation sequentially for simplicity is unrealistic as
it is not a common practice, and it would take too much time
for large datasets. It is also not realistic to consider computing
with infinite memory, in which case, all the recommendations
could be done in parallel. One way to measure the cost is to
simulate the real-life scenario, where there is limited memory
and compare the inference time.

For most deep learning applications, the memory con-
straints can be reflected on the maximum batch size of the
input data for inference. In our experiment, we first sort all
items by popularity to enable more batches for early rejection.
When a whole batch is rejected at one of the rejection layers,
the inference time will be reduced for this batch. And we
would like to show in this section that, with this benefit alone,
HDN can achieve faster inference time.

The item sorting only needs to be done once for all users
in a very short time (< 1s), they are omitted from the results.
After that, the whole dataset is divided into many batches
which are then passed through HDN and NeuMF to perform
recommendation. Finally, the inference time of the whole
dataset is measured. Since the recommendation process in-
volves both scoring and selecting the top-K items, we have
measured the time consumed for both procedures. We have
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Figure 3: Time comparison with limited batch size on
MovieLens-20M (γ1 = 0.75, γ2 = 0.875, γ3 = 0.9375)

used the topk function in PyTorch to select the top K items,
which is faster than sorting the whole item list.

We tested the inference time in a large dataset MovieLens-
20M, and vary the batch size to test the inference time
with different batch-sizes. In Figure 3a, the inference time
comparison of HDN and teacher models are shown, where
HDN1/2/3 represent the time to pass each HDN rejection
module. Figure 3b shows the time for for retrieving the top-K
items by ranking scores. The results in Figure 3 indicate that
HDN retrieve the recommendations much faster than both
NeuMF and ConvNCF for both inference and ranking time,
especially when there is more memory limitation(smaller
batch size). The cost of each rejection module is also shown,
where the subsequent layers require significantly less compu-
tational time due to the rejection of the items.

Since this measurement does not take into account the
batch size reduction during HDN inference, more fine-
grained control over the parallelization could potentially yield
further inference time improvements.

Experiment on Recommendation Quality
Next, we evaluate the recommendation quality of HDN com-
pared with teacher model to observe whether there would
be loss of performance by rejecting items early. To test the
performance, we first retrieve the top ranked items from the
models, and then measure the Hit Ratio(HR) and Normalized
Discounted Cumulative Gain(NDCG)(Burges et al. 2005) for
both models.

HR@K measures the ratio of whether a positive test item is
in the top-K ranking list. NDCG@K is Discounted Cumula-
tive Gain (DCG) normalized using the best possible ranking
result and we have used the standard NDCG, which is using
the logarithmic discount function.

To test whether our proposed hierarchical architecture is
effective on capturing deep user-item interactions, a small
network with dot product of user and item embedding (MF
student) is also used as a student model and trained using
Knowledge Distillation. We have also simulated a two-stage
process (Covington, Adams, and Sargin 2016) by using Ma-
trix Factorization to select the top 100 items and then rank
them using NeuMF. Besides the direct approach, re-ranking
method PRM (Pei et al. 2019) is also used in the second stage.
Since we did not include extra user feature in our datasets,
PRM-BASE is used.
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ML1M ML20M Pinterest Yelp
NDCG HR NDCG HR NDCG HR NDCG HR

PopRank 0.354 0.757 0.323 0.690 0.031 0.080 0.050 0.125
MF 0.601 0.890 0.492 0.771 0.172 0.443 0.119 0.310
MF(top100) + NeuMF 0.613 0.901 0.529 0.779 0.177 0.446 0.127 0.327
MF(top100) + PRM-BASE 0.616 0.924 0.537 0.798 0.181 0.463 0.128 0.329
NeuMF(teacher) 0.620 0.962 0.557 0.847 0.193 0.501* 0.135 0.334

MF student 0.609 0.903 0.511 0.781 0.174 0.445 0.122 0.311
HDN (γ1 = 0.5, γ2 = 0.75, γ3 = 0.875) 0.633 0.954 0.562 0.850 0.197 0.458 0.137* 0.329
HDN (γ1 = 0.75, γ2 = 0.875, γ3 = 0.9375) 0.634* 0.951 0.563 0.845 0.201* 0.462 0.131 0.321

ConvNCF(teacher) 0.617 0.960* 0.579* 0.866* 0.181 0.499 0.135 0.336*
MF student 0.605 0.901 0.507 0.793 0.173 0.447 0.120 0.312
HDN (γ1 = 0.5, γ2 = 0.75, γ3 = 0.875) 0.627 0.958 0.578 0.863 0.183 0.487 0.133 0.331
HDN (γ1 = 0.75, γ2 = 0.875, γ3 = 0.9375) 0.631 0.956 0.576 0.865 0.180 0.486 0.135 0.329

Table 1: Recommendation performance measured by NDCG and HR when K=20

PopRank, where the only the item popularity is included
for ranking, and Matrix Factorization(MF) as also included
as baselines. The results are consistent for all Ks (number of
top items used for evaluation) that we have tested, and the
result when K = 20 is presented in Table 1 as an example.

Both the teacher models (NeuMF, ConvNCF) have higher
NDCG and HR than the baselines. As a more complex model,
ConvNCF yields better results on larger datasets (ML20M).
As a student model for both, HDN maintains the recommen-
dation quality for all the four datasets that we have tested.
The results are significantly better than the baseline distilled
model (MF student). HDN also has consistently better results
compared with the simulated the two-stage model.

Experiment on Effect of Distillation-based Training
We further investigated the effectiveness of our distillation
method by training HDN differently. The purpose of the dis-
tillation based training is for the rejection layers to maintain a
fixed rejection ratio γ. If HDN is trained without distillation,
we can use the output value of the rejection layer and remove
items according to the same fixed rejection ratio(HDN-nd)
during test time to achieve the same effect. Unlike HDN,
which allows testing on any pair(s) of user and item, this
process of rejection-while-testing have to be performed after
all the items of a user have been scored and ranked.

Other variation of rejection has been performed: we put
item rejection aside first and test the result passing all items
through all layers HDN (HDN-nr). We then removed the
information for distillation from the teacher model by training
the rejection layers using the implicit feedback (HDN-nr−).
Finally, we have tested HDN trained without distillation by
ignoring all the item rejections and only train on the score
function (HDN-nr-nd).

As seen the results in Table 2, without distillation, the
performance of HDN have did not reach the same as previous
methods, which is expected considering the rejection layers
did not learn to reject items a specific ratio.

The performance of HDN is also not as good without
rejecting items (HDN-nr), and has significant degradation
when the distillation process is replaced (HDN-nr-nd and
HDN-nr−). The slight decrease in performance of HDN-nr is
expected. Since the last layer is not designed to rank all items,

Yelp ML20M
NDCG HR NDCG HR

NeuMF 0.125 0.334 0.557 0.847
HDN 0.137 0.329 0.562 0.850
HDN-nd 0.129 0.328 0.553 0.842
HDN-nr 0.131 0.324 0.556 0.844
HDN-nr− 0.128 0.319 0.549 0.841
HDN-nr-nd 0.120 0.308 0.530 0.818

Table 2: Result on MovieLens-20M and Yelp (K = 20)

it can be used as a baseline since it is trained with distillation.
There is a further performance decrease when trained directly
on implicit feedback only (HDN-nr−) compared with (HDN-
nr). A possible reason is that the rejection layers could utilize
the full item-ranking information from the teacher model, so
that items could be rejected accurately, hence the final scoring
layers will receive items with more relevance and focus on
them. When HDN is trained without rejections (HDN-nr-nd),
it implies that HDN needs to model all pairs of user-item
interactions. Being smaller and not as optimized in design
compared with NeuMF, it yields significantly lower NDCG
and HR when the distillation process is absent.

From this experiment we could see that other than helping
the rejection layers to keep a specific rejection rate, the distil-
lation training for HDN that we have proposed in this paper
is also a crucial process to maintain the performance.

Conclusion and Future Work

In conclusion, we have proposed a novel deep neural network
HDN for faster inference of deep CF and designed a distilla-
tion based training method. We have tested the methods on
real-life datasets and the result indicated great potential to
improve the inference time for deep CF. In more complex rec-
ommendation cases, the simple decision module mentioned
in this work may not be sufficient. The design of a larger
decision module can be helpful for these use cases. Besides,
content-based recommendation models can be integrated into
HDN, such that the decisions and scores can be based on
both user/item features and past interactions.
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