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Abstract

In this paper, we study the problem of embedding uncertain
knowledge graphs, where each relation between entities is as-
sociated with a confidence score. Observing the existing em-
bedding methods may discard the uncertainty information,
only incorporate a specific type of score function, or cause
many false-negative samples in the training, we propose the
PASSLEAF framework to solve the above issues. PASSLEAF
consists of two parts, one is a model that can incorporate dif-
ferent types of scoring functions to predict the relation con-
fidence scores and the other is the semi-supervised learning
model by exploiting both positive and negative samples as-
sociated with the estimated confidence scores. Furthermore,
PASSLEAF leverages a sample pool as a relay of generated
samples to further augment the semi-supervised learning. Ex-
periment results show that our proposed framework can learn
better embedding in terms of having higher accuracy in both
the confidence score prediction and tail entity prediction.

1 Introduction
Knowledge graph (KG) embedding has drawn plenty of at-
tention in the past decade because the low dimensional rep-
resentation makes various machine learning models work-
ing on the structural knowledge possible. As the emergence
of uncertain knowledge graphs, which reflect the plausibil-
ity of knowledge facts in practice by associating an entity-
relation-entity triplet with a confidence score, existing em-
bedding approaches are not suitable because they naively ne-
glect such plausibility information.

To our knowledge, UKGE (Chen et al. 2019) is the first
and the only embedding method designed for uncertain
knowledge graphs. The main idea is to map the score func-
tion, which originally measures the plausibility of a (head,
relation, tail) triplet in the vector space, to a scalar predict-
ing the corresponding confidence score and make the loss
function the mean square error of the exact and the estimated
confidence score.

In light of the success of UKGE, we further find several
important issues to be solved so that we can significantly
improve the embedding quality of uncertain KG. First, dur-
ing the training process, all the existing embedding methods
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will randomly draw samples from the unseen (head, rela-
tion, tail) triplets and treat them as negative samples, i.e.,
triplets with zero confidence score. In fact, there can be lots
of triplets with various confidence scores outside the train-
ing set. For instance, the following two triplets (elephant,
has a, black eye) and (October, has property, cold) may not
exist in the training data sets but their existence, in reality,
is possible and the corresponding confidence scores should
not be zero. We call this a false-negative problem for train-
ing and aim to solve it. Second, UKGE is specifically tai-
lored for the score function of DisMult (Yang et al. 2015), a
kind of semantic-based embedding method. It is not trivial
to extend UKGE for other types of embedding methods such
as translational-distance methods, some of which are proven
to have a surpassing performance on embedding knowledge
graphs. Third, UKGE boosts its performance by applying
probabilistic soft logic to create extra training samples based
on predefined rules, which requires human labor and domain
knowledge. We aim to design a training framework with no
human intervention while having the same or better perfor-
mance.

In response to the above issues, we propose PASSLEAF,
a Pool-bAsed Semi-Supervised LEArning Framework for
the uncertain knowledge graph embedding, completely freed
from additional human labor. It consists of two parts, a con-
fidence score prediction model that can adopt different types
of existing embedding score functions for a given triplet, and
the semi-supervised learning with both in-dataset positive
samples and automatically generated negative samples with
estimated confidence scores. PASSLEAF further maintains
a sample pool to gather the information learned at different
time steps.

Extensive experiment results on three open uncertain
knowledge graph data sets show that, when compared
with various existing knowledge graph embedding meth-
ods, PASSLEAF significantly reduces the impact of false-
negative samples. We further justify the efficacy of the sam-
ple pool to accumulate past experiences acquired from dif-
ferent data. Also, we validate the advantage of an uncertain
KG embedding method over a deterministic one in terms of
preserving an uncertain graph structure. In the task of tail
entity prediction, our model demonstrates up to 50 % reduc-
tion in weighted mean rank on CN15K compared to UKGE
and about 4% improvement in nDCG on NL27K.
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2 Preliminaries
2.1 Problem Statement
An uncertain knowledge graph models the triplets in as-
sociation with a confidence score and can be denoted by
{(h, r, t, c) | h, t ∈ E, r ∈ R, c ∈ [0, 1]}, where where E is
the entity set, R is the relation set, and c is the correspond-
ing confidence score. Obviously, a deterministic knowledge
graph is a special case of an uncertain knowledge graph,
where c = 1 for all (h, r, t) triplets. Knowledge graph em-
bedding refers to learn low-dimensional vector represen-
tations of those entities and relations in Rk and Rl such
that the original graph structure is preserved. The uncertain
knowledge graph embedding task aims to preserve not only
the graph structure but also the corresponding confidence
score c of each triplet.

Suppose the embedding vectors of a triplet (h, r, t) is
(h̄, r̄, t̄). The basic concept of the most existing knowl-
edge graph embedding model is to utilize a score function
S(h̄, r̄, t̄) to measure the plausibility of a triplet: higher value
for the positive samples, which refers to the existing triplets
in the training set (the given knowledge graph), and lower
value for the negative samples, randomly picked from out-
of-dataset triplets. Furthermore, the embedding model ex-
ploits a loss function to widen the margin between the esti-
mated scores of positive and negative samples.

When embedding uncertain knowledge graphs, the model
should be “confidence-aware”. That is to say, the embed-
ding method for uncertain knowledge graphs cannot merely
differentiate positive samples from negative ones but need
to rank them in line with their plausibility. More precisely,
S(h̄, r̄, t̄) should be positively correlated to the true confi-
dence score of (h, r, t).

To our knowledge, UKGE (Chen et al. 2019) is the first
and the only embedding method of uncertain knowledge
graphs that is confidence-aware. UKGE utilizes a score map-
ping function S′ to constrain the estimated score S in [0, 1]
and applies mean squared loss to make the estimated score
of a triplet close to its ground-truth confidence score.

S′(h̄, r̄, t̄) =
1

1 + e−(b+wS(h̄,r̄,t̄))
. (1)

The loss Lneg and Lpos for randomly drawn negative sam-
ples Dneg and in-dataset positive samples Dpos, respec-
tively, are defined as follows.

Lneg =
∑

(h̄,r̄,t̄)∈Dneg

∥∥S′(h̄, r̄, t̄)∥∥2
, and (2)

Lpos =
∑

(h̄,r̄,t̄,c)∈Dpos

∥∥S′(h̄, r̄, t̄)− c∥∥2
. (3)

Together, the overall objective is

minLpos +
1

Ngen
(Lneg). (4)

Although UKGE successfully preserves the confidence
score of triplets for embedding uncertain knowledge graphs,
there are still some challenges to be conquered as we stated

in Sec. 1. First, UKGE faces the false-negative problem for
training as other deterministic graph embedding method,
which treats the randomly drawn triplets out of the given
dataset as negative samples with a confidence score of zero.
In fact, those unseen samples may have a certain degree of
plausibility. We believe the practice introduces more noise
to uncertain KGs than to deterministic ones seeing that un-
certain KGs are arguably denser in terms of both in-dataset
and unseen triplets due to the low-confidence triplets. Our
pool-based semi-supervised learning is to alleviate this is-
sue. Second, the UKGE method is tailored only for one
type of score function. To exploit recently proposed designs,
we propose a generalized framework for both major types,
semantic-based and translational distance based (more de-
tails please see Sec.2.2). Third, probabilistic soft logic in
UKGE requires human-defined rules as an extra data aug-
mentation instrument; in contrast, PASSLEAF aims to cur-
tail human intervention.

2.2 Related Work

According to the design of the score function, determinis-
tic KG embedding methods can be categorized into transla-
tional distance based and semantic-based (Wang et al. 2017).
In translational distance based methods, a relation embed-
ding is usually a transition or mapping for entity embed-
dings. The score function measures the distance between
the mapped head entity and the tail entity of a triplet in
the embedding space. Representative works include TransE
(Bordes et al. 2013), TransH(Wang et al. 2014), TransR(Lin
et al. 2015), and RotatE(Sun et al. 2019). For semantic-based
methods, the score function evaluates the plausibility based
on the latent semantics of entities given a triplet. Repre-
sentative works include HolE (Nickel, Rosasco, and Poggio
2016), ConvE (Dettmers et al. 2018), DistMult (Yang et al.
2015), and ComplEx (Trouillon et al. 2016).

To our knowledge, UKGE (Chen et al. 2019) is the first
and the only one to work on embedding uncertain knowl-
edge graphs, which we have detailed in Sec. 2.1. Note
that the report has also proved that UKGE significantly
outperforms the method (Hu et al. 2017), which is origi-
nally designed for single relation graphs with uncertainties,
on embedding uncertain knowledge graphs that are multi-
relational. Therefore, in this work, we focus on comparing
our work with UKGE.

Negative sampling is commonly used to augment train-
ing samples in KG embedding methods so that the model
can distinguish the positive samples better. Usually, the neg-
ative samples are generated by replacing either the head or
tail entity of an in-dataset triplet with a randomly chosen en-
tity. KBGAN(Cai and Wang 2018) generates negative sam-
ples by a generative adversarial network that are more dif-
ficult for the embedding model to distinguish. RotatE ad-
vances this idea and designs a computationally efficient self-
adversarial loss function. However, all the existing meth-
ods follow the same assumption that the unseen samples are
negative, which is contrary to our mentioned false-negative
problem in uncertain KGs. We cast doubt on the practice to
zero the confidence score of all unseen samples.
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Figure 1: Framework Overview.

3 Methodology
3.1 The Framework Overview
Our proposed framework, PASSLEAF, is illustrated in
Fig. 1. It consists of two main parts: the building of
uncertainty-predicting models and the pool-based semi-
supervised learning.

The goal of the uncertainty-predicting model is to adapt
existing score functions of knowledge embedding to pre-
dict the confidence score of (h, r, t) samples. We design
the corresponding score mapping function for both transla-
tional distance based and semantic based methods and equip
it with a loss function to form a confidence-aware embed-
ding model. The details are in Section 3.2.

The semi-supervised learning framework provides a bet-
ter way of dealing with unseen samples to alleviate the false
negative problem, not just treating unseen samples as nega-
tive samples but reevaluate their potential confidence score.

Moreover, we maintain a sample pool of the latest semi-
supervised samples to exploit the past learning experience,
which makes the embedding learning quality even better.
The details are in Sec. 3.3 and Sec. 3.4.

3.2 The Model Building Workflow and Examples
Seeing that the mean square error (MSE) loss function of
UKGE has shown satisfactory performance despite its sim-
plicity, we further extended its score mapping function to
support translational distance based methods.

The score function of UKGE is the same as DistMult, a
semantic-based method, giving positive scores if a triplet is
plausible and negative scores otherwise. Then, the sigmoid
score mapping, (1), makes the final score a probability value.

However, in view of many recent works that outperform
DistMult, it is desirable to take advantage of them. For ex-
ample, ComplEx, a variant of DistMult, surpasses its pre-
decessor in several datasets; RotatE, a translational-distance
based method, is one of the state-of-the-art models. There-
fore, a generalized workflow is highly desired to compose

new uncertain KG embedding models ready for the semi-
supervised training by incorporating more existing score
functions. Nevertheless, solely replacing the score function
of UKGE with the new ones can result in degraded perfor-
mance. The score mapping works poorly for translational
distance based score functions where the score is the nega-
tive value of a distance, ranging in [−∞, 0]. As a result, to
centralize the range of scores, we apply the following score
mapping function with one additional hyper-parameter, γ.

S′(h̄, r̄, t̄) =
1

1 + e−(b+w(γ+S(h̄,r̄,t̄)))
. (5)

To conclude, given a score function, PASSLEAF takes
two steps to construct a new model. First, depending on
whether the score function is semantic-based or translational
distance based, the score function will be mapped by the
mapping shown in equation (1) and (5) accordingly. Sec-
ondly, the score function and the MSE loss together form
the model.

As examples, we build Uncertain ComplEx and Uncertain
RotatE based on the score function of ComplEx and RotatE.
The former is semantic-based and the later is translational
distance based. The score function for Uncertain ComplEx
is

S(h̄, r̄, t̄) =
∥∥h̄t̄r̄∥∥2

,where h̄, t̄, r̄ ∈ Ck. (6)
The score function for Uncertain RotatE is

S(h̄, r̄, t̄) =
∥∥h̄r̄ − t̄∥∥2

,where h̄, t̄, r̄ ∈ Ck; ‖r̄‖ = 1. (7)

Additionally, we designed a simplified Uncertain RotatE,
denoted as U RotatE-, where the unit length constraint on re-
lation embedding is relaxed. The model exhibits a more sta-
ble performance than Uncertain RotatE in our evaluations.
The modified score function is as below.

S(h̄, r̄, t̄) =
∥∥h̄r̄ − t̄∥∥2

,where h̄, t̄, r̄ ∈ Ck. (8)

For both Uncertain RotatE and U RotatE-, we set γ = 2.
These models will be used to verify our methodology in
section 4. Please note that our framework is an extension
to UKGE so one of its variations, UKGElogi, is listed as
one of the PASSLEAF models in the experiments.

3.3 The Semi-Supervised Learning
Despite the potential hazard to bring in false-negative sam-
ples, negative sampling as data augmentation can effectively
complement the lack of negative triplets in most knowl-
edge graphs. However, as stated in Preliminaries, we be-
lieve the number of potential false-negative tends to be larger
in uncertain KGs. To solve the issue, we introduce semi-
supervised samples.

Semi-supervised samples are picked in the same way as
randomly drawn negative samples, by corrupting either the
head or tail entity of an in-training-set triplet. The difference
is that the confidence score of each semi-supervised sample
will be estimated and specified by the current model instead
of zeroing them. Hence, they can be either positive or neg-
ative. We believe this will mitigate the false-negative prob-
lem. For one thing, the importance of randomly drawn nega-
tive samples is diluted; for another, semi-supervised samples
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Figure 2: Sample pool: ensemble of paste experiences.

are expected to better estimate the real confidence score of
unseen triplets. Furthermore, it serves as a data augmenta-
tion instrument, particularly for positive samples.

The MSE loss for semi-supervised samples, Dsemi, is as
follows.

Lsemi =
∑

(h̄,r̄,t̄,c̄)∈Dsemi

∥∥σ (S(h̄, r̄, t̄)
)
− c̄
∥∥2
. (9)

A mixture of negative and semi-supervised samples brings
the best performance boost. Therefore, the overall loss func-
tion is modified as follows.

L = Lpos +
1

Ngen
(Lsemi + Lneg) . (10)

Instead of training with semi-supervised samples gener-
ated at the previous step, we apply a sample pool as a relay
for samples, explained in the next section.

For simplicity, randomly-drawn negative samples and
semi-supervised samples are collectively called generated
samples. The amount of generated samples per positive sam-
ple is a predefined hyper-parameter, generated per positive,
so the total number of generated samples per training step,
Ngen, is generated per positive×batch size. When the num-
ber of generated samples is the same as that in traditional
negative sampling, the computational overhead is mainly
from predicting the confidence score for newly-generated
samples. In fact, even so, semi-supervised training outstrips
pure negative sampling in terms of prediction accuracy, jus-
tified in the Experiments section.

3.4 The Sample Pool
To better exploit the benefit of training with past expe-
riences, inspired by DQN(Mnih et al. 2013), PASSLEAF
maintains a sample pool to keep C latest semi-supervised
samples. For a training epoch i, there are two steps to
take. First, Nnew(i) samples should be generated and stored
into a sample pool. Second, Nsemi(i) samples are ran-
domly fetched from the pool to train the model along with
Ngen−Nsemi(i) randomly drawn negative samples accord-
ing to the loss function shown in (10). To reduce computa-
tional overhead, a continuous band of samples in the pool
will be selected instead of drawing them one by one.

dataset entity rel. train test Avg.C.
PPI5K 4999 7 230929 21720 23.74
NL27K 27221 417 149100 14034 2.15
CN15K 15000 36 204984 19293 3.87

WN18RR 40559 11 86834 3133 1.38
FB15K237 14505 237 272114 20465 2.91

Table 1: Data statistics, including the # of entity and rela-
tion types, and # of triplets for training and testing, and the
average candidates for the tail-entity prediction task

So far, the hyper-parameters for the sample pool are de-
fined as functions for better generalizability. To simplify the
design and limit the number of hyper-parameters, we design
Nnew as a step function with respect to time and Nsemi to
be a clipped linear function, which starts from zero and lin-
early increments until a given maximum. In that, no semi-
supervised sample will be generated before the model is sta-
ble enough; also, the weight of semi-supervised samples will
increase as the model accumulates more and more experi-
ences. The formulas are as follows:

Nnew(i) =

{
Ngen, if i ≥ TNEW SEMI

0, otherwise
(11)

Nsemi(i) =


max (MSEMI, bα(i− TSEMI TRAIN)c),

if i ≥ TSEMI TRAIN

0, otherwise
(12)

TNEW SEMI and TSEMI TRAIN are the epoch to start generat-
ing semi-supervised sample and the one to begin fetching
samples from the pool respectively; MSEMI is the maximum
amount of semi-supervised samples per step; α determines
how long it takes for the number of semi-supervised sam-
ples to reach the maximum. Reasonably, TSEMI TRAIN must
be greater than TNEW SEMI to accumulate an adequate amount
of semi-supervised samples for training. Also,MSEMI should
not be the same or exceed the number of generated samples
per step to reserve some quota for randomly drawn nega-
tive samples. The choice of these parameters depends on the
model and the dataset, which we leave for future research.

The pool-based training can achieve a similar effect to
a temporal ensemble, proposed by (Laine and Aila 2017),
despite some fundamental differences in the methods. The
prerequisite of temporal ensemble is that the training data
should differ between training epochs. In (Laine and Aila
2017), noise augmented images is used. As illustrated in
Figure 2, instead, we use negative samples randomly drawn
at each step. Unlike (Laine and Aila 2017), our semi-
supervised samples do not undergo binarization. Semi-
supervised samples generated at different time steps retain
experiences accumulated from seeing different randomly
drawn negative samples. Therefore, the pool based design
can be regarded as an ensemble of past models, which fur-
ther strengthens the effectiveness of semi-supervised sam-
ples.
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4 Experiments
In this section, we try to verify the following statements: Is
our pool-based semi-supervised training more effective than
pure negative sampling? Does the pool-based design boost
the semi-supervised training? Does uncertain KG embed-
ding methods outperform their deterministic counterpart on
uncertain KGs?

4.1 Settings
Datasets. The summary of the datasets is in Table 1. We
follow UKGE (Chen et al. 2019) and evaluate our mod-
els on three open uncertain knowledge graphs: PPI5K, a
protein to protein interaction ontology from the STRING
database (Szklarczyk et al. 2017), NL27K, a sub-graph of
the NELL database(Mitchell et al. 2018), and CN15K, a sub-
graph of a multi-linguistic and commonsense KG, Concept-
Net (Speer, Chin, and Havasi 2017). We follow UGKE to
partition the dataset into 85% for training, 7%for validation,
and 8% for testing. However, we apply no extra data filter-
ing so the reported scores may differ from those of UKGE.
In addition, we also use two popular deterministic KGs,
WN18RR(Dettmers et al. 2018) and FB15K237(Toutanova
and Chen 2015) for evaluations. Avg.C. indicates the aver-
age number of candidate tail entity for a given set of head
entity and relation. Consistent with our belief, the uncertain
datasets we used are slightly denser than the commonly used
deterministic datasets in terms of the Avg.C. value. Specifi-
cally, Avg.C. of PPI5K is more than 20.

Tasks and Metrics. We use two tasks for evaluation, con-
fidence score prediction and tail entity prediction.

Confidence score prediction (CSP) is to predict the con-
fidence score given a triplet, requiring the model to be
uncertainty-predicting. This experiment helps discern the
performance differences in positive and negative triplets. For
the former, the ground-truth data is in-dataset samples. For
the later, we use randomly drawn triplets given zero confi-
dence scores. This is contradictory to our belief but labeling
unseen samples is costly and labor-intensive. Nevertheless,
the metric is a viable indicator of excessive false-positives
when the value is high. We calculate mean squared error
(MSE) for both.

Tail entity prediction(TEP) is a conventional evaluation
task for knowledge graph embedding. The goal is to predict
the tail entities given a head entity and a relation. On uncer-
tain KG data, the task is no longer a hit-or-miss classification
but a ranking job to order candidates according to their true
plausibility. Therefore, our metrics, including Hit@K, mean
rank, and nDCG, are linearly weighted by the confidence
score and denoted by WH@K, WMR, and nDCG, respec-
tively. As an example, for a testing data set, D, the WMR is
as follows:

WMR =

∑
(h,r,t,c)∈D c · rank(h,r,t)∑

(h,r,t,c)∈D c
, (13)

where rank is the predicted rank of a triplet. Linear weighted
nDCG is as follows:

nDCG =

∑
(h,r,t,c)∈D

c
log2(rank(h,r,t)+1)∑

(h,r,t,c)∈D
c

log2(rank’(h,r,t)+1)

, (14)

models WMR WH@20 WH@40 nDCG
CN15K

UKGElogi 1676.0 32.1% 38.5% 29.7%
+ SS 1326.3 34.2% 41.3% 30.4%
U ComplEx 1791.9 31.7% 38.3% 29.6%
+ SS 1229.2 35.4% 42.5% 30.8%
U RotatE 1017.2 34.9% 43.2% 27.8%
+ SS 866.2 35.5% 44.0% 28.4%
U RotatE- 1031.3 34.7% 41.8% 29.0%
+ SS 949.4 35.3% 42.6% 30.3%

NL27K
UKGElogi 288.57 70.42% 76.77% 71.65%
+ SS 242.28 71.78% 77.85% 74.52%
U ComplEx 296.28 70.27% 76.78% 71.67%
+ SS 223.64 72.03% 78.42% 75.31%
U RotatE 493.61 63.62% 70.83% 63.32%
+ SS 438.32 60.13% 67.06% 60.41%
U RotatE- 451.445 69.72% 75.71% 70.97%
+ SS 206.09 69.97% 76.11% 74.45%

PPI5K
UKGElogi 38.59 42.64% 68.81% 43.87%
+ SS 34.89 45.06% 70.57% 44.51%
U ComplEx 38.8 42.41% 68.32% 43.49%
+ SS 35.53 45.16% 69.85% 43.93%
U RotatE 40.44 44.71% 70.52% 43.16%
+ SS 40.9 43.41% 68.23% 41.21%
U RotatE- 49.63 41.10% 68.38% 42.04%
+ SS 35.58 44.81% 69.39% 43.98%

Table 2: Tail entity prediction

where rank′ is the true rank of a triplet. We exclude can-
didates from the training set to prevent the testing set from
being dominated by seen data, resulting in different values
than that from UKGE. However, training data are not ex-
cluded from the calculation of ranking so the randomly as-
signed order to break ties may influence the resulting value.
Additionally, for Hit@K, to prevent the number of positive
candidates from exceeding the value K in dense graphs, we
choose larger Ks, 20 and 40.

Models. To demonstrate the generalizability, we test sev-
eral score functions for PASSLEAF and also one of the
variants of UKGE, UKGElogi, that performs best in TEP.
Semantic-based and translational distance based models are
exemplified by Uncertain ComplEx and Uncertain RotatE.
U RotatE-, (8), is included for its stability.

Hyper-Parameters. The sample pool introduces addi-
tional hyper-parameters. Hence, to simplify the experiment,
we choose a fixed set of hyper-parameters seemingly rea-
sonable for all datasets and models. We use Adam opti-
mizer and a fixed batch size of 512. We explore the di-
mensions of embedding vectors in 256, 512, 1024. Usu-
ally, the larger dimensions result in better performance in
most metrics. However, to reduce the computational over-
head, we fix this value at 512, a commonly used embed-
ding size. Settings for the sample pool are not fine-tuned ex-
cept for MSEMI. TNEW SEMI is 20; TSEMI TRAIN is 30; MSEMI
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datasets CN15K NL27K PPI5K
models pos neg pos neg pos neg
UKGElogi 28.2 0.17 7.9 0.32 0.76 0.28
+ SS 23.8 0.36 5.5 0.38 0.51 0.30
U ComplEx 30.3 0.13 8.0 0.38 0.78 0.28
+ SS 23.9 0.31 4.5 0.42 0.62 0.31
U RotatE 19.0 1.09 4.5 0.72 0.44 0.29
+ SS 14.4 8.28 3.0 1.42 0.35 0.36
U RotatE- 25.6 0.27 7.4 0.36 0.58 0.29
+ SS 22.7 0.34 6.5 0.37 0.62 0.29

Table 3: Confidence score prediction. (In 0.01)

Head Rel Tail Conf
algeria part of africa 81.81%
tunisia part of africa 77.83%
croatia part of europe 82.06%
harpsichord used for play music 85.03%
harpsichord is a instrument of music 75.88%
court is a place 90.55%
court used for judge 78.75%

Table 4: Found missing triplets in CN15K

is 0.8 × batch size; pool capacity, C, is 10000000 triples;
alpha is 0.02; generated per positive, is 10. The implemen-
tation is based on Tensorflow 1.14 on a CentOS-7 machine
with 48 Core Xeon processors and Tesla P100-SXM2.

4.2 Effectiveness of Semi-Supervised Samples
First of all, we would like to verify whether the pool-
based semi-supervised training is more effective than tradi-
tional negative sampling. Uncertain KG embedding models
with and without applying the pool-based semi-supervised
training are examined and juxtaposed over three uncertain
knowledge graphs. For fairness, the number of generated
samples per step is the same for all models, with/without
semi-supervised learning. We choose the best models ac-
cording to the validation hit@20 for the TEP task and MSE
on positive triplets for the CSP task. We will elaborate on
results for TEP, CSP, worst case for CSP, and missing triplet
discovery in order.

Tail Entity Prediction The results of TEP on three
datasets are shown in Table 2. On all the datasets, models
with semi-supervised samples consistently make improve-
ments in all metrics. Especially, on NL27K, with pool-based
semi-supervised training, WMR of U RotatE- reduces by
about 50% and nDCG of U ComplEx improves by almost
4%. Also, on CN15K, WMR of the best model with semi-
supervised training is nearly half of that of UKGElogi with-
out semi-supervised training.

In terms of the models, Uncertain RotatE performs worst
except in CN15K while Simplified Uncertain RotatE has
consistent performance across all datasets. One possible rea-
son is that our experiment uses a fixed dimension for all
models and the dimension of the relation embeddings of Ro-
tatE is 256, half of that of other models due to its unit length
constraint.

datasets CN15K NL27K PPI5K
MSEMI* pos neg pos neg pos neg
0 (no SS) 30.3 0.13 8.0 0.38 0.78 0.28
0.8 (def) 23.9 0.31 4.5 0.42 0.6 0.31
1.0 8.8 8.98 1.6 2.39 0.51 1.15

Table 5: False-positive worst case analysis: CSP. (In 0.01)

datasets CN15K NL27K PPI5K
models pos neg pos neg pos neg
U ComplEx 30.3 0.13 8.0 0.38 0.78 0.28
+ SS−pool 28.4 0.20 7.5 0.35 0.78 0.30
+ SS 23.9 0.31 4.5 0.42 0.62 0.31

Table 6: Ablation test: CSP. (In 0.01)

Confidence Score Prediction With satisfactory perfor-
mance in ranking samples properly according to the plau-
sibility, we proceed to verify the individual performances
on positive and negative samples. The results of CSP are
in Table 3. pos and neg are the MSE on in-dataset pos-
itive samples and randomly drawn negative samples, re-
spectively. +SS indicates the model after applying semi-
supervised training to the model in the previous row.

MSEs on in-dataset positive samples improve by more
than one fifth across all models and datasets after applying
semi-supervised samples. The result supports the idea that
pool-based semi-supervised training alleviates the noises
brought in by the false-negative samples and further im-
proves the prediction accuracy on unseen in-dataset positive
samples.

On the other hand, the MSE values on negative samples
increase slightly after training with semi-supervised sam-
ples. Still, the result is expected since the ground-truth of this
measurement is randomly drawn negative samples, which
we believe is prone to false-negatives. In fact, a slightly
higher MSE value can imply the model is capable of de-
tecting false-negative samples. Undeniably, this result raises
the concern to cause excessive false-positives predictions.
Nevertheless, The performance in TEP lifts the concern.
Arguably, this indicates that its potential impact of false-
positives is outstripped by its merits to avoid false-negative
samples and the ensemble of past experiences. To further
support this argument, we have another experiment to find
bounds for the MSE on negative samples.

Upper Bound for False-Positives This extended ex-
periment is to find an upper bound for potential false-
positives. Uncertain ComplEx under different maximum
semi-supervised samples per step, MSEMI , is tested. The
results of CSP are shown in Table5 individually. The values
in the first column indicate the proportion of MSEMI in the
number of generated samples per step. The default is 0.8 and
a value of 0 implies no semi-supervised sample. Contrarily,
under MSEMI = 1.0, no randomly drawn negative sample
will be used after the given training step, which is the most
extreme case and prone to false-positives. Under the setting,
the MSEs on negative samples are an appropriate estimation
of the upper bound for false-positives.
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datasets CN15K NL27K PPI5K
models WMR WH@20 nDCG WMR WH@20 nDCG WMR WH@40 nDCG
U ComplEx 1791.9017 31.67 % 29.56 % 296.2822 70.27 % 71.67 % 38.7985 68.32 % 43.49 %
+ SS−pool 1870.1333 32.85 % 29.86 % 291.6816 70.55 % 72.14 % 37.1732 68.34 % 43.81 %
+ SS 1229.1969 35.39 % 30.78 % 223.64 72.03 % 75.31 % 35.5303 69.85 % 43.93 %

Table 7: Ablation test: Tail entity prediction

CN15K NL27K PPI5K
threshold model WMR WH@20 nDCG WMR WH@20 nDCG WMR WH@40 nDCG

0.3 ComplEx 1,425.07 38.66% 31.28% 222.66 68.64% 69.62% 34.00 68.44% 40.83%
0.3 U C, + SS 1,458.79 35.23% 30.31% 223.35 72.05% 75.37% 33.08 72.74% 43.82%
0.5 ComplEx 1,487.14 39.41% 31.65% 229.52 69.97% 71.59% 25.39 81.62% 44.04%
0.5 U C. + SS 1,236.50 37.39% 31.47% 201.95 72.75% 76.75% 27.18 84.76% 46.54%
0.7 ComplEx 1,623.06 38.21% 28.76% 291.18 69.88% 71.10% 22.68 91.70% 47.31%
0.7 U C. + SS 1,490.07 35.17% 28.36% 201.67 72.73% 76.84% 21.31 93.34% 48.51%

Table 8: Deterministic vs uncertain KG embedding

As the results indicate, even under the extreme case, the
MSEs on negative samples are still controlled, suggesting
acceptable upper bounds. In addition, there is a considerable
margin between our default setting and the worst case.

Case Study Finally, we use Uncertain ComplEx as an ex-
ample to show some missing triplets found by PASSLEAF
models. Missing triplets refer to unseen triplets absent from
the dataset, requiring human verification. Table 4 shows
some plausible triplets found by Uncertain ComplEx with
semi-supervised training on CN15K. None of them is found
without applying semi-supervised samples. Although false-
positive predictions are seemingly much, a far greater num-
ber of missing triplets are uncovered with pool-based semi-
supervised training.

4.3 Ablation Test of the Sample Pool

To evaluate the contributions that the sample pool makes
to the improvements, we compare the pool-based semi-
supervised training to a naive approach with no sample pool,
in which semi-supervised samples are generated at the pre-
vious step. Both model have the same number ofNsemi. The
baselines are an ablated model without any semi-supervised
sample and the naive approach. The results of CSP and TEP
are shown in Table 6 and Table 7 respectively.

The naive approach makes limited improvements on most
metrics while the pooled-based approach achieves a more
prominent boost. For example, in confidence score predic-
tion MSE on CN15K, the naive approach contributes a 2%
reduction while the pooled-based method has more than 6%
We deduce that the improvements by the naive approach
are mainly due to the reduced importance of false-negative
samples and the avoidance of drawing them. For the pooled-
based method, we attribute to the ensemble of several mod-
els trained with varied data as stated in Sec. 3.4.

4.4 Performance of Deterministic Knowledge
Graph Embedding Methods

The third statement we try to prove is that models tai-
lored for uncertain knowledge graphs do outstrip determin-
istic models on uncertain KGs. In this test, we compare
PASSLEAF methods with their deterministic counterpart,
meaning the corresponding deterministic KG embedding
model where the score function originated. Applying de-
terministic KG methods requires binarization. So, separate
models are trained for each threshold while there is only one
uncertain embedding model. The results under several bina-
rization thresholds are shown in Table 8. For simplicity, only
Uncertain ComplEx and ComplEx are shown.

Uncertain ComplEx consistently outperforms ComplEx,
whose loss function is more complicated, on NL27K and
PPI5K in most metrics and thresholds, buttressing the notion
that PASSLEAF models can handle uncertainty better. To
find the contributing factor, we analyzed the improvements
made by Uncertain ComplEx over ComplEx with respect
to thresholds. As the threshold rises, both models improve.
Also, the gap between their performance remains relatively
constant in WH@K and nDCG except on PPI5K. How-
ever, in WMR, the gap widens as the threshold increases on
most datasets. We credit this to the retained low-confidence
triplets for the PASSLEAF models as an additional source
of information. As for the significant increase in WH@40
on PPI5K as the threshold rises, we tend not to over-explain
it because the metric can be strongly influenced by the de-
crease in the number of candidates.

5 Conclusion and Future Work
PASSLEAF generalizes the process of building uncertain
KG embedding models and boost the performance by avoid-
ing false-negative samples and by ensembling experiences
learned at previous time steps. We left the design of sample
size functions for the sample pool, the choice of hyperpa-
rameters, and more sophisticated loss functions for future
studies. Also, we believe our idea may benefit deterministic
KGs as well, which is another topic worth studying.

4025



Acknowledgments
This study was supported in part by the Ministry of
Science and Technology (MOST) of Taiwan, R.O.C.,
under Contracts 106-3114-E-002-008, 107-2221-E-001-
009-MY3, 108-2218-E-002-048, and 108-2221-E-002-062-
MY3.

References
Bordes, A.; Usunier, N.; Garcia-Durán, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating Embeddings for Model-
ing Multi-Relational Data. In Proceedings of the 26th In-
ternational Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, 2787–2795. Red Hook, NY,
USA: Curran Associates Inc.

Cai, L.; and Wang, W. Y. 2018. KBGAN: Adversarial
Learning for Knowledge Graph Embeddings. In Proceed-
ings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), 1470–
1480. New Orleans, Louisiana: Association for Computa-
tional Linguistics. doi:10.18653/v1/N18-1133. URL https:
//www.aclweb.org/anthology/N18-1133.

Chen, X.; Chen, M.; Shi, W.; Sun, Y.; and Zaniolo, C. 2019.
Embedding Uncertain Knowledge Graphs. In Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelli-
gence (AAAI).

Dettmers, T.; Pasquale, M.; Pontus, S.; and Riedel, S. 2018.
Convolutional 2D Knowledge Graph Embeddings. In Pro-
ceedings of the 32th AAAI Conference on Artificial Intelli-
gence, 1811–1818. URL https://arxiv.org/abs/1707.01476.

Hu, J.; Cheng, R.; Huang, Z.; Fang, Y.; and Luo, S.
2017. On Embedding Uncertain Graphs. In Proceed-
ings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM ’17, 157–166. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450349185. doi:10.1145/3132847.3132885. URL
https://doi.org/10.1145/3132847.3132885.

Laine, S.; and Aila, T. 2017. Temporal Ensembling for
Semi-Supervised Learning. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net. URL https://openreview.net/forum?id=
BJ6oOfqge.

Lin, Y.; Liu, Z.; Sun, M.; Liu, Y.; and Zhu, X. 2015. Learn-
ing Entity and Relation Embeddings for Knowledge Graph
Completion. In Bonet, B.; and Koenig, S., eds., Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial In-
telligence, January 25-30, 2015, Austin, Texas, USA, 2181–
2187. AAAI Press. URL http://www.aaai.org/ocs/index.
php/AAAI/AAAI15/paper/view/9571.

Mitchell, T.; Cohen, W.; Hruschka, E.; Talukdar, P.; Yang,
B.; Betteridge, J.; Carlson, A.; Dalvi, B.; Gardner, M.;
Kisiel, B.; Krishnamurthy, J.; Lao, N.; Mazaitis, K.; Mo-
hamed, T.; Nakashole, N.; Platanios, E.; Ritter, A.; Samadi,
M.; Settles, B.; Wang, R.; Wijaya, D.; Gupta, A.; Chen, X.;

Saparov, A.; Greaves, M.; and Welling, J. 2018. Never-
Ending Learning. Commun. ACM 61(5): 103–115. ISSN
0001-0782. doi:10.1145/3191513. URL https://doi.org/10.
1145/3191513.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing Atari With Deep Reinforcement Learning. In NIPS Deep
Learning Workshop.
Nickel, M.; Rosasco, L.; and Poggio, T. 2016. Holo-
graphic Embeddings of Knowledge Graphs. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, 1955–1961. AAAI Press.
Speer, R.; Chin, J.; and Havasi, C. 2017. ConceptNet 5.5: An
Open Multilingual Graph of General Knowledge. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, AAAI’17, 4444–4451. AAAI Press.
Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2019. Ro-
tatE: Knowledge Graph Embedding by Relational Rotation
in Complex Space. In International Conference on Learning
Representations.
Szklarczyk, D.; Morris, J. H.; Cook, H.; Kuhn, M.;
Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.;
Roth, A.; and Bork, P. 2017. The STRING database
in 2017: quality-controlled protein-protein association net-
works, made broadly accessible. Nucleic Acids Research
ISSN D362-D368. doi:10.1093/nar/gkw937.
Toutanova, K.; and Chen, D. 2015. Observed versus latent
features for knowledge base and text inference. In Proceed-
ings of the 3rd Workshop on Continuous Vector Space Mod-
els and their Compositionality, 57–66. Beijing, China: As-
sociation for Computational Linguistics. doi:10.18653/v1/
W15-4007. URL https://www.aclweb.org/anthology/W15-
4007.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In International Conference on Machine Learn-
ing (ICML), volume 48, 2071–2080.
Wang, Q.; Mao, Z.; Wang, B.; and Guo, L. 2017. Knowl-
edge Graph Embedding: A Survey of Approaches and Ap-
plications. IEEE Transactions on Knowledge and Data En-
gineering 29(12): 2724–2743.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge Graph Embedding by Translating on Hyperplanes.
In Brodley, C. E.; and Stone, P., eds., Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
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