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Abstract

Although static networks have been extensively studied in
machine learning, data mining, and AI communities for many
decades, the study of dynamic networks has recently taken
center stage due to the prominence of social media and its
effects on the dynamics of social networks. In this paper,
we propose a statistical model for dynamically evolving net-
works, together with a variational inference approach. Our
model, Neural Latent Space Model with Variational Infer-
ence, encodes edge dependencies across different time snap-
shots. It represents nodes via latent vectors and uses interac-
tion matrices to model the presence of edges. These matri-
ces can be used to incorporate multiple relations in heteroge-
neous networks by having a separate matrix for each of the
relations. To capture the temporal dynamics, both node vec-
tors and interaction matrices are allowed to evolve with time.
Existing network analysis methods use representation learn-
ing techniques for modelling networks. These techniques are
different for homogeneous and heterogeneous networks be-
cause heterogeneous networks can have multiple types of
edges and nodes as opposed to a homogeneous network. Un-
like these, we propose a unified model for homogeneous
and heterogeneous networks in a variational inference frame-
work. Moreover, the learned node latent vectors and interac-
tion matrices may be interpretable and therefore provide in-
sights on the mechanisms behind network evolution. We ex-
perimented with a single step and multi-step link forecasting
on real-world networks of homogeneous, bipartite, and het-
erogeneous nature, and demonstrated that our model signifi-
cantly outperforms existing models.

1 Introduction
Network analysis is by no means a new field and conse-
quently, a towering wealth of literature that explores var-
ious aspects of network analysis is available (Goldenberg
et al. 2010). With the advent of deep learning, network anal-
ysis methods more recently started focusing on representa-
tion learning techniques. These methods learn finite vector
representations or embeddings for nodes and edges that can
be used for downstream tasks like link prediction (Grover
and Leskovec 2016), node classification (Sen et al. 2008),
community detection (Fortunato 2010), and so on. These
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techniques are of two kinds. The first kind is for homoge-
neous networks with only a single type of nodes and edges.
The second kind is for heterogeneous networks with multi-
ple types of nodes and edges. These networks can also be
viewed as Knowledge Graphs (KG) with different types of
nodes as entities and different types of edges as relations be-
tween entities.

Early works on homogeneous network representation
learning use random walk models to capture the neighbor-
hood context (Perozzi, Al-Rfou, and Skiena 2014; Grover
and Leskovec 2016). The embeddings are learned so that
nodes closer to each other have similar embeddings. In
a KG, real-world facts are stored using edges which are
represented as a triplet of the form (Subject Entity,
Relation, Object Entity). Here, Subject
Entity and Object Entity form the nodes, and
Relation is the type of edge. The modelling techniques
developed for homogeneous networks are not applicable
for KGs as the entities connected via a relation may not
be similar. For example, consider the edge (Barack
Obama, Born in , USA) which represents a relation
Born in between the entities Barack Obama and USA.
Here, entities are not similar because Barack Obama is
a person and USA is a country. For representation learning
in such heterogeneous networks, entities and relations are
given a finite representation which is then used as input
to a scoring function as in (Bordes et al. 2013; Dettmers
et al. 2018; Sun et al. 2019). The embeddings are learned
so that the observed edges in the KG get a higher score as
compared to the unobserved edges.

One aspect that is often ignored by the existing methods
is that most real-world networks evolve with time. For ex-
ample, in social networks, new friendship links are formed
or broken with time. Similar observations can be made in
KGs as there are relations with temporal properties. For ex-
ample, (Barack Obama, President of, USA) is
valid only between 2009 and 2017. KGs which encode such
facts are called temporal KGs. Here, the links change with
time. Owing to many practical applications, it is important
to integrate both dynamic and heterogeneous information
while modelling networks.

Existing methods for dynamic homogeneous networks
have used techniques such as temporal regularization loss
(Zhou et al. 2018; Goyal et al. 2018) and RNN based se-
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quential architectures (Goyal, Chhetri, and Canedo 2020)
for modelling the graph evolution. For modelling temporal
KGs, previous methods have used temporal point process
models (Trivedi et al. 2017, 2019), or a RNN based interac-
tion history encoding model (Jin et al. 2019) to predict the
future evolution of the networks. To the best of our knowl-
edge, ours is the first method that considers homogeneous
and heterogeneous networks in an unified manner.

We propose a statistical model, called Neural Latent
Space Model (NLSM), for dynamic networks to address the
above-mentioned challenges. If a network hasR types of re-
lations, our model uses R sets of interaction matrices, one
for each type of relation. For homogeneous networks R = 1
and for heterogeneous networks R > 1. Our approach uses
an unified probabilistic framework which can scale up to the
complexities in the network structure. In theory, the parame-
ters of this proposed model could be estimated using training
data via Bayesian inference. However, the likelihood struc-
ture of the model is complex and non-convex, making such
methods computationally infeasible. This motivates a neu-
ral network-based variational inference procedure yielding
an end-to-end trainable architecture that can be used for ef-
ficient and scalable inference.

Our main contributions are as follows. (i) We have pro-
posed a new statistical model for dynamic networks that
encodes temporal edge dependencies and can model both
homogeneous and heterogeneous networks. (ii) We have
provided ample empirical evidence to demonstrate that our
model is suitable for link forecasting and it may simulta-
neously provide important insights into the network evo-
lution mechanics via interpretable embeddings. (iii) In dy-
namic homogeneous networks, we observed an average per-
formance improvement (over existing state-of-the-art) of 4%
in Micro-AUC metric for single-step link forecasting. Simi-
larly, in dynamic bipartite networks, an average performance
improvement of 8.7% in Micro-AUC metric for single-step
link forecasting was observed. In dynamic heterogeneous
networks, the average improvement is 7.9% in the mean re-
ciprocal rank metric for multi-step link forecasting task.

2 Neural Latent Space Model
2.1 Modeling Individual Snapshots
In our model, time t ∈ {1, 2, . . . , T} is discrete. The net-
work evolution is therefore described by the corresponding
network snapshots at each time-step, specified by binary ad-
jacency matrices A

(t)
r ∈ {0, 1}N×N , where N is the num-

ber of nodes in the network, r ∈ {1, 2, . . . , R} is the rela-
tion between the nodes, and t denotes the time. We begin
by discussing the case of homogeneous networks (R = 1).
The extension to heterogeneous networks (R ≥ 2) is then
straightforward and we present it in Section 2.3. To avoid
cluttering the notation, we drop the subscript in A

(t)
r when

R = 1. We further assume that there are no self-loops. Each
node is modeled by K attributes whose values lie in the in-
terval [0, 1]. These attributes can change over time. The la-
tent vector z

(t)
n ∈ [0, 1]K is used to denote the attributes for

node n at time t.

The interaction between latent vectors of each pair of
nodes directly dictates the probability of observing an edge
between them. For simplicity, our interaction model encodes
only interactions between attributes of the same type, de-
scribed by interaction matrices. For homogeneous networks
let Θ

(t)
k ∈ R2×2 be a matrix that encodes the affinity be-

tween nodes with respect to attribute k at time t. At the time
t, the node latent vector and interaction matrices fully deter-
mine the probability of edges being present. Formally, given
Θ

(t)
k , k = 1, . . . ,K and the latent vectors for all nodes z

(t)
n ,

n = 1, . . . , N , edges occur independently and the probabil-
ity of an edge from node i to node j is modeled as:

P
(
a

(t)
ij = 1|z(t)

i , z
(t)
j , {Θ(t)

k }
K
k=1

)
= σ

(
K∑
k=1

θ̃
(t)
k (i, j)

)
,

(1)
where, θ̃(t)

k (i, j) is defined as:

θ̃
(t)
k (i, j) = E

x∼B(z
(t)
ik ),y∼B(z

(t)
jk )

[
Θ

(t)
k (x, y)

]
. (2)

Here σ(.) is the sigmoid function,B(α) refers to a Bernoulli
distribution with parameter α and Θ

(t)
k (x, y) is the (x, y)th

entry of Θ
(t)
k matrix. Note that x and y are independent

in (2). This formulation allows representation of both ho-
mophilic and heterophilic interactions among nodes depend-
ing on the structure of the matrices Θ

(t)
k . For the case of

undirected graphs, the matrices Θ
(t)
k are symmetric.

The interaction model we consider is in the same spirit as
the Multiplicative Attribute Graph (MAG) model (Kim and
Leskovec 2012). Some other dynamic network models (Kim
and Leskovec 2013) use the MAG model directly to repre-
sent each static network snapshot, however, in our case, we
have a few differences: our node attributes are not restricted
to being binary and we have a differentiable expectation op-
eration as given in (2) instead of the non-differentiable “se-
lection” operation given in (Kim and Leskovec 2012). These
differences are crucial for one to use a neural network-based
variational inference procedure.

2.2 Modeling Network Dynamics
Having described how each network snapshot is generated,
it remains to describe how attributes and their interactions
evolve over time. To make an analogy with genetics, each
attribute type might be seen as a gene, and the latent vector
corresponds to the gene expression profile of a given node.
The level of expression of each attribute might change over
time - nodes may start exhibiting new attributes and stop
exhibiting old ones thereby leading to a change in z

(t)
n . At

the same time, the role of each attribute in regulating the
presence of edges in the network may also change over time
leading to a change in Θ

(t)
k matrices.

One approach to model the dynamics of a network is to
use domain expertise to impose a specific set of assump-
tions on the process governing the dynamics. However, this
limits the class of networks that can be faithfully modeled.
Instead, we adopt the strategy of imposing a minimal set of
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assumptions on the dynamics. This is in the same spirit as in
the models used in tracking using stochastic filtering (e.g.,
Kalman filters and variants) (Yilmaz, Javed, and Shah 2006),
where dynamics are rather simple and primarily capture the
insight that the state of the system cannot change too dramat-
ically over time. The use of simple dynamics together with
a powerful function approximator (a neural network) during
the inference ensures that a simple yet powerful model can
be learned from observed network data.

Let θ̄(t)
k be a vector consisting of the entries of the Θ

(t)
k

matrix1. We model the evolution of interaction matrices as:

θ̄
(t)
k ∼ N (θ̄

(t−1)
k , s2

θI), k = 1, ...,K, t = 2, ..., T, (3)

independently over time, where s2
θ ∈ R+ is a model hy-

perparameter and I denotes the identity matrix. This model
captures the intuition that the interaction matrices will likely
not change dramatically over time.

Since the entries of the latent vector z
(t)
n are restricted to

lie in [0, 1], a similar dynamics model as above is not possi-
ble. A simple workaround is to re-parameterize the problem
by introducing the vectors ψ(t)

n ∈ RK such that

z
(t)
nk = σ(ψ

(t)
nk). (4)

As before, σ(.) is the sigmoid function. Now we can have an
evolution model similar to (3) on vectors ψ(t)

n . That is,

ψ(t)
n ∼ N (ψ(t−1)

n , s2
ψI) n = 1, ..., N, t = 2, ..., T, (5)

where s2
ψ is a model hyperparameter. This in turn models the

evolution of vectors z
(t)
n .

Note that (3) and (5) only imply that the values of vari-
ables are unlikely to change very quickly. Other than that,
they do not place any strong or network-specific restriction
on the dynamics. The hyperparameters s2

θ and s2
ψ control the

radius around the current value of the variable within which
it is likely to stay in the next timestep.

This approach for modeling dynamics has advantages and
disadvantages. The major advantage is flexibility since dur-
ing inference time, a powerful enough function approxima-
tor can learn appropriate network dynamics from the ob-
served data. However, if we regard this proposal as a gen-
erative model, then it will lead to unrealistic global behav-
ior. Nonetheless, locally (in time) it will capture the type
of dynamics one sees in many networks, and this is enough
to ensure good tracking performance. In many real-world
cases, a suitable amount of observed data is available but
clues about the network dynamics are unavailable. Since the
task is to gain meaningful insights from the data, we believe
the advantages of this approach outweigh the disadvantages.

Note that (3) and (5) are applicable from timestep 2 on-
ward. We need a way to obtain the initial values for ψ(1)

n

and θ̄(1)
k for n = 1, 2, ..., N and k = 1, 2, ...,K . The initial

1For directed graphs the matrix Θ
(t)
k can be arbitrary, therefore

θ̄
(t)
k will have four entries. In the case of undirected graphs the

matrices are symmetric, and therefore three entries suffice.

vectors ψ(1)
n and θ̄(1)

k are sampled from a prior distribution.
We use the following prior distributions:

θ̄
(1)
k ∼ N (0, σ2

θI), (6)

ψ(1)
n ∼ N (0, σ2

ψI). (7)

Here, σθ and σψ are hyperparameters. In our experiments,
we set these hyperparameters to a high value (σθ = σψ =
10). This allows the initial embeddings to become flexible
enough to represent the first snapshot faithfully. After that,
the assumption that the network changes slowly ((3) and (5))
is used to sample the value of random variablesψ(t)

n and θ̄(t)
k

for t = 2, 3, ..., T .
We make the following independence assumptions: given

ψ
(t−1)
n the vectors ψ(t)

n are independent of any quantity in-
dexed by time t′ ≤ t − 1. An analogous statement ap-
plies to the interaction matrices θ̄(t)

k . Finally, given ψ(t)
i ,

ψ
(t)
j and Θ̄(t) = {θ̄(t)

k }Kk=1, the entries a(t)
ij are indepen-

dent of everything else. The graphical model for NLSM is
given in Appendix A in the supplementary material (Gra-
cious et al. 2021). Algorithm 1 outlines the generative pro-
cess for NLSM.

2.3 Modeling Heterogeneous Networks
In a heterogeneous network, the nodes may have different
types of relationships between them. A classic example is
a knowledge graph where, for instance, is president
of and lives in relations have different semantics. The
set of nodes, and hence the latent vectors z

(t)
n , remains

unchanged. To model different types of relations, we use
relation specific interaction matrices. Hence, the interac-
tion matrix for kth attribute now depends on the relation
r, and we denote this by Θ

(t)
k,r, for k = 1, 2, . . . ,K , and

r = 1, 2, . . . , R. To compute the edge probabilities under
a specified relation r, (1) only uses interaction matrices of
type r. Similarly, (2), (3), and (6) individually apply to each
r dependent interaction matrix. Using common latent at-
tributes for nodes captures the required relationships among
relations, hence the interaction matrices can evolve indepen-
dently of each other. In a graph with several types of nodes,
because all nodes share the same set of attributes, K must
be large enough to accommodate the diverse properties that
must be encoded. Naturally, not all elements of the node vec-
tors will be relevant to all node types.

3 Inference in NLSM
As before, to maintain readability, we describe the infer-
ence procedure for the case of R = 1. The general case
of R ≥ 1 trivially follows along the same lines. In prac-
tice, an observed sequence of network snapshots A =
[A(1),A(2), ...,A(T )] is available, and the main inference
task is to estimate the values of the underlying latent ran-
dom variables. Performing exact inference in NLSM is in-
tractable because the computation of marginalized log prob-
ability of observed data results in integrals that are hard to
evaluate. Thus, we adopt approximate inference techniques.
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Algorithm 1 Generative process for NLSM

Input: N : Number of nodes,
K: Latent vector dimension,
T : Number of timesteps,
s2
θ: Hyperparameter used in (3),
s2
ψ: Hyperparameter used in (5),
σ2
θ : Hyperparameter used in (6), and
σ2
ψ: Hyperparameter used in (7)

Sample ψ(1)
n using (7) for n = 1, 2, ..., N

Sample θ̄(1)
k using (6) for k = 1, 2, ...,K

for t = 1 to T − 1 do
Compute z

(t)
n by using ψ(t)

n in (4) for n = 1, 2, ..., N

Sample a(t)
ij using (1) for i, j = 1, 2, ..., N , i 6= j

Sample ψ(t+1)
n using (5) for n = 1, 2, ..., N

Sample θ̄(t+1)
k using (3) for k = 1, 2, ...,K

end for
Compute z

(T )
n by using ψ(T )

n in (4) for n = 1, 2, ..., N

Sample a(T )
ij using (1) for i, j = 1, 2, ..., N , i 6= j

Return: [A(1),A(2), ...,A(T )]

Our goal is to compute an approximation to the true pos-
terior distribution P ({Ψ(t),Θ(t)}Tt=1|{A(t)}Tt=1). Note that
in our approach K, sθ, sψ , σθ and σψ are hyperparame-
ters that are simply set by the user. We pose the inference
problem as an optimization problem by using Variational
Inference (Blei, Kucukelbir, and McAuliffe 2017) and pa-
rameterize the approximating distribution by a neural net-
work. There are several benefits like efficiency and scalabil-
ity (Blei, Kucukelbir, and McAuliffe 2017) associated with
the use of variational inference. Also, coupled with power-
ful neural networks, variational inference can model compli-
cated distributions (Kingma and Welling 2013).

The main idea behind variational inference is to approxi-
mate the posterior distribution by a suitable surrogate. Con-
sider a general latent variable model with the set of all ob-
served random variables X and the set of all latent ran-
dom variables H. The (intractable) posterior distribution
P (H|X) is approximated by using a parameterized distri-
butionQΦ(H) where Φ is the set of all the parameters ofQ.
One would like the distribution Q to be as close to the dis-
tribution P (H|X) as possible. In general, Kullback-Leibler
(KL) divergence is used as a measure of similarity between
the two distributions. The goal of variational inference is
to find the parameters Φ for which KL(QΦ(H)||P (H|X))
is minimized. However, this optimization objective is in-
tractable since one cannot efficiently compute P (H|X).
Nevertheless one can show that maximizing the Evidence
Lower Bound Objective (ELBO) given by

ELBO(Φ) = EQ[logP (X,H)− logQΦ(H)], (8)

is equivalent to minimizing the KL criterion (Blei, Kucukel-
bir, and McAuliffe 2017) (see Appendix B in the supple-
mentary material (Gracious et al. 2021) for proof). For most
models, the ELBO can be efficiently computed or approxi-
mated by imposing a suitable set of assumptions onQ as de-

scribed later. We parameterize the distribution Q by a neural
network and hence Φ represents the set of parameters of that
neural network in our setting.

3.1 Approximating ELBO
The latent variables in our model correspond to the elements
of Θ(t) and Ψ(t) for t = 1, 2, ..., T . The observed variables
are A(1), ...,A(T ). The parameter vector Φ consists of the
weights of the neural network. Following (8), we get:

ELBO(Φ) = EQ
[

logP
(
{A(t)}Tt=1, {Ψ(t),Θ(t)}Tt=1

)
− logQΦ

(
{Ψ(t),Θ(t)}Tt=1

)]
. (9)

Using the independence assumptions stated in Section 2, one
can write:

logP
(
{A(t)}Tt=1, {Ψ(t),Θ(t)}Tt=1

)
=

N∑
n=1

logP (ψ(1)
n ) +

K∑
k=1

logP (θ̄
(1)
k )+

T∑
t=2

( N∑
n=1

logP (ψ(t)
n |ψ(t−1)

n ) +
K∑
k=1

logP (θ̄
(t)
k |θ̄

(t−1)
k )

)
+

T∑
t=1

∑
i6=j

logP (a
(t)
ij |ψ

(t)
i ,ψ

(t)
j ,Θ(t)). (10)

The right hand side of (10) can be computed using (1),
(3), (4), (5), (6) and (7). Following the standard practice
(Blei, Kucukelbir, and McAuliffe 2017), we also assume that
QΦ(.) belongs to a mean field family of distributions, i.e. all
the variables are independent under Q:

Qφ
(
{Ψ(t),Θ(t)}Tt=1

)
=
( T∏
t=1

N∏
n=1

q
(t)
ψn

(ψ(t)
n )
)

( T∏
t=1

K∏
k=1

q
(t)

θ̄k
(θ̄

(t)
k )
)
. (11)

We model the distributions q(t)
ψn

and q(t)

θ̄k
using a Gaussian

distribution as given in (12) and (13) (with some abuse of
notation, N denotes the density of a normal distribution2).

q
(t)
ψn

(ψ(t)
n ) = N (ψ(t)

n |m
(t)
ψn
, (σ

(t)
ψn

)2I), and (12)

q
(t)

θ̄k
(θ̄

(t)
k ) = N (θ̄

(t)
k |m

(t)

θ̄k
, (σ

(t)

θ̄k
)2I). (13)

Here (σ
(t)
x )2I = diag

(
(σ

(t)
x )2

1, ..., (σ
(t)
x )2
|x|
)
. We wish to

learn the mean and covariance parameters of Gaussian dis-
tributions in (12) and (13) (these are called variational pa-
rameters). There are two possible approaches for doing this:
(i) ELBO(Φ) can be directly optimized as a function of vari-
ational parameters or (ii) One can model the variational pa-
rameters as outputs of some other parametric function (like
a neural network) and then optimize the parameters of that

2Define N (x|µ,Σ) = 1

(2π|Σ|)|µ|/2 exp (− 1
2
d(x,µ)), where

d(x,µ) = (x− µ)ᵀΣ−1(x− µ)
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parametric function. The second approach can be viewed as
a form of regularization where the space in which variational
parameters can lie is constrained to the range of the paramet-
ric function in use. We adopt the latter approach, and obtain
the variational parameters as outputs of neural networks. We
use Φ to denote the set of neural network parameters. Thus
q

(t)
ψn

(ψ
(t)
n ) ≡ q

(t)
ψn

(ψ
(t)
n ; Φ), but we do not explicitly men-

tion the dependence on Φ in general to avoid further nota-
tional clutter. The ELBO(Φ) can now be computed by us-
ing (10) and (11) in (9). Integration of the term involving
logP (a

(t)
ij |ψ

(t)
i ,ψ

(t)
j ,Θ(t)) is hard, so for this term we use

Monte-Carlo estimation. In all our experiments we use only
one sample to get an approximation to (9) as also proposed
in (Kingma and Welling 2013). Additionally, we observed
in our experiments that for t = 1, using m

(1)
ψn

and θ̄(1)
k di-

rectly as a sample for Monte-Carlo estimation improves the
performance for link forecasting and hence we do this in all
our experiments.

3.2 Network Architecture
We use a neural network to parameterize the distributions
in (12) and (13). Our network consists of four GRUs (Cho
et al. 2014), one each for the mean and covariance param-
eters (mψ , σψ , mθ̄ and σθ̄). We refer to these GRUs as
Gψm, Gψσ , Gθ̄m and Gθ̄σ respectively. These GRUs interact with
each other only during the computation of ELBO(Φ) since
their outputs are used to compute (9). See Appendix A in the
supplementary material for a visual description.

For brevity of exposition, we will only describe the inputs
and outputs for Gψm. Similar ideas have been employed for
other GRUs. For t = 1, 2, ..., T − 1, Gψm generates m

(t+1)
ψn

at timestep t for all nodes in the current batch as output.
In GRUs, the output of current timestep is used as the input
hidden state for the next timestep, thus the input hidden state
at timestep t corresponds to m

(t)
ψn

. To be consistent with this,

the initial hidden state of Gψm is set to m
(1)
ψn

. This means that
the initial hidden state for Gψm is a learnable vector.

In all our experiments, we use an all 0’s input vector for
Gψm at each timestep. If observable features of nodes (that
may be dynamic themselves) are available, one can instead
use these features as input. For Gψσ and Gθ̄σ , instead of com-
puting the variance terms, which are constrained to be posi-
tive, we compute log of variance (this is again standard prac-
tice (Kingma and Welling 2013)).

Once the mean and covariance parameters are available,
we use the reparameterisation trick (Kingma and Welling
2013) to sample ψ(t)

n and θ̄(t)
k using (12) and (13) which

are then used to approximate ELBO(Φ) using (9) as de-
scribed in Section 3.1. The training objective is to maximize
ELBO(Φ). The beauty of our model is that ELBO(Φ) is
differentiable with respect to Φ and gradients can be eas-
ily computed by back-propagation. This means that one can
optimize this function using a gradient-based method and
therefore capitalize on the powerful optimization methods
used for training neural networks. Furthermore, since ELBO
uses only pairwise interactions among nodes, we can oper-

DATASET #NODES #LINKS #STEPS #REL
ENRON 143 2,347 16 1

UCI 1,809 16,822 13 1
YELP 6,569 95,361 16 1

ML-10M 20,537 43,760 13 1
YAGO 10,623 201089 186 10
WIKI 12,554 669,934 232 24

Table 1: Dataset Description. Here, #Nodes is the number of
nodes N , #Links is number of edges, #Steps is the number
of snapshots T , and #Rel is the number of relations types R.

ate in a batch setting where only a subset of all nodes and the
interactions within this subset are considered. This allows us
to scale up to rather large networks by training our model on
random batches of nodes and their sub-graphs.

One additional benefit of using a neural network as op-
posed to learning the variational parameters directly is that
the neural network can capture the temporal patterns in the
data that can not be captured by the variational parame-
ters on their own, as the unrestricted dynamics model is ex-
tremely flexible and can cope with a rather drastic evolution
of attributes and interaction matrices. Since the neural net-
work is being trained to predict the parameters for time t
given the history up to time t − 1, it is being encouraged to
look for temporal patterns in the data.

In all our experiments we use the well known Adam opti-
mizer (Kingma and Ba 2014) with a learning rate of 0.01 to
train the inference network. A separate inference network is
trained for all time steps (in other words, to make predictions
for time t we train the inference network with all the obser-
vations up to time t−1). Note that all networks have exactly
the same number of parameters. While training, the parame-
ters of the neural network that is used to make predictions at
time t are initialized with the parameters of trained network
for time t− 1.

4 Experiments
4.1 Dataset Description
We use the UCI (Panzarasa, Opsahl, and Carley 2009), En-
ron (Klimt and Yang 2004), Yelp3, ML-10M (Harper and
Konstan 2015), WIKI (Leblay and Chekol 2018), and YAGO
(Mahdisoltani, Biega, and Suchanek 2014) datasets in our
experiments. Table 1 summarizes the datasets and additional
information is provided in the supplementary material.

4.2 Link Forecasting
We consider two settings for link forecasting: single-step
and multi-step link forecasting. In single-step link forecast-
ing, we are given a dynamic network up to time t as a se-
quence of snapshots [A(1),A(2), . . . ,A(t)] and the task is
to predict A(t+1). In multi-step link forecasting, the aim is
to predict the next k snapshots A(t+1),A(t+2), . . . ,A(t+k).

For evaluating link forecasting in communication and rat-
ing networks, we use the well known Area Under Curve-
score (AUC-score). See Appendix D in the supplementary

3https://www.yelp.com/dataset/challenge
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Datasets AUC node2veca DynamicTriadb DynGEMc DynAERNNd DySATe BAS NLSM

Enron Micro 83.72 ± 0.7 80.26 ± 0.8 67.83 ± 0.6 72.02 ± 0.7 85.71 ± 0.3 76.88 ± 0.5 87.05 ± 0.3
Macro 83.05 ± 1.2 78.98 ± 0.9 69.72 ± 1.3 72.01 ± 0.7 86.60 ± 0.2 77.62 ± 0.5 86.24 ± 0.4

UCI Micro 79.99 ± 0.4 77.59 ± 0.6 77.49 ± 0.4 79.95 ± 0.4 81.03 ± 0.2 78.79 ± 0.5 86.24 ± 0.4
Macro 80.49 ± 0.6 80.28 ± 0.5 79.82 ± 0.5 83.52 ± 0.4 85.81 ± 0.1 83.84 ± 0.4 88.9 ± 0.3

Yelp Micro 67.86 ± 0.2 63.53 ± 0.3 66.02 ± 0.2 69.54 ± 0.2 70.15 ± 0.1 70.21 ± 0.1 81.38 ± 0.2
Macro 65.34 ± 0.2 62.69 ± 0.3 65.94 ± 0.2 68.91 ± 0.2 69.87 ± 0.1 69.40 ± 0.1 80.12 ± 0.3

ML-10M Micro 87.74 ± 0.2 88.71 ± 0.2 73.69 ± 1.2 87.73 ± 0.2 90.82 ± 0.3 84.10 ± 0.4 92.21 ± 0.4
Macro 87.52 ± 0.3 88.43 ± 0.1 85.96 ± 0.3 89.47 ± 0.1 93.68 ± 0.1 84.32 ± 0.3 92.39 ± 0.3

Table 2: Single-step link forecasting results. Micro and Macro AUC in % averaged over 10 runs with standard deviation. NLSM
beats previous state-of-the-art results in almost all settings. Reported performance scores for other methods were taken from
(Sankar et al. 2020). References: a(Grover and Leskovec 2016), b(Zhou et al. 2018), c(Goyal et al. 2018), d(Goyal, Chhetri, and
Canedo 2020), e(Sankar et al. 2020)

material for details about evaluation metrics. We compare
our performance against existing approaches for both static
as well as dynamic network representation learning. While
training and evaluating, links formed with nodes that are not
observed in the training time-steps are removed.

For Temporal KGs, we use a windowed approach for
training the model to reduce the computational require-
ment as these datasets have a large number of snapshots.
We use a moving window of size m having snapshots
A(t−m+1),A(t−m+2), . . . ,A(t) and predict future snap-
shots. This is done for all t = 2, . . . , T . The window is
shifted by one step if t > m. While shifting, we keep the
parameters of GRUs fixed but change the initial embeddings
of nodes and interaction matrices by initializing them with
one step evolved embeddings from their respective GRUs.

We evaluate Temporal KGs in the multi-step link forecast-
ing setting and use well known metrics like Mean Recipro-
cal Rank (MRR), Hits@3, and Hits@10. We use both raw
and filtered versions of these metrics as explained in (Bor-
des et al. 2013) to compare our model with existing methods.
See Appendix D in the supplementary material for more de-
tails about the evaluation metrics.

In all our experiments, we fix the value of K to 64. This
value allows significant flexibility in the model while main-
taining computational tractability. Larger values can also be
used without significantly affecting the results. Similarly, we
chose sθ = sψ = 0.1 and σθ = σψ = 10 for all ex-
periments. Our model is rather robust to the choice of hy-
perparameters and dataset specific tuning is, in general, not
required as exemplified by the fact that we reuse the same
values of hyperparameters across all of our experiments.

4.3 Results
Single Relation Link Forecasting: In this setting, we
train the model using snapshots until time t and forecast the
links occurring at time t+ 1 for each t = 1, . . . , T − 1. We
initialize the model for forecasting the links at time t + 1
with the model trained at time t, and then retrain it. We
use Micro-AUC and Macro-AUC metrics for evaluating the
performance. Micro-AUC is calculated considering all the
links across the time-steps and Macro-AUC is the average of
AUC at each time-step. These experiments use communica-

tion and rating networks and the results are reported in Table
2. We can see that our model NLSM outperforms all other
approaches based on the Micro-AUC scores. We can also
observe that our model performs much better as compared
to the static network embedding method node2vec. This is
because static models do not consider temporal dynamics.

To demonstrate the utility of having GRUs, we created
a baseline (BAS). BAS directly approximates ELBO(Φ) as
a function of variational parameters in (12) and (13). This
model does not use a GRU for posterior inference. Instead, it
learns embeddings for all nodes independently at each time-
step. Then, for predicting the future links, it uses the lat-
est embedding of the nodes. Note that BAS performs poorly
across datasets. This shows that the regularization provided
by the GRUs allows us to better capture the temporal pat-
terns and improve the quality of inference.

Multi-Relational Link Forecasting: For multi-relational
link forecasting, we use the temporal KGs YAGO and WIKI.
We use the heterogeneous variant of our model NLSM as
explained in 2.3. As before, we use a windowed training ap-
proach and with window size m = 5 as in (Jin et al. 2019).
Testing is done by inferring the future embeddings via the
node embedding GRUs. We followed the train-test split used
by existing works (Jin et al. 2019). For YAGO we test on
the last six time steps and for WIKI we test on the last 10
time steps. The performance is reported in Table 3. It can
be observed that our model performs much better than the
previous state-of-the-art model RE-NET (Jin et al. 2019) in
all the settings.

See Appendix E in the supplementary material (Gracious
et al. 2021) for additional details regarding our experimen-
tal setup. Appendix F presents additional results on smaller
datasets and explores the effect of changing K. Appendix G
presents a qualitative case study to demonstrate that learned
embeddings may also offer interpretable insights about the
network dynamics.

5 Related Work
Statistical Network Analysis: One of the first success-
ful statistical model for dynamic networks was proposed in
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Method WIKI - filtered WIKI - raw YAGO - filtered YAGO - raw
MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@10 MRR H@3 H@1O

Know-Evolve+MLPa 12.64 14.33 21.57 10.54 13.08 20.21 6.19 6.59 11.48 5.23 5.63 10.23
DyRep+MLPb 11.60 12.74 21.65 10.41 12.06 20.93 5.87 6.54 11.98 4.98 5.54 10.19
RE-NETc 53.57 54.10 55.72 32.44 35.42 43.16 66.80 67.23 69.77 48.60 54.20 63.59

NLSM 56.70 57.80 61.10 35.25 38.60 47.55 69.40 71.25 73.90 52.50 59.20 68.40

Table 3: Results on Temporal KGs. Reported scores are in % averaged over 5 runs. Our model performs better than existing
approaches. The performance scores for other approaches have been taken from (Jin et al. 2019). References: a(Trivedi et al.
2017), b (Trivedi et al. 2019), c(Jin et al. 2019)

(Xing, Fu, and Song 2010). It is an extension of the well
known Mixed Membership Stochastic Blockmodel (Airoldi
et al. 2008) with the additional assumption that parameters
evolve via a Gaussian random walk. Since then, multiple re-
searchers have proposed extensions of static network models
like Stochastic Blockmodel (Holland, Laskey, and Leinhardt
1983) to the case of dynamic networks (Yang et al. 2011; Xu
and Hero 2014; Xu 2015).

Another class of models extend the general latent space
model for static networks to the dynamic network setting
(Sarkar and Moore 2005; Foulds et al. 2011; Heaukulani
and Ghahramani 2013; Kim and Leskovec 2013; Sewell and
Chen 2015, 2016; Gupta, Sharma, and Dukkipati 2019). Our
proposed model also falls under this category. The basic
idea behind such models is to represent each node by an
embedding (which may change with time) and model the
probability of an edge as a function of the embeddings of
the two endpoints. All of these approaches (except (Gupta,
Sharma, and Dukkipati 2019)) use an MCMC based infer-
ence procedure that does not directly support neural network
based inference. However, unlike these previous approaches,
in our model the role of each attribute in latent vector can
also change. This is a rather distinctive feature of NLSM,
allowing us to capture both local dynamics (the evolution
of attributes in node latent vector) and global dynamics (the
evolving role of attributes). In addition to that, our model for
static network snapshots is fully differentiable which allows
us to use a neural network based variational inference proce-
dure as opposed to most existing methods that use MCMC
based inference.

Dynamic Networks: For incorporating temporal prop-
erties into embedding learning, methods were devised to
model the evolution of networks over time. One such work
(Zhou et al. 2018) uses the triadic closure property where it
tries to model the probability that an open triad in the current
time-step will become closed in future. Recent focus of dy-
namic network representation learning is on adapting graph
neural network based static representation learning methods
(Hamilton, Ying, and Leskovec 2017; Petar et al. 2018; Zit-
nik, Agrawal, and Leskovec 2018) to the case of dynamic
networks. For example, Goyal et al. (2018) use an incre-
mental learning of graph auto-encoder at each time-step. The
above mentioned approaches can only model short term dy-
namics in the networks. For capturing long-term dynamics,

recurrent neural network and temporal attention is applied.
In (Goyal, Chhetri, and Canedo 2020), graph encoders are
used with recurrent neural network for modelling the evo-
lution of node embeddings. In (Sankar et al. 2020), graph
attention networks are used with dynamic self-attention for
capturing long-term dynamics of nodes.

Temporal KGs: The model proposed in this paper is an
extrapolation method for temporal KGs. Here, we forecast
the future links by observing the dynamics in the temporal
KG in the past. In an existing approach known as Know-
Evolve (Trivedi et al. 2017), temporal point process is used
for predicting links in a temporal KG. Here, the authors as-
sume that the properties of entities evolve as they interact
with other entities, and use these entity representations as
an input to a bilinear scoring function defined by a rela-
tionship matrix. The score of the bilinear function is used
as a conditional density in the temporal point process. This
model is extended in DyRep (Trivedi et al. 2019), where a
attention based neighborhood aggregator is added to the en-
tity evolution model. In a recent work RE-NET (Jin et al.
2019), a graph convolution encoder was used to aggregate
the neighborhood information at each time-step in the past.
A recurrent neural network then aggregates the historical
neighborhood information which is then used for forecast-
ing the probability of links in the KG in future.

6 Conclusion
In this paper, we presented a new statistical model called
Neural Latent Space Model (NLSM) for dynamic networks.
Unlike most existing approaches which focus on modelling
homogeneous dynamic networks, our approach seamlessly
works for both homogeneous as well as heterogeneous dy-
namic networks. This is achieved by using relation specific
interaction matrices for modelling links. For heterogeneous
networks like the temporal KGs which have multiple type
of relations, our model has an interaction matrix for each
relation type. We also developed a neural network based
variational inference procedure for performing inference in
NLSM. Through our experiments, we demonstrated the util-
ity of our approach by using it to perform link forecasting
where we achieved state-of-the-art performance on several
datasets in both single relation and multi-relational setting.
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