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Abstract

Using temporal abstraction, various forms of sampled mul-
tivariate temporal data can be transformed into a uniform
representation of symbolic time intervals, from which Time
Intervals Related Patterns (TIRPs) can be then discovered.
Hence, mining TIRPs from symbolic time intervals offers
a comprehensive framework for heterogeneous multivariate
temporal data analysis. While the field of time intervals min-
ing has gained a growing interest in recent decades, frequent
closed TIRPs mining was not investigated in its full com-
plexity. Mining frequent closed TIRPs is highly effective due
to the discovery of a compact set of frequent TIRPs, which
contains the complete information of all the frequent TIRPs.
However, as we demonstrate in this paper, the recent advance-
ments made in closed TIRPs discovery are incomplete, due to
the discovery of only the first instances of the TIRPs within
each STIs series in the database. In this paper we introduce
the TIRPClo algorithm – for complete and efficient mining
of frequent closed TIRPs. The algorithm utilizes a memory-
efficient index and a novel method for data projection, due
to which it is the first algorithm to guarantee a complete dis-
covery of frequent closed TIRPs. In addition, a rigorous run-
time comparison of TIRPClo to state-of-the-art methods is
performed, demonstrating a significant speed-up on various
real-world datasets.

Introduction
In the recent two decades, there has been a growing interest
in discovering temporal knowledge through frequent tem-
poral patterns, and particularly in the discovery of frequent
Time Intervals-Related Patterns (TIRPs) from symbolic time
intervals (STIs). STIs may be raw, i.e., describing events
having duration, such as a time period a patient is prescribed
on a medication or the period of time the green light is on in
a traffic light.

Alternatively, STIs can be created from time-points se-
ries after employing temporal abstraction methods (Shahar
1997; Lavrac, Keravnou, and Zupan 2000; Höppner 2002;
Lin et al. 2003; Mörchen and Ultsch 2005; Azulay et al.
2007; Moskovitch and Shahar 2015a). Through a tempo-
ral abstraction process various forms of temporal variables,
whether sampled regularly or irregularly, are transformed
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into a uniform representation of STIs. The STIs mostly rep-
resent periods of time that a variable is in a specific state
(defined by cutoffs), or segments of an increasing or a de-
creasing period of the values.

Incorporating various types of temporal variables into a
uniform STIs series representation, enables the discovery
of frequent TIRPs from multivariate heterogeneous tempo-
ral data. The discovered frequent TIRPs have a meaning-
ful potential usage in real-world applications, being directly
used for knowledge discovery (Sacchi et al. 2007), classifi-
cation (Patel, Hsu, and Lee 2008; Batal et al. 2009) or the
prediction of certain outcomes (Moskovitch et al. 2015). In
dynamic graphs, for example, frequent time intervals series
mining can be also used for the discovery of frequent tempo-
ral patterns of edge-interactions (Kostakis and Gionis 2017).
In addition, as will be explained in the Background section,
TIRPs are explicitly represented by the temporal relations
among their STIs. Therefore, they can be easily interpreted
by domain experts, which makes time intervals mining a
very attractive technique for temporal data analytics in real-
life data.

The discovery of frequent closed TIRPs, on which we will
elaborate in the Background section, in particular, has a sig-
nificant potential benefit over discovering the entire set of
frequent TIRPs. While a single frequent closed TIRP may
contain an exponential number (in the size of the TIRP) of
frequent sub-TIRPs that are not closed, their entire infor-
mation is contained within the closed TIRP itself. Thus, the
discovery of frequent closed TIRPs potentially produces a
much more compact output of frequent TIRPs, which con-
tains the complete information of all the frequent TIRPs.

However, the definition of the complete discovery of fre-
quent closed TIRPs, a problem that was recently investigated
for the first time in (Chen, Weng, and Hui 2016), was not
addressed properly. Earlier methods have discovered only
the first instance of a TIRP within each STIs series in the
database. The following instances of the TIRPs, on the other
hand, have been ignored, which eventually results in an in-
complete discovery of frequent closed TIRPs. In this pa-
per we demonstrate this completeness problem, both qual-
itatively and quantitatively, and introduce a novel algorithm
which is complete. The algorithm also keeps track of the
complete set of instances of the frequent closed TIRPs that
it discovers.
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The main contributions of the paper are the following:
1. TIRPClo – An efficient algorithm for complete mining of

frequent closed TIRPs, including:
(a) A novel method for STIs series transformation into se-

quential end-points representation, avoiding ambiguity.
(b) A complete method for database projection, which

overcomes the main challenge of current projection
mechanisms, i.e., the detection of the reoccurring in-
stances of the TIRPs within a single STIs series.

2. A comprehensive qualitative and quantitative analysis of
the completeness problem in the current closed TIRPs dis-
covery methods.

3. A rigorous runtime comparison of TIRPClo with recent
state-of-the-art methods on various real-world datasets,
demonstrating a significant speed-up.

4. The code of the TIRPClo algorithm as well as the evalua-
tion datasets, which are all publicly available1.

Background
Symbolic Time Intervals Mining
Temporal data include not only time-stamped raw data or
time-points series, but also time intervals, which are events
having a type and a non-zero duration. Such time intervals
are referred to as symbolic time intervals (STIs).
Definition 1. (STI) A symbolic time interval I = (symbol,
s, f) is a triplet of a symbol, a start-time and a finish-time.
Definition 2. (Lexicographical STIs series) A lexicograph-
ical STIs series (I1, I2, ..., Ik) is a sorted series of STIs, s.t.
∀Ii, Ij : i < j ≡ Ii.s < Ij .s∨ (Ii.s = Ij .s∧ Ii.f < Ij .f)∨
(Ii.s = Ij .s ∧ Ii.f = Ij .f ∧ Ii.symbol < Ij .symbol).

Frequent TIRPs are mined from a database of STIs series,
in which each series is associated to an entity (e.g., patient)
that has a unique identifier, i.e., the entity ID. The most com-
mon method to define the temporal relations among the STIs
is using Allen’s temporal relations (Allen 1983). Allen has
formulated a finite set of 13 temporal relations between a
pair of STIs. The set includes seven basic relations – six of
which having an inverse relation, while equal is its own in-
verse, as shown in Figure 1. When the STIs are lexicograph-
ically ordered (definition 2), it is sufficient to use the seven
relations, without their inverse relations.
Definition 3. (TIRP) A Time Intervals-Related Pattern
(TIRP) is defined as T = {TIntervals, TRelations} where
TIntervals = (I1, I2, ..., Ik) is a lexicographically ordered
set of k STIs and

TRelations =
k∧

i=1

k∧
j=i+1

AllenRel(Ii, Ij)

defining the conjunction of Allen’s temporal relations
among each of the

(
k
2

)
pairs of STIs in TIntervals.

Note that the timestamps of the STIs’ end-points are not
part of the TIRP definition, but only their symbols and the
temporal relations among them.

1 https://github.com/omerh18/TIRPClo

Figure 1: Allen’s 13 temporal relations between a pair of
STIs.

Definition 4. (Vertical support) The vertical support of a
TIRP T is the distinct number of entities |ET | in which T ap-
pears at least once, divided by the total number of entities in

the database |E|. Therefore, vertical support(T ) =
|ET |
|E|

.

Definition 5. (Horizontal support) The horizontal support
of a TIRP T within an entity e is the number of instances of
T within e’s STIs series.

Example. In Figure 2, the TIRP T1 =< AoverlapsB >
consists of the two STIs A and B, among which the tem-
poral relation is overlap. T1 appears twice within (a) and
once within (b). Therefore, in the dataset shown in Fig-

ure 2, vertical support(T1) =
|ET1
|

|E|
= 1. In addi-

tion, horizontal support(T1, (a)) = 2, while horizontal
support(T1, (b)) = 1.

While the methods that we review in this subsection fo-
cus on the discovery of frequent TIRPs from STIs, not all
of them maintain the time intervals-based representation.
Looking at the methods that were published, it is clear
that two types of approaches have been developed. Some
methods are time intervals-based (Winarko and Roddick
2007; Patel, Hsu, and Lee 2008; Papapetrou et al. 2009;
Moskovitch and Shahar 2015b; Sharma and Patel 2018), that
directly discover frequent TIRPs composed of STIs and the
conjunction of Allen’s relations among them (definition 3).

Others are sequence-based (Wu and Chen 2007; Chen,
Weng, and Hui 2016), which transform the STIs series data
into a sequential representation of the STIs’ start and fin-
ish end-points. Then, typically a sequential mining-based
method is applied to the database of end-points sequences
in order to discover the frequent TIRPs, which are repre-
sented as frequent sequences of the end-points of the TIRPs’
STIs. Note that a discovered frequent end-points sequence
does not correspond to a valid TIRP if it contains only one
of the two end-points (either start or finish) of some STI.
In addition, Allen’s temporal relations among the STIs are
implicitly represented by the sequential order of their end-
points. For that, a non-ambiguous sequential representation
is needed. Ambiguity means either 1) having different rep-
resentations for the same temporal relation, or 2) having one
representation which expresses different temporal relations.
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Closed TIRPs Mining
Definition 6. (Super-pattern) In sequential events represen-
tation, given two sequential patterns p1 =< t1, t2, ..., tk >

and p2 =< t
′

1, t
′

2, ..., t
′

n >, p2 is a super-pattern of p1 if and
only if there exist indices 1 ≤ i1 < i2 < ... < ik ≤ n s.t.
t1 = ti

′

1, t2 = ti
′

2, ..., tk = ti
′

k.

Definition 7. (Super-TIRP) Let T1 and T2 be two TIRPs.
Then T2 is a super-TIRP of T1 if and only if 1)
T1Intervals ⊆ T2Intervals and 2) ∀Ii, Ij ∈ T1Intervals:
T1Relations(Ii, Ij) = T2Relations(Ii, Ij).

Definition 8. (Closed TIRP) A TIRP T1 is a closed
TIRP if and only if it has no super-TIRP T2 s.t. vertical
support(T1) = vertical support(T2).

Example. In Figure 2, the TIRP T2 =< A overlaps B ∧B
overlaps C ∧ A before C > is a super-TIRP of the TIRP
T1 =< A overlaps B >. That is since 1) T1Intervals = (A,
B)⊆ (A,B,C) = T2Intervals; and 2) T1Relations(A,B) =
T2Relations(A,B) = overlap. In addition, T1 and T2 have
the same vertical support. Therefore, T1 is not a closed TIRP,
while its super-TIRP T2 is indeed closed.

The discovery of frequent closed temporal patterns has
recently gained a significant interest. That is due to poten-
tially producing a much more compact output of frequent
patterns, which contains the entire information of all the fre-
quent patterns. However, prior research on closed temporal
patterns mining has mainly focused on sequential data (Yan,
Han, and Afshar 2003; Wang and Han 2004; Tzvetkov, Yan,
and Han 2005; Huang et al. 2006; Chang et al. 2008). The
CCMiner algorithm (Chen, Weng, and Hui 2016) is the first
and only method proposed so far for the discovery of fre-
quent closed TIRPs from STIs-based data.

In the next subsection we demonstrate the completeness
problem in the current approach for closed TIRPs discov-
ery, which will be also empirically investigated in the exper-
imental section.

Completeness
Definition 9. Complete mining of frequent closed TIRPs:
Given a dataset of |E| entities’ STIs series, the goal of the
complete frequent closed TIRPs mining task is to discover all
the frequent closed TIRPs (definition 8), given a minimum
vertical support threshold.

Previous methods for closed TIRPs discovery (Chen,
Weng, and Hui 2016) have intended to discover only the first
TIRP instance within each entity’s STIs series, and not the
entire horizontally supporting instances of the TIRPs (defi-
nition 5). That is probably due to meaningful complexity and
computational requirements. However, in this subsection we
show that in order to correctly count the TIRPs’ vertical sup-
port values, their horizontal support discovery is essential.
Otherwise, TIRPs’ vertical support values are potentially un-
dercounted. Consequentially, TIRPs that are indeed frequent
(i.e., their correct vertical support value is above the mini-
mum support threshold) are wrongly considered infrequent
and are thus not discovered, which results in an incomplete
discovery of frequent closed TIRPs.

Figure 2: Two STIs series that contain the TIRPs T1 and T2.
In series (a), the discovery of only the first instance of T1

results in not discovering the single instance of T2, whose
vertical support is undercounted.

This is illustrated in Figure 2, which shows two STIs se-
ries (a) and (b), and two TIRPs - T1 and T2. The TIRP T1 =
< A overlaps B > appears twice within (a) and once within
(b), while the TIRP T2 = < A overlaps B ∧ B overlaps
C ∧ A before C > appears only once within each of the
series. In series (a), T1’s second instance appears as part of
the TIRP T2, while its first instance does not. Assume that
only the first instance of a TIRP within each supporting en-
tity is discovered, as made in (Chen, Weng, and Hui 2016).
Then, in series (a), only the first instance of T1 is discovered
while its second instance is ignored, which is sufficient for
T1’s vertical support counting.

However, due to ignoring the second instance of T1 in (a),
the only instance of T2 in this series is not discovered as
well. That is since typically, in order to discover an instance
of a TIRP, its prefix has to be discovered first, and then ex-
tended (e.g., an instance of < A > should be discovered and
extended in order to discover an instance of < A overlaps
B >). As a result, T2’s vertical support is undercounted and
it might be wrongly considered infrequent. In such case, the
closed TIRP T2 is not discovered despite it is indeed fre-
quent, which results in an incomplete discovery of frequent
closed TIRPs. Therefore, the entire set of horizontally sup-
porting instances of the TIRPs must be discovered in order
to guarantee a complete discovery of frequent closed TIRPs,
as defined in definition 9.

Methods
In this section we introduce TIRPClo – a complete and ef-
ficient sequence-based algorithm for frequent closed TIRPs
discovery.

Definition 10. (Tiep) A time-interval-end-point (tiep) rep-
resents a STI’s end-point through a pair of a symbol and an
end-type, which can be either start or finish.

In this paper, the start-tiep and finish-tiep of a STI which
has the symbol A are denoted by A+ and A− respectively.
Note that in real-life data multiple STIs having the same
symbol can occur within a single entity’s STIs series. Thus,
an index i is used in order to differentiate their tieps’ in-
stances that appear within the same entity. For example, the
ith instance of a STI A is represented by A+

i for its start-tiep
and A−

i for its finish-tiep.
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Definition 11. (Complementing-tiep) Given a start-tiep t =
A+, its complementing tiep is A− and vice versa. We denote
a tiep t’s complementing tiep by tC .

Algorithm 1: TIRPClo
input : db - lexicographically ordered STIs series database
output: CT - complete set of frequent closed TIRPs

1 sdb← STIs2Seq(db)
2 CT ← ∅
3 for t ∈ T iepsIndex do
4 if |T iepsIndex[t].Et| < minSup then
5 T iepsIndex.remove(t)
6 for t ∈ T iepsIndex do
7 if t.endType == START then
8 sdbt ← ESProject(sdb, t, Et)
9 if ¬CheckPrune(t) then

10 ExtendTIRP (t, sdbt, CT,NULL)
11 return CT

The main steps of the TIRPClo algorithm are described in
Algorithm 1. As a sequence-based algorithm, TIRPClo starts
with transforming the STIs series database into a novel tieps-
based sequences database representation, on which we will
elaborate in the next subsection (line 1). The transformation
method – STIs2Seq, also indexes the tieps in the tieps-index,
which enables the retrieval of the ordered instances of the
tieps within their supporting entities in O(1).

Then, the infrequent tieps are filtered out of the index, ac-
cording to the Apriori-All principle (lines 3-5). For each fre-
quent start-tiep t, the Entities Spawning projection method
(Algorithm 3) is applied in order to project the initial se-
quences database by t (lines 6-8). In line 9 it is verified
whether or not the current one-tiep pattern should be pruned,
according to TIRPClo’s closure-checking scheme. In TIRP-
Clo, a pattern is pruned only in case any future extension of
it will for sure not form a frequent closed TIRP. Otherwise,
the ExtendTIRP method (Algorithm 2) is applied in order
to discover all the frequent closed TIRPs that begin with t
(line 10). Finally, the complete set of frequent closed TIRPs
is discovered and returned by the algorithm (line 11).

Algorithm 2: ExtendTIRP
input : p - current pattern

sdbp - projected sequences database of p
CT - set of discovered frequent closed TIRPs
prevSIs - previous support-indices

1 if isV alidTIRP (p) ∧ isClosed(p) then
2 CT ← CT ∪ {p}
3 cndSIs← GetSupportIndices(p, sdbp, prevSIs)
4 for < cndt, cndtSI >∈ cndSIs do
5 if cndtSI.verticalSupport ≥ minSup then
6 p

′
= p+ cndt

7 sdbp′ ← ESProject(sdbp, cndt, cndtSI)

8 if ¬CheckPrune(p
′
) then

9 ExtendTIRP (p
′
, sdbp′ , CT, cndSIs)

The ExtendTIRP method (Algorithm 2) extends a current
frequent pattern p recursively. Note that as explained in the

Figure 3: Three STIs series and their sequential representa-
tions in TIRPClo, (Chen, Weng, and Hui 2016) and (Wu and
Chen 2007).

Background section, for p to be a valid TIRP, all of its tieps
must appear paired with their complementing tieps. Thus,
p is added to the set of frequent closed TIRPs that are dis-
covered by the algorithm only if it is both valid and closed,
according to TIRPClo’s closure-checking scheme, which is
verified in lines 1-2. Then, in order to generate the candidate
tieps for the extension of p, the tieps’ support-indices are
generated (line 3). A support-index is a data structure that
is generated for each tiep cndt which is a valid candidate
for the extension of p (see Candidates Generation subsec-
tion). The support-index holds cndt’s vertical support value
and points at its first instance within each supporting entity’s
record in the projected sequences database sdbp.

For each valid candidate tiep cndt which is currently fre-
quent, it is selected for the extension of p (lines 4-6). For
that, the current sequences database sdbp is first re-projected
by cndt (line 7). Then, the ExtendTIRP method is repeat-
edly applied in order to further extend the pattern p

′
=

p + cndt, in case it should not be pruned (lines 8-9). Note
that the vertical support of p

′
is known in advance and equals

to cndt’s current vertical support value, which is above the
minimum support threshold by selection. Hence, all the ex-
tended patterns in TIRPClo are guaranteed to be frequent,
and TIRPClo performs the least pattern extensions required
for the discovery of the complete set of frequent closed
TIRPs based on a single scan of the data.

TIRPClo Novel Sequence-based TIRP
Representation and Tieps-Index
TIRPClo introduces a novel sequence-based representation
of STIs series, which is both non-ambiguous and also clearer
compared to current relevant representations (Chen, Weng,
and Hui 2016; Wu and Chen 2007). Figure 3 shows TIRP-
Clo’s TIRPs’ representation versus the existing representa-
tions. In TIRPClo, all of Allen’s temporal relations (Figure
1) are uniquely represented due to the following properties.

First, TIRPClo always keeps the chronological order of
the tieps, unlike in (Chen, Weng, and Hui 2016), in which
tieps having close timestamps are considered coinciding and
marked by brackets, which may change their order some-
times. In addition, TIRPClo attaches together coinciding
tieps (having exactly the same timestamp) which have the
same end-type (i.e., start or finish), ordered by an alphabet-
ical order of their symbol, unlike in (Wu and Chen 2007).
For example – the tieps A0

+ and B0
+ in Figure 3c.
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However, in TIRPClo’s representation, two tieps that do
not have the same end-type are never put together in brack-
ets, unlike in (Chen, Weng, and Hui 2016). When tieps have
the same timestamp but their end-type is opposed, as hap-
pens with B0

− and C0
+ in series (c), their STIs are met (Fig-

ure 1). Thus, the tieps are separated so that the finish-tieps
are followed by the start-tieps. In addition, a M character is
inserted among them to mark that they are met (Figure 3c).
This character is used to differentiate the before and meet
temporal relations.

During the transformation process of the STIs series data
into the described tieps-based sequential representation, the
tieps are also indexed in the tieps-index. The tieps-index
maps each tiep’s representation (e.g.., A+) to a master-tiep
using a hash map. The master-tiep indexes all of the tiep’s
specific instances by entity-id, ordered by their timestamp.
Hence, a tiep t’s ith instance within an entity e, can be re-
trieved in a constant time through TiepsIndex[t][e][i]. In
addition, since each STI is composed of exactly two tieps,
given a database of N input STIs the index size is exactly
2N , which makes it efficient memory-wise.

After the transformation method is applied to all the
entities’ STIs series in the database, the initial sequences
database is created. Along the projection-based mining pro-
cess, the sequences database shrinks typically, or at least
does not change, corresponding to the current projected
pattern. In TIRPClo, the output is designed to include the
complete set of instances of the discovered TIRPs. For
that, a record in a projected sequences database is a pair
< tcseq, pi >, in which tcseq is a tieps sequence of an en-
tity from which the pattern instance pi has been projected.

The Entities Spawning Method for Database
Projection
Sequences database projection methods typically search for
the first instance of a tiep within an entity’s record, with-
out intending to discover the horizontal support. A projected
record includes the elements appearing after the tiep’s first
instance. An example is shown in Figure 4(a), in which pro-
jection by the tiep B+ refers only to its first instance, while
there are another two instances which are ignored. Thus, us-
ing current projection methods for sequence-based TIRPs
mining eventually results in an incomplete discovery of fre-
quent TIRPs, as explained in the Background.

The Entities Spawning projection method that we intro-
duce here addresses this very challenge of horizontal support
discovery, in order to guarantee a complete discovery of fre-
quent closed TIRPs. For that, projection of an entity’s record
by a tiep that appears N times within it, requires N projec-
tions – which result in multiple projected records. Figure
4(b) illustrates the multiple projections performed in TIR-
PClo, which refer to each of the three instances of the tiep
B+ within the original record, and result in three projected
records. Furthermore, when having N instances of a tiep t
within an entity’s record, TIRPClo’s projection of the record
by the ith instance of t within it, keeps the next N − i in-
stances of t within the projected record. Thus, TIRPs that
contain multiple STIs which have the same symbol are dis-
covered in TIRPClo as well.

Figure 4: Projection without discovering the horizontal sup-
port, as currently made (a), versus TIRPClo’s projection that
includes horizontal support discovery (b).

In order to limit the discovery of potentially meaningless
frequent TIRPs, which have very large time durations be-
tween their STIs, TIRPClo uses a maximal gap time con-
straint by which the projection is limited. The maximal gap
was first introduced in (Papapetrou et al. 2009) and is de-
fined as follows.

Definition 12. (Maximal gap) The maximal gap is the max-
imal time duration allowed between two STIs among which
the temporal relation is before, for TIRPs discovery.

Algorithm 3: ESProject
input : sdb - current sequences database

t - tiep to project from sdb
tSI - t’s support-index

output: sdbt - projected sequences database
1 sdbt ← ∅
2 for < record, firstInstance >∈ tSI.instances do
3 e← record.entityID
4 eInstances← T iepsIndex[t][e]
5 for tInstance ∈ eInstances[firstInstance :] do
6 if tInstance.endType == START ∧

¬maxGapHolds(record.pi, tInstance) then
7 break
8 tCo← tInstance.coincidence
9 projectedRecord← project tCo by tInstance

10 if projectedRecord 6= NULL then
11 pi

′
← extend record.pi with tInstance

12 sdbt.add(projectedRecord, pi
′
)

13 return sdbt

The Entities Spawning projection method is described in
Algorithm 3, which receives three parameters as input: a se-
quences database sdb for further projection, a tiep t based on
which the database is projected; and t’s support-index. First,
using the support-index, t’s instances within each record are
traversed from the first instance for projection (lines 2-5).
The projection is conditioned by the maximal gap, making
sure that the duration till the next STI is below it (lines 6-
7). Then, projection is applied to the specific coincidence
in the record’s sequence which contains t’s current instance
(lines 8-9). The projected record and the extended pattern
instance are then added to the projected sequences database
sdbt (lines 10-12), which is eventually returned.
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Candidates Generation
TIRPClo enables the discovery of frequent TIRPs that con-
tain multiple STIs which have the same symbol. Hence, a
tiep t may appear multiple times within a discovered pattern
p. In order to represent the number of instances of t within p,
the notation #pt is introduced. Accordingly, the conditions
for a tiep cndt which is a valid candidate in TIRPClo for the
extension of p are the following:

1. If cndt is a start-tiep, it is always a valid candidate for p’s
extension.

2. If cndt is a finish-tiep, then it is a valid candidate if
#pcndt < #pcndt

C , which means that there are more in-
stances of cndt’s complementing start-tiep within p, than
instances of cndt within p.

Example. The valid candidate tieps for the extension of p =
< A+ > are all the start-tieps (condition 1) and the single
finish-tiep A− (condition 2). The valid candidates for the
extension of q = < A+B+ > however, include not only
the valid candidates of p, but also the finish-tiep B−. That is
since 0 = #qB

− < #qB
+ = 1.

Closure-Checking
In order to discover the complete set of frequent closed
TIRPs, TIRPClo consists of a closure-checking scheme,
which is used for the detection and possibly pruning of
the unclosed TIRPs early during the mining process. Since
TIRPClo is a sequence-based TIRPs mining algorithm, its
closure-checking scheme is inspired by the bi-directional ex-
tension approach (Wang and Han 2004), that has been pri-
marily used for closed sequential patterns mining.
Definition 13. (Forward-extension tiep) A tiep t∗ is a
forward-extension tiep of a pattern p if vertical support(p)
= vertical support(pF t∗), for p’s super-pattern pF t∗ =
p + t∗ = < t1, t2, ..., tk, t

∗ >. The set of p’s sequences
database’s records that support pF t∗ is denoted by F (p, t∗).

Definition 14. (Backward-extension tiep) A tiep t∗ is a
backward-extension tiep of a pattern p if ∃1 ≤ i ≤ k s.t.
vertical support(p) = vertical support(pBi

t∗), for p’s
super-pattern pBi

t∗ = < t1, t2, ..., ti−1, t
∗, ti, ..., tk >. The

set of p’s sequences database’s records that support pBi
t∗ is

denoted by Bi(p, t∗).
Let a current pattern p =< t1, t2, ..., tk >. TIRPClo’s

closure-checking scheme is based on the following claims.
Closure-Check 1. Assume that 1) X+ and X− are
backward-extension tieps of p for 1 ≤ i ≤ j ≤ k, and that
2) vertical support(p) = |{record.entityID | record ∈
Bi(p,X+) ∩ Bj(p,X−)}|. Then p, as well as any future
extension of it, are not closed TIRPs.
Closure-Check 2. Assume that 1) X+ is a backward-
extension tiep of p for 1 ≤ i ≤ k, 2) X− is a forward-
extension tiep of p, and that 3) vertical support(p) =
|{record.entityID | record ∈ Bi(p,X+) ∩ F (p,X−)}|.
Then p is not a closed TIRP.
Closure-Check 3. Assume that X+ is a forward-extension
tiep of p. Then p is not a closed TIRP.

If the conditions for the first claim hold for p, it cannot
be extended to form any frequent closed TIRP. Therefore, p
is safely pruned. Otherwise, if either the conditions for the
second or third claims hold for p, it is not a closed TIRP.
Therefore, p is not added to the output of the algorithm, yet,
it is not pruned.

Evaluation
Datasets
For the evaluation of TIRPClo we used several real-world
datasets from various domains. The main properties of the
datasets are summarized in Table 1 considering five parame-
ters: |E|— the number of entities; |STIs|— the total num-

ber of STIs;
|STIs|
|E|

— the mean number of STIs per entity;

MHS — the mean horizontal support of a symbol within an
entity; and |S|— the number of symbol types in the dataset.
Datasets’ extreme conditions appear in bold.

Name |E| |STIs| |STIs|
|E| MHS |S|

ASL 65 2037 31.3 1.2 146
Diabetes1 2038 80538 39.52 3.5 35
Diabetes2 2038 79281 38.9 2.02 94

Smart-home 89 23213 260.8 8.8 95

Table 1: Evaluation datasets.

Experimental Results
The evaluation focuses on the performance of TIRPClo in
comparison to state-of-the-art closed TIRPs discovery meth-
ods (Chen, Weng, and Hui 2016), as well as its own perfor-
mance with different parameters. For that, three main exper-
iments have been designed. All methods were implemented
in Visual C# and the experiments were conducted on a dell
G5, having 16GB main memory, running Microsoft Win-
dows 10. In each experiment we verified that the same set of
frequent closed TIRPs was discovered by all the compared
methods.

Experiment 1. Completeness in Closed TIRPs Mining
First, in order to substantiate the need in the discovery of
the horizontal support for completeness in frequent closed
TIRPs mining, a quantitative analysis was designed. For
that, TIRPClo was ran once without discovering the horizon-
tally supporting instances of the TIRPs (as made in (Chen,
Weng, and Hui 2016)), and then including horizontal sup-
port discovery, which is required for completeness. Figure
5 shows the number of frequent closed TIRPs that were
discovered by each approach, using the smart-home and
diabetes1 datasets with minimum vertical support thresh-
olds of 20%-70% and a fixed maximal gap value of 20. In
the diabetes dataset, less than one third of all the frequent
closed TIRPs were discovered without horizontal support
discovery, already at 30% of minimum vertical support. In
the smart-home dataset the differences were even larger, as
less than 10% of the frequent closed TIRPs were discovered
when using the previous, incomplete approach.
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Figure 5: Completeness in closed TIRPs mining.

(a) (b)

(c) (d)

Figure 6: Runtime duration comparison.

Experiment 2. Runtime Duration Comparison In this
experiment TIRPClo was compared to CCMiner (Chen,
Weng, and Hui 2016), which is the only current method de-
signed for closed TIRPs discovery. Note that CCMiner dis-
covers only the first instances of the TIRPs within each sup-
porting entity. Hence, its projection was repeatedly applied
in order to discover the horizontally supporting instances of
the TIRPs, which is essential for completeness. In addition,
since TIRPClo uses the maximal gap constraint, it was also
added to CCMiner, in order to conduct as fair comparison as
possible between the methods, using minimum vertical sup-
port thresholds of 10%-70% and a fixed maximal gap value
of 20.

Note that in some papers in the literature the comparisons
were often at very low levels of minimum vertical support
(even below 1%), which in fact does not usually show a
meaningful difference. That is unlike a meaningful runtime
duration difference already when having several dozens of
percentages, as we show in this paper. Figure 6 summarizes
the runtime duration results of the compared methods. In
this figure it is clearly demonstrated that TIRPClo is much
faster than CCMiner in all the datasets and already at very
high levels of minimum vertical support. In fact, at mini-
mum vertical support thresholds of 50%–60%, TIRPClo was
at least ten times faster than CCMiner. At lower thresholds,
e.g., 20%-30%, even larger speed-ups were reported, by at
least a factor of 50 up to more than 100.

(a) (b)

Figure 7: Maximal gap analysis.

Experiment 3. Maximal Gap Analysis In this experi-
ment, the goal was to evaluate the trade-off between TIR-
PClo’s runtime duration and the number of discovered fre-
quent closed TIRPs when changing the value of the max-
imal gap. For that, the smart-home dataset was used with
maximal gap values between 10–40, having the minimum
vertical support value fixed on each of the following thresh-
olds: 20%, 30% and 40%. The results are shown in Figure 7.
As expected, given a fixed minimum vertical support value,
larger maximal gap values led to longer runtime durations.
However, a 25% reduction in the maximal gap typically re-
sulted not only in a 60%-70% shorter runtime duration, but
also in a significant reduction of approximately 50% in the
total number of discovered frequent closed TIRPs. There-
fore, the computational aspect may play an important role
when determining the desirable value of the maximal gap.

Discussion
In this work, we introduced TIRPClo – an efficient algorithm
which is the first to completely discover the frequent closed
TIRPs. First, we demonstrated the completeness problem
in the current approach for frequent closed TIRPs discov-
ery. Then, we introduced the TIRPClo algorithm, including
its novel non-ambiguous sequential representation and the
complete projection method. Finally, a comprehensive ex-
perimental plan was designed, which demonstrated the cru-
cial need in the discovery of the TIRPs’ horizontal support
for completeness in frequent closed TIRPs mining. In addi-
tion, TIRPClo’s significant runtime speed-ups compared to
CCMiner were shown and the effects of changing the max-
imal gap parameter were empirically evaluated for the first
time. For future work, we would like to extend TIRPClo to
completely discover the entire set of frequent TIRPs, form-
ing a robust framework for both fundamental time intervals
mining tasks.
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