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Abstract

This paper explores a new online learning problem where the
input sequence lives in an over-time varying feature space and
the ground-truth label of any input point is given only occa-
sionally, making online learners less restrictive and more ap-
plicable. The crux in this setting lies in how to exploit the very
limited labels to efficiently update the online learners. Plau-
sible ideas such as propagating labels from labeled points to
their neighbors through uncovering the point-wise geomet-
ric relations face two challenges: (1) distance measurement
fails to work as different points may be described by disparate
sets of features and (2) storing the geometric shape, which is
formed by all arrived points, is unrealistic in an online set-
ting. To address these challenges, we first construct a univer-
sal feature space that accumulates all observed features, mak-
ing distance measurement feasible. Then, we use manifolds
to represent the geometric shapes and approximate them in
a sparse means, making manifolds computational and mem-
ory tractable in online learning. We frame these two building
blocks into a regularized risk minimization algorithm. Theo-
retical analysis and empirical evidence substantiate the via-
bility and effectiveness of our proposal.

Introduction
Nowadays, huge volumes of data abound in all domains of
human endeavour, calling for learning systems that can pro-
cess and make decisions in real-time. Online learning is pro-
posed to build such systems: when data streaming in con-
tinuously, it initiates the learning process at any time with-
out waiting all data instances to be arrived. Considering that
data streams usually span a long time, data instances arriv-
ing at different time steps may be described by very dis-
parate features. For this reason, a line of research, aiming
to learn data streams in variable feature spaces, has been
explored to relax the constraint that all data instances must
be described by the same set of features (Masud et al. 2010;
Gomes et al. 2013; Zhang et al. 2015; Hou, Zhang, and Zhou
2017; Beyazit, Alagurajah, and Wu 2019; He et al. 2019).

Besides, providing full labeling to data instances in an on-
line setting is prohibitive due to the speed, volume, and dura-
tion of streaming data. To lift the restriction that all data in-
stances must be labeled, another line of research, which we
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refer to as online semi-supervised learning, has also drawn
extensive attention (Goldberg, Li, and Zhu 2008; Goldberg
et al. 2011; Chu et al. 2011; Mohamad, Bouchachia, and
Sayed-Mouchaweh 2018; Wagner et al. 2018).

Surprisingly, although supporting flexible features and
flexible labeling are two important aspects in online learn-
ing, no method has been developed to support the both. The
goal of this paper is to fill this critical gap. To this end,
we explore a new problem, termed Online learning in Vari-
able feature Spaces under Incomplete Supervision (OVSIS),
where a data stream lives in a feature space being arbitrarily
variable with labels rarely given.

A main challenge of solving OVSIS lies to effectively ex-
ploit the very limited labeled instances to update the online
learner. A plausible idea is to uncover the geometric rela-
tions among the input points and propagate the label infor-
mation from labeled instances to their unlabeled neighbors.
However, it suffers from two limitations. First, as different
points may live in disparate feature spaces, no metric can be
applied directly to measure their distances. Second, the ge-
ometric shape is formed by all previously arrived points, so
storing them can incur excessive memory overhead.

To overcome the first limitation, we first draw insights
from (Hou, Zhang, and Zhou 2017; He et al. 2019) to capture
stationarity in a variable feature space. Namely, we construct
a universal feature space that embodies all features emerged
in arrived instances. We can then project the input points
onto this universal feature space and measure distance be-
tween them as they now have equal dimensions.

To address the second limitation, we use manifold struc-
tures that underlie the universal feature space to embed the
point-wise geometric relations. To maintain the “online”
property of our system, the manifold is sparsely approxi-
mated by a random projection tree (RP-Tree) (Freund et al.
2008). Such an approximation allows to store only a handful
of representatives, each of which corresponds to a leaf of the
RP-Tree. Each leaf governs a local region on the manifold,
representing the points that fall into this region.
Specific contributions of this paper are as follows:

1. This is the first work to explore the OVSIS problem,
where the online learner faces a variable feature space and
receives incomplete supervision labels.

2. A novel AGDES algorithm is proposed to tackle the OV-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

4106



SIS problem, which provably enjoys a tight performance
bound than naı̈ve gradient descent methods.

3. We carry out extensive experiments over 10 widely used
datasets, and the results demonstrate the viability and ef-
fectiveness of our proposal.

This paper proceeds as follows. We in the next section
review the related literatures. Then, we formulate the learn-
ing problem, spotlight the challenges, and briefly state our
thoughts. The objective function, the complete algorithm de-
sign, and the theoretical analyses are presented thereafter
in sequence. We end by presenting the experimental results
and concluding our findings. Proofs, derivation steps, and
complexity analysis are deferred to an electronic companion
(available as supplementary material).

Related Work
This work brings together two separate research lines in on-
line learning, i.e., learning data streams in variable feature
spaces and online learning with incomplete labels. We re-
view the prior works in each line and discuss the relations of
our work with them. It is worth pointing out that in concept-
drift (Gama et al. 2014; Lu et al. 2018), the statistical prop-
erties of features may change as data streaming in, but the
number of features carried by each instance is fixed in a pri-
ori, which thus differs from our learning problem.
Online Learning in Variable Feature Space. For data
streams that are over wide time spans, it is impractical to
require all data instances to be described by a fixed set of
features. Pioneer efforts have paid attention to adapt online
learners to arbitrarily variable feature spaces.

Zhang et al. (2015) allow the arriving instances to carry
different sets of features but later instances are assumed to
include monotonically more features than the earlier ones.
Hou, Zhang, and Zhou (2017); Zhang et al. (2020) place
no such assumption but they require to have an overlapping
period, during which a batch of consecutive instances must
contain all possible features. Such a requirement is too hard
to be satisfied in a feature space that varies arbitrarily. As a
result, all these methods cannot solve our OVSIS problem.

Recent studies (Beyazit, Alagurajah, and Wu 2019; He
et al. 2019) further lift those constraints, allowing the feature
space to vary without following any regularity. Despite ef-
fective, they stipulate a fully-labeled environment, using la-
bels to capture stationarity in variable feature spaces. These
models cannot be updated if an arriving instance is not la-
beled. Thus, the lower the probability that the labels are
given, the slower these models converge. A slow conver-
gence rate then incurs substantial prediction errors in an on-
line setting. Our approach solves this issue by effectively
exploiting both labeled and unlabeled data to expedite the
learning process, thereby advancing this research line.
Online Learning with Incomplete Labels. Relieving the
label requirement in online learning remains an open chal-
lenge (Krempl et al. 2014). Existing works fall into two cate-
gories. The first category is online active learning (Goldberg
et al. 2011; Chu et al. 2011; Lu, Zhao, and Hoi 2016; Hao
et al. 2016; Mohamad, Bouchachia, and Sayed-Mouchaweh

2018), where all data instances are unlabeled as they arrived.
At any time, the learner decides whether or not to label an
appeared instance. The goal here is to train an accurate clas-
sifier with a minimized labeling budget.

The second category is online semi-supervised learning,
and our approach belongs to this category. The key idea
is to exploit the abounded, unlabeled data to improve the
classifier trained with scarce labels. The mainstream solu-
tions leverage the topological structure underlying the fea-
ture space, such as Riemann manifolds (Goldberg, Li, and
Zhu 2008; Farajtabar et al. 2011; Kumagai and Iwata 2018)
or similarity graphs (Wagner et al. 2018; Huang et al. 2019),
to model the geometric relations among both labeled and
unlabeled data points. Through topology edges, the label in-
formation can propagate, regularizing the classifier w.r.t. the
observation that data points scattering in a neighborhood re-
gion tend to have same labels.

However, all prior methods in this research line assume
that the entire data stream is described by a fixed, known
in-advance feature set. Once the feature space varies, the
distance metric that these methods rely on for building the
point-wise geometric relations fails to work. Our approach
does not make this assumption and is thus more general.

The OVSIS problem
This paper uses the following conventions. Bold characters
are used for matrices (e.g., A) and vectors (e.g., a). Script
typeface is used for sets and spaces (e.g., A). ‖·‖1 and ‖·‖2
denote `1- and `2-norm, respectively and 〈· , ·〉 denotes Eu-
clidean inner product. We define an orthogonal projection as
ΠA( ·) = arg mina∈A ‖a− ·‖2, which takes in a vector and
outputs the closest point to it in A.

Problem Statement
Let {xt | t = 1, . . . , T} denote an input sequence, where
xt ∈ Rdt is a dt-dimensional vector. At the round t, the
learner ft observes an instance xt and gives its predic-
tion. Only with a small probability pl, the true label yt ∈
{−1,+1} is revealed. The learner updates ft+1 based on
the instance xt (and yt if any). Our goal is to find a series
of functions f1, . . . , fT that predicts the sequence accurately
by minimizing the empirical risk, defined as:

R(f) =
1

l

T∑
t=1

δ(yt)`
(
yt, ft(xt)

)
, (1)

where l is the total number of labeled instances over T
rounds. δ(yt) denotes an indicator function, whose value is
1 if yt is revealed and 0 otherwise. `( · , ·) is a convex loss
function, such as square loss or logistic loss.

Challenges and Our Thoughts
From Eq. (1), we observe two challenges in solving the OV-
SIS problem, described as follows.
Challenge I: Feature Space Non-stationarity. The dimen-
sion of the input sequence changes over time, so should
the learner. However, dynamically adapting the learner to
a variable feature space for making accurate predictions is
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Figure 1: Classification errors caused by a feature space var-
ied from 3D to 2D. (a) Green and red points are correctly
separated by a hyperplane; (b) Green points are orthogonally
projected onto the 2D space and the hyperplane collapses to
a line, where the projected green points are misclassified.

non-trivial. Consider, for example, the feature space changes
from 3D to 2D at two consecutive rounds, as shown in Fig-
ure 1. Suppose the learner is linear and can correctly classify
3D points at the round t, namely, ft(xt) = sign(w>t xt) =
sign(w1 ·x1 +w2 ·x2 +w3 ·x3). Geometrically, the learner
spans a decision (hyper)plane with wt being its normal vec-
tor, as shown in Figure 1(a).

At the round t + 1, the same data points arrive, but the
feature x3 does not accompany. To adapt ft to predict these
points, a widely-used method is called Lossless Homoge-
nizing Conversion (LHC) (Masud et al. 2012; Gomes et al.
2013) which collapses the plane to a line, as shown in Fig-
ure 1(b). This projection by LHC, however, is biased. Com-
paring Figures 1(a) and 1(b), we can observe that LHC ig-
nores the information conveyed by the feature x3, so the
points are orthogonally projected to 2D space of x1, x2. As
a result, many points will cross the decision boundary and
will be misclassified. The more intensively the feature space
varies, the more likely this kind of misclassification happens.
Capturing stationarity in such a variable feature space is a
prerequisite for making accurate predictions.
Challenge II: Supervision Label Incompleteness. Exist-
ing online learners strictly require to see the true labels at
every round, for obtaining informative gradient direction,
which allows learners to be updated in an “asymptotically
no-regret” fashion. In our OVSIS problem, however, true la-
bels are given only occasionally. If no true label in a round,
the learner is not updated according to Eq. (1), since no risk
(loss) is suffered. Online learners will therefore take a much
larger number of rounds (depending on how scarce the labels
are) to converge, which incurs substantial prediction errors.
Our Ideas. Our ideas to the two challenges are two-fold.
First, to tackle a variable feature space, we construct a uni-
versal feature space to capture stationary feature informa-
tion. The universal feature space Ut ⊆ Rd1 ∪Rd2 ∪ . . .∪Rdt
at round t is a union of all features carried by x1,x2, . . . ,xt.
We learn a reconstructive mapping ψ : Rdt 7→ Ut, such that
previously emerged features that are unobserved at the cur-
rent round are recovered in Ut. Recall the example in Fig-
ure 1(b). If x3 can be recovered, the learner can then exploit
the discriminant power of w3 to make accurate prediction.

The biased projection can thus be eliminated.
Second, given scarce labels, to expedite the learning

progress, we leverage the unlabeled instances by discovering
the geometric relations among all data points. The labeling
information then can be propagated through the point-wise
geometric relations as a regularization term, which encour-
ages label smoothness over the universal feature space – any
two data points that have similar predicted labels should be
placed in a neighborhood region. Our objective is built upon
these two ideas and will be elaborated in the next section.

The Objective Function
Our objective is framed in the scope of regularized risk min-
imization by taking the following norm:

min
f,ψ

1

l

T∑
t=1

L(yt, f(ψ(xt)))+λ1H(xt, ψ)+λ2Ω(f, ψ), (2)

where the learner f and the reconstructive mapping ψ are
jointly trained. The first term indicates the supervised loss,
suffered by making prediction errors on the universal fea-
ture space, and the second term represents the reconstruc-
tion error, incurred when the universal feature space is not
accurately constructed. The third term represents a manifold
regularizer depending on f and ψ. The λ1 and λ2 are intro-
duced to absorb the different scales among the three terms.
Next, we scrutinize the details of the three terms in Eq. (2).

Construction of Universal Feature Space
The universal feature space Ut is learned by capturing the
relatedness among features. In the OVSIS problem, as the
data stream lives in a variable feature space, the features of
any two consecutive instances can be different. Capturing a
complex feature relatedness based on existing methods (Pan,
Yang et al. 2010; Sun 2013) is hence unrealistic. Thus, we
follow the spirit of (Hou, Zhang, and Zhou 2017; He et al.
2019) to represent the feature relatedness with linear models.

Let ut := ψ(xt) ∈ R|Ut| be the reconstruction of xt
in Ut. We term ut as a universal (feature) vector. Consider
a mean field parameterized by M ∈ R|Ut|×|Ut|, over which
the likelihood of observing a universal feature uj in ut from
an original feature xi in xt is defined as follows:

Q(uj | xi,Mi,j) =
1

2σ
exp

(
− |uj − E(uj)|

σ

)
, (3)

where E(uj) = xi ·Mi,j , representing a linear mapping re-
lationship between the two features, and σ is a fixed variance
of the Laplacian prior (Gerven et al. 2009).

Evidently, if the mapping ψ is correctly learned, the orig-
inal feature values observed in xt should be exactly recov-
ered in ut. Maximizing the likelihood Q in Eq. (3) is thus
equivalent to minimizing the reconstruction error w.r.t. M:

min
ψ
H(xt, ψ) = min

Mt

‖xt −ΠRdt (ut)‖22

= min
Mt

‖xt −
1

dt
ΠRdt (M>t xt)‖22, (4)

where Mt = ItM, and It ∈ {0, 1}dt×|Ut| denotes an indi-
cator matrix pinpointing which universal features in Ut are
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also carried by xt. Represented by ΠRdt ( ·) an operator that
orthogonally projects ut onto the Rdt -space, as defined.

With Eq. (4), we observe that our desired mapping ψ( ·) is
concretely realized by (1/dt)(M

>
t ·). Thus, given xt at any

round, we can project it to Ut to stabilize its dimension and
obtain a universal vector ut = (1/dt)(M

>
t xt). Intuitively,

a universal feature space, if well-constructed, should help a
learner f make the least prediction errors. For a round where
occasionally the label is given, we leverage this intuition to
train the learner f with the mapping ψ jointly. The super-
vised loss term in Eq. (2) is then concretely defined as:

min
f,ψ
L(yt, f(ψ(xt))) = min

wt,Mt

T

l
δ(yt)`(yt,

1

dt
w>t M

>
t xt),

(5)
where the ratio T/l is an empirical yet unbiased estimate of
the inverse label probability 1/pl (Bubeck and Cesa-Bianchi
2012). We can ad hoc determine this ratio based on the rate
at which human can label the data at hand.

Notably, a linear classifier f( ·) = w>t · trained in Eq. (5)
is easily compatible with kernels (Kivinen, Smola, and
Williamson 2004; Lu et al. 2016). As an example, we could
define f( ·) =

∑t−1
i=1 αiK

(
ui, ·

)
, where K( · , ·) is a kernel

over the universal feature vectors. This extension can em-
power our system to handle non-linear patterns in data, but
the page limitation precludes a detailed discussion. We leave
this valuable exploration as a future work.

Manifold Regularization with Sparsification
Ideally, if all instances are associated with the supervision
labels, optimizing Eqs. (4) and (5) may suffice to yield an
accurate learner defined on a well-constructed universal fea-
ture space. Unfortunately, in our OVSIS problem, labels are
incomplete and scarce, resulting in sub-optimal solutions of
both the learner f and the mapping ψ. Therefore, we desire
an apparatus to exploit the abounded, unlabeled data points,
such that the learning process is expedited and the obtained
solutions are bettered for all rounds.

A plausible apparatus is to discover the geometric rela-
tions underlying the data and use it for regularizing f and
ψ. This apparatus fails to work directly on the original data
points because their dimensions are different and no dis-
tance metric is applicable to measure the geometric relations
among those points. Fortunately, by projecting the points
onto the learned universal feature space at each round, their
dimensions become equal. Discovering the geometric rela-
tions among the projected points is hence much easier.

In this work, we trace the manifold structure underlying
the universal feature space to embed the point-wise geo-
metric relations. The key idea is straightforward – the data
points which are predicted as having similar labels should
be placed in a neighborhood region. However, a prominent
problem in tracing the manifold is that, for each arriving data
point, the distances are measured between this point and all
points that have been previously arrived. The distances com-
putation is cumbersome in the first place and, more impor-
tantly, storing all arrived data points will soon run out all
memory in an online setting. To be practical, it is a must to
represent the manifold in a sparse means.

Sparse Approximation via Random Projection. We em-
ploy the random projection tree (RP-Tree) (Hegde, Wakin,
and Baraniuk 2008; Freund et al. 2008) to sparsify the man-
ifold. Building an RP-Tree can be deemed as an online clus-
tering process, where the size and the number of clusters
grow over time to cover the entire manifold. The RP-Tree is
updated at each round as follows. As instances arrive, they
are sorted into the RP-Tree leaves based on their spatial re-
lations; Once a leaf contains enough instances, it is cut by
a hyperplane orienting a random direction, such that the in-
stances in this leaf are split into two subspaces. The RP-Tree
then grows by taking these two subspaces as two new leaves.

Without loss of generality, we model the instances fallen
in the RP-Tree leaves with Gaussians. At a round t, sup-
pose the RP-Tree has k leaves, where k � t and the ith

leaf corresponds to a Gaussian centered at µi ∈ R|Ut|. Here,
we estimate {µi}ki=1 incrementally over time and ignore the
covariance structures to take the computational advantage.
Packing all the ideas above, the manifold regularizer with
sparse approximation is analytically defined as follows.

min
f,ψ

Ω(f, ψ) = min
wt,Mt

k∑
i=1

(1 + ŷµi
ŷt

4
DUt(µi,xt)

2

+
1− ŷµi

ŷt

4

(
max{0,m−DUt(µi,xt)}

)2)
,

(6)

where ŷt and ŷµi
denote the predicted labels of the input

xt and the ith leaf representative µi, respectively, whose
value assignments are decided by f and ψ together and shall
be discussed in detail later on. Being m > 0 a margin, it
defines a radius around any leaf representative. The distance
from an arriving data point to any leaf representative in Ut is
measured by DUt(µi, ·) = ‖µi − ψ( ·)‖2.

Algorithm Design and Analysis
By plugging Eqs. (4), (5), and (6) back into Eq. (2), our so-
lution to the OVSIS problem is unified into one objective of
minimizing the regularized risk formulated as below.

Rt(f, ψ) :=
T

l
δ(yt)`

(
yt, f(ψ(xt))

)
+ λ1‖xt −ΠRdt (ψ(xt))‖22

+ λ2

k∑
i=1

(1 + ŷµi
ŷt

4
DUt(µi,xt)

2+

1− ŷµi
ŷt

4

(
max{0,m−DUt(µi,xt)}

)2)
, (7)

where Rt(f, ψ) denotes the instantaneous regularized risk
at the tth round and, to shorten notation, is written as Rt.
Denoted by f( ·) = w>t · and ψ( ·) = (1/dt)((ItM)> ·) the
classifier and the reconstructive mapping at the tth round,
respectively, with the subscript t omitted when the context
is clear. We note a desirable property of Rt as follows.

Proposition 1. Let F ⊆ R|Ut| and Ψ ⊆ R|Ut|×|Ut| be two
convex sets. Rt is bi-quasi-convex w.r.t. f ∈ F and ψ ∈ Ψ.

A straightforward algorithm can be deduced from Propo-
sition 1 by following the common steps of solving a bi-
convex program (Gorski, Pfeuffer, and Klamroth 2007): (i)
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Algorithm 1: The AGDES Algorithm
Initialize: f ∈ F , ψ ∈ Ψ, p = 0.5, and

Rori
T = Rrec

T = 0.
Input : Parameters λ1, λ2, c, and γ.

1 for t = 1, . . . , T do
2 Receive instance xt and update RP-Tree ;
3 Split f̄ and f̃ from f based on xt ;
4 Predict the label as sign(ŷt) using Eq. (8) ;
5 Reveal the true label yt with small probability pl;
6 Rori

T += `(yt, 〈f̄ ,xt〉), Rrec
T += `(yt, 〈f̃ , x̃t〉);

7 Suffer the instantaneous risk Rt using Eq. (7);
8 Reweight coefficient p using Eq. (9) with

τ = 2
√

2 ln 2/T ;
9 Update f ← f − ηt∇fRt and ψ ← ψ− ηt∇ψRt;

10 Truncate wt using Eq. (10) based on c and γ;

Decomposing Eq. (7) into two quasi-convex subproblems
w.r.t. f and ψ, respectively; (ii) Alternating between the two
subproblems, minimizing over one while keeping the other
one fixed. We term this straightforward algorithm as Naı̈ve
Alternating Gradient Descent (NAGD).

Unfortunately, this NAGD algorithm fails to work per-
fectly in our context due to two issues. First, the new features
would augment the hypothesis space of f and ψ ceaselessly,
leading to inferior performance of naı̈ve gradient descent
optimizers. Second, as the universal feature space includes
all emerged features, it can soon grow to an unmanageably
large dimension. Storing all features in Ut and computing
the reconstructive mapping ψ at every round lead to consid-
erable memory and computational overheads. To overcome
these two issues, we devise a novel algorithm and have its
performance bound analyzed in sequence as follows.

Our Algorithm
We consider to 1) improve the learning performance via en-
semble prediction; and 2) bound the maximal dimension of
Ut via the sparse truncation, with the details as follow.
Ensemble Prediction. At the initial rounds, since few in-
stances has been seen, the mapping ψ may not be sufficiently
learned. Given an input xt, its reconstructed universal vec-
tor ψ(xt) may be inaccurate, which can in turn negatively
affect the classifier f being jointly trained on it. To aid this
process, instead of simply defining the prediction of xt in
an inner product form, namely, 〈f, ψ(xt)〉, we separate the
features being observed in the input xt from those features
being unobserved yet reconstructed in Ut, ensembling two
base predictions:

ŷt = p〈f̄ ,xt〉+ (1− p)〈f̃ , x̃t〉, (8)

where x̃t = ψ(xt) \ xt ∈ R|Ut|−dt carries the reconstructed
universal features that are not observed in the input xt .
Define f̄ ∈ Rdt and f̃ ∈ R|Ut|−dt as the classifiers corre-
sponding to xt and x̃t, respectively, and [f̄ , f̃ ] ≡ f .

The intuition is to let the ensemble coefficient p decide the
impact of xt and x̃t in making predictions, eliminating the

prediction errors caused by noises in the reconstructed uni-
versal features. Denoted byRori

T =
∑T
t=1 δ(yt)`(yt, 〈f̄ ,xt〉)

and Rrec
T =

∑T
t=1 δ(yt)`(yt, 〈f̃ , x̃t〉) the cumulative risks

suffered by making predictions on xt and x̃t over T rounds,
respectively. At the round T + 1, the coefficient p in Eq. (8)
is updated based on the risk exponentials (Cesa-Bianchi and
Lugosi 2006; Hou, Zhang, and Zhou 2017), i.e.,

p = e−τR
ori
T /(e−τR

ori
T + e−τR

rec
T ), (9)

where τ = 2
√

2 ln 2/T is a turned parameter.
Sparse Truncation. To restrict the dimension of Ut in a
manageable size, we prune less informative features from
Ut. In the context of linear classifiers, the feature informa-
tiveness is associated with the weight vector wt – the larger
the value of wi, the more informative the ith feature (Li et al.
2017). To better distinguish the numerical values of the fea-
ture weights, we project the classifier wt onto an `1-ball

wt ← min{1, c/‖wt‖1}wt, (10)

such that most values of its elements are concentrated to its
several largest elements. The positive parameter c controls
the sparseness of the projected classifier during optimiza-
tion. We could then enforce the learner to retain at most
γ features by simply dropping the small weighted features
(Wang et al. 2013; Zhang et al. 2015).

The ensemble prediction and sparse projection together
deliver a novel algorithm, named Alternating Gradient
Descent with Ensemble prediction and Sparse truncation
(AGDES), with main steps summarized in Algorithm 1.

Performance Bound
We borrow the regret from online convex program-
ming (Zinkevich 2003) to analyze the performance of our
AGDES algorithm. Let (f∗, ψ∗) be the static optimum over
T rounds, namely, f∗, ψ∗ = arg minf,ψ

∑T
t=1Rt, which

can be obtained in a hindsight only. The regret is bounded
by the difference between the empirical risk suffered by our
AGDES algorithm and that by this offline optimal solution.
Theorem 1 (Asymptoticity of AGDES).

T∑
t=1

Rt −
T∑

t=1

R∗ ≤
√

2T ln 2 (11)

withR∗ = Rt(f
∗, ψ∗) being the minimal risk which applies

the static optimum to the input xt at every round.

It follows that limT→∞(
√

2T ln 2/T ) = 0. Therefore,
compared to a hindsight optimum, AGDES is asymptotically
no-regret. To see the superiority of the AGDES algorithm
explicitly, we also analyze the performance of NAGD, which
can be deemed as a reduced version of AGDES by taking off
the ensemble prediction and sparse truncation.
Theorem 2 (Regret Bound of NAGD).

T∑
t=1

Rt −
T∑

t=1

R∗ ≤ (DF +DΨ)
√
T + (

√
T − 1

2
)G, (12)

where DF and DΨ are the diameters of F and Ψ, respec-
tively. G := maxft∈F ‖∇ftRt‖22 + maxψt∈Ψ ‖∇ψt

Rt‖22.
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Dataset #Inst. #Feat. Dataset #Inst. #Feat.

ionosphere 351 34 kr-vs-kp 3196 36
wdbc 569 30 HAPT 10,929 561
australian 690 14 magic04 19,020 10
diabetes 768 8 IMDB 25,000 7500
dna 949 180 CCYS 33,000 355

Table 1: Statistic information of the 10 datasets

So by Theorem 1 and Theorem 2, we remark:

Remark 1. AGDES can provably perform better and more
robust than NAGD because it enjoys a tighter regret bound,
which is independent to the scalar terms (whose magnitudes
grow over time), being invariant to a variable feature space.

Experiments
This section aims to experimentally validate whether our
solution is viable and effective to the OVSIS problem.
Our evaluations are conducted on 10 datasets, including 8
from the UCI repository (Dua and Karra Taniskidou 2017)
and 2 from the datasets of IMDB (Maas et al. 2011) and
CCYS (He et al. 2021). The evaluated datasets span diverse
application domains, such as economy, education, bioinfor-
matics, etc. Table 1 summarizes their statistics.

For the UCI datasets, we simulate a variable feature space
by following the setting as in (He et al. 2019). That is, we
randomly remove at most 50% of features from each in-
stance, while leaving the remaining as the observed features.
For IMDB and CCYS, the instances are already described
by various sets of features. Details of the two datasets are
referred to their respective literatures.

To simulate label scarceness, we randomly mask 70% la-
bels (i.e., pl = 0.3). The predicted labels are saved for all
rounds and, once the input sequence ends, all true labels are
revealed and the accuracy is calculated by comparing how
many the predicted labels are the same as the true labels.

We take three online learning competitors, OCO (Zinke-
vich 2003), OMR (Goldberg, Li, and Zhu 2008) and
OCDS (He et al. 2019), along with our proposed AGDES
for experiments. To validate the tightness of our bound (The-
orem 1), NAGD is also evaluated. Our evaluation aims to
answer the following four research questions.

Q1. Does our approach outperform the state-of-the-arts?

Table 2 presents the results of performance comparison in
terms of classification accuracy. From the table, We have
three observations. First, our AGDES achieves the best per-
formance with an averaged accuracy of 74.3%. The sta-
tistical evidence proves that it outperforms all the com-
pared methods across 10 datasets, with a 14% performance
improvement in average. Second, compared to OMR and
OCDS, which respectively address label scarcity and fea-
ture space dynamics, our AGDES and NAGD outperform
OMR by ratios of 12.1% and of 6.6%, respectively, and ex-
cel OCDS by ratios of 12.3% and of 6.9%, respectively. This

result substantiates that the two building blocks in our ap-
proach, i.e., the universal feature space construction and the
manifold regularization, are indispensable and can work to-
gether to make online learners more flexible and applicable.
Third, OCO performs the worst across datasets. The reason
is that it makes prediction based on the observed features
only while requiring labels at all rounds for updating its
learner. Our approach remarkably exceeds its performance
by addressing both the feature space dynamics and label in-
completeness. In particular, our AGDES and NAGD algo-
rithms win OCO in 19 out of 20 settings.

Q2. Can manifold regularizer improve the learning accu-
racy when the supervision labels are scarce?

The answer is revealed in Figure 2, which presents the
trending of average cumulative risk (ACR), defined as
ACR = (1/T )

∑T
i=1 ‖yt− ŷt‖22 at the round T . Essentially,

the steeper the ACR trend decreases, the faster a correspond-
ing method converges. From the results, we observe that
OCDS, which does not tackle label scarcity, suffers from flat
convergence rate and ends up with sub-optimal solutions.

The performance of OMR, which also applies the mani-
fold regularizer, is mixed. On one hand, it enjoys a steeper
learning curve than OCDS in several datasets. On the other
hand, OMR’s results are inferior to OCDS’ in two datasets:
dna (Figure 2b) and IMDB (Figure 2c). The reason is that
these datasets are high-dimensional, with each having a
much larger number of observed features in total. The input
sequences in these datasets are thus described by a more in-
tensively variable feature space, which OMR cannot handle
well as it prescribes a fixed set of features.

We observe that for all datasets, both our AGDES and
NAGD outperform OCDS in terms of both convergence rate
and the final accuracy. This result witnesses the usefulness
of manifold regularizer in improving the prediction perfor-
mance when the labeling information is incomplete.

Q3. Does AGDES outperform NAGD? This directly tests
the tightness of our bound in Theorem 1.

From Table 2 and Figure 2, we observe that 1) AGDES
enjoys a higher accuracy in almost all datasets than NAGD;
2) AGDES converges to significantly lower ACR values; and
3) in most learning rounds, AGDES adheres to the ACR val-
ues that are smaller than NAGD. These observations indi-
cate that AGDES can always trace the better feature sub-
set and assign larger weights to the subset comprising either
the original or the recovered features in accordance with the
predictions they made via the ensemble prediction strategy.
To conclude, AGDES indeed holds a tighter performance
bound, thereby empirically performing better.

Q4. How robust is our algorithm to the parameters?

The objective Eq. (7) is governed by two parameters λ1

and λ2 that need to be determined in an ad hoc way. We
investigate the impact of parameter values on our approach.

The parameter λ1 decides how slack the reconstruc-
tion errors are tolerated. The parameter λ2 controls how
strongly the learner preserves the manifold structure. We
grid search λ1 in {1e−3, 5e−3, . . . , .075} and λ2 in
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Dataset OCO OMR OCDS NAGD AGDES

ionosphere .616± .012 • .742± .017 • .703± .012 • .772± .010 .795± .015
wdbc .700± .018 • .722± .007 • .751± .011 .765± .008 .783± .007
australian .623± .013 • .729± .006 .641± .008 • .732± .008 .742± .010
diabetes .612± .009 • .705± .004 .654± .006 • .707± .009 .725± .008
dna .510± .006 • .528± .002 • .647± .005 • .695± .005 • .741± .004
kr-vs-kp .608± .006 • .695± .005 • .667± .008 • .701± .009 • .763± .007
HAPT .657± .003 • .683± .001 • .703± .003 • .714± .003 • .766± .002
magic04 .611± .005 • .725± .003 .634± .003 • .744± .004 .732± .003
IMDB .555± .017 • .575± .015 • .617± .006 • .633± .009 • .706± .009
CCYS .510± .021 • .521± .010 • .592± .006 • .601± .007 • .672± .006
NAGD: w/t/l 9 / 1 / 0 4 / 6 / 0 5 / 5 / 0 — 1 / 4 / 5
AGDES: w/t/l 10 / 0 / 0 7 / 3 / 0 9 / 1 / 0 5 / 4 / 1 —

Table 2: Experimental results (Mean Accuracy ± Standard Deviation) on 10 datasets, where a random permutation is applied
on the input sequence to repeat each experiment 5 times. The best results are bold. • indicates our approach has a statistically
significant better performance than the compared methods (hypothesis supported by paired t-tests at 95% significance level).
The win/tie/loss counts for our NAGD and AGDES algorithms are summarized in the last two rows.

{1.5e−5, 5e−5, . . . , .085}, and present corresponding accu-
racy of AGDES in Figure 3. We observe that the optimal
value of λ2 varies across different datasets. Fortunately, as
applied in many other manifold learning methods, we can
tune this parameter by buffering a small validation set from
the data stream (Zhu et al. 2018; Ma et al. 2018; Guo, Mao,
and Zhang 2019). Indeed, making manifold regularization
parameters self-adaptive is under active research but remains
an open problem (Kang, Peng, and Cheng 2017; Zhao et al.
2017). We leave the exploration of this meaningful prob-
lem in the future work. Encouragingly, the optimal value of
λ1 on different datasets stably scatters around 0.01 (the tick
around the middle of λ1-axis). This robustness gives us the
confidence on adopting such an empirical value in practice.

Conclusion

This paper aims to push the boundaries of online learning as
the investigated problem assumes no restrictions on feature
space dynamics or training instance labeling, while previous
efforts always place restrictions on either or both. We thus
make online learning techniques more applicable to real-
world applications. Our solution constructs a universal fea-
ture space for capturing stationarity feature information and
exploits unlabeled instances to expedite the learning process
by uncovering the manifold structure underlying data. A the-
oretical analysis reveals performance advantages of our so-
lution, and extensive empirical evaluation further substanti-
ates the viability and effectiveness of our proposal.
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Figure 2: The trends of average cumulative risk (ACR) of OCO, OMR, OCDS, NAGD, and AGDES.
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Figure 3: Surface of classification accuracy w.r.t. λ1 and λ2. The darker the color, the higher the corresponding accuracy.
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