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Abstract

Since the recent study done by Krichene and Rendle on the
sampling-based top-k evaluation metric for recommendation,
there has been a lot of debates on the validity of using sam-
pling to evaluate recommendation algorithms. Though their
work and the recent work done by Li et al. have proposed some
basic approaches for mapping the sampling-based metrics to
their global counterparts which rank the entire set of items,
there is still a lack of understanding and consensus on how
sampling should be used for recommendation evaluation. The
proposed approaches either are rather uninformative (linking
sampling to metric evaluation) or can only work on simple
metrics, such as Recall/Precision. In this paper, we introduce
a new research problem on learning the empirical rank dis-
tribution, and a new approach based on the estimated rank
distribution, to estimate the top-k metrics. Since this question
is closely related to the underlying mechanism of sampling
for recommendation, tackling it can help better understand the
power of sampling and can help resolve the questions of if
and how should we use sampling for evaluating recommenda-
tion. We introduce two approaches based on MLE (Maximal
Likelihood Estimation) and its weighted variants, and ME
(Maximal Entropy) principals to recover the empirical rank
distribution, and then utilize them for metrics estimation. The
experimental results show the advantages of using the new
approaches for evaluating recommendation algorithms based
on top-k metrics.

Introduction
Recommendation and personalization continue to play im-
portant roles in the deep learning area. Recent studies report
that in big enterprises, such as Facebook, Google, Alibaba,
etc., deep learning- based recommendation takes the majority
of the AI-inference cycle in their production cloud (Gupta
et al. 2020). However, several recent studies (Dacrema, Cre-
monesi, and Jannach 2019; Rendle, Zhang, and Koren 2019)
have called the validity of some recent (mostly deep learning-
based) recommendation results into question, particularly
highlighting the ad-hoc nature of evaluation protocols, includ-
ing selective (likely weak) baselines and evaluation metrics.
Those factors may lead to false signals of improvements.

One of the latest controversies comes from the validity
of using sampling for evaluating recommendation models:
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Instead of ranking all available items (whose number can be
very large) for each user, a fairly common practice in aca-
demics, as well as in industry, is to sample a smaller set of
(irrelevant) items, and rank the relevant items against the sam-
pled items (Koren 2008; Cremonesi, Koren, and Turrin 2010;
He et al. 2017; Ebesu, Shen, and Fang 2018; Hu et al. 2018;
Krichene et al. 2019; Wang et al. 2019; Yang et al. 2018a,b).
Rendel (Rendle 2019) together with Krichene (Krichene and
Rendle 2020) argued that commonly used (top-k) evaluation
metrics, such as Recall (Hit-Ratio)/Precision, Average Preci-
sion (AP) and NDCG, (other than AUC), are all “inconsistent”
with respect to the global metrics (even in expectation). They
suggest the cautionary use (avoiding if possible) of the sam-
pled metrics for recommendation evaluation, and they also
propose a few approaches to help correct the sampled metrics
to be closer to their global counterparts.

In the meantime, the latest work by Li et. al. (Li et al. 2020)
studies the problem of aligning sampling top-k (SHR@k)
and global top-K (HR@K) Hit-Ratios (Recalls) through a
mapping function f (mapping the k in the sampling to the
global top f(k)), so that SHR@k ≈ HR@f(k). Basically,
the sampling- based top k Hit-Ratio, SHR@k, corresponds
to the global top-f(k) Hit-Ratio. They develop methods to
approximate the function f , and they show that it is approxi-
mately linear (the “sampling” location of the global top-K
curve is almost equally intervaled). However, their methods
are limited to only the Recall/Hit-Ratio metric and cannot
be generalized to more complex metrics, such as AP and
NDCG.

Despite these latest works (Li et al. 2020; Krichene and
Rendle 2020), the very question as to if and how sampling
can be used for recommendation evaluation remains unsolved
and under heavy debate. The proposed approaches to estimate
the global evaluation metrics based on sampling either are
rather uninformative (Krichene and Rendle 2020) or can only
work on simple metrics (Li et al. 2020). They also provide
little insight into how sampled recommendation ranking re-
sults can relate to their global counterparts. Particularly, even
though methods such as MLE and/or Bayesian approaches
are widely used for sampling-based parameter and distribu-
tion inference in statistics (Lehmann and Casella 2006), it
remains an open problem if and how they can be leveraged
to develop sampling-based estimators for recommendation
evaluation metrics.
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M # of users in testing data
N : # of items
I entire set of items, and |I| = N
R item rank in range [1, N ]
iu relevant item for user u in testing data
Ru rank of item iu among I for user u
n n− 1 = # of sampled items for each user
Iu Iu\iu consists of n− 1 sampled items for u
r item rank in range [1, n]
ru rank of item iu among Iu
R discrete random variable (R : u→ Ru)
πR = Pr(R = R), rank distribution (pmf ofR)
P (R) empirical rank distribution (pmf)

Table 1: Notations

Contributions and Organization
To address these questions, we make the following contribu-
tions in this paper:

• We introduce a new research problem on learning the
empirical rank distribution and a new metric estimation
framework based on the learned rank distribution. This
estimation framework can allow us to handle all the ex-
isting metrics in a unified and more informative fashion.
It can be considered as being metric-independent: once
the empirical rank distribution is learned, it can be used
immediately to estimate any top-K metrics.

• We introduce two types of approaches for estimating the
rank distribution. The first approach is based on (weighted)
MLE, and the second approach is based on combining
maximal entropy with a distribution difference constraint.

• We perform a thorough experimental evaluation on the
proposed new estimators for recommendation metrics. The
experimental results show the advantages of using our ap-
proaches for evaluating recommendation algorithms based
on top-k metrics against the existing ones in (Krichene
and Rendle 2020).

Our results provide further evidence that sampling can be
used for recommendation evaluation. They also further con-
firm what was first discovered in (Rendle 2019): The metrics
such as NDCG and AP should not be directly evaluated on
top of the sampling rank distributions. More importantly, our
results further clarify that those metrics should be applied on
the learned empirical rank distribution based on sampling.

Evaluation Metrics and Notation
In this paper, we are mainly concerned with the evaluation
of recommendation algorithms in the testing dataset, whose
key notations are listed in Table ??. Given a user u and a
(relevant) item iu, the recommendation algorithm A returns
Ru, the rank of item iu among all items in set I: Ru =
A(u, iu; I).

LetMmetric be a function (metric) which weighs the rel-
evance or importance of rank position R. Then the metric
(metric) for evaluating the performance of a recommenda-

tion algorithmA is simply the average of the weight function:

metric =
1

M

M∑
u=1

Mmetric(Ru) =
1

M

M∑
u=1

Mmetric(A(u, iu; I))

(1)

The commonly used Mmetric for evaluation met-
rics (Krichene and Rendle 2020), (AUC, NDCG, and AP)
are:MAUC(R) = N−R

N−1 ;

MNDCG(R) =
1

log2(R+ 1)
; MAP (R) =

1

R

Given this, each metric can be defined accordingly. For
instance, we have:

AP =
1

M

M∑
u=1

MAP (Ru) =
1

M

M∑
u=1

1

Ru

Top-K Evaluation Metrics
For most of the recommendation applications, only the top-
ranked items are of interest. Thus, the commonly used evalu-
ation metrics are primarily based on top-k partial ranked lists.
Specifically, the corresponding weight/importance of the rel-
evant item iu will only be counted in the overall metrics if iu
is ranked higher than k. Mathematically, the weight function
MK (for top-K evaluation) will include an indicator term
(1X = 1 iff X is true, and 0 otherwise):

MK
metric(R) = 1R≤KMmetric(R) (2)

where metric includes the aforementioned methods such as
AUC, NDCG, and AP, as well as the commonly used Re-
call (Hit-Ratio) and Precision, whose importance metrics are
constant:

MRecall(R) = 1; MPrec(R) = 1/K

Given this, the top-K evaluation metrics, metric@K =

1

M

M∑
u=1

MK
metric(Ru) =

1

M

M∑
u=1

1Ru≤KMmetric(Ru) (3)

The commonly used top-K metrics include Recall@K, Pre-
cision@K, AUC@K, NDCG@K and AP@K, among others.
For instance,

AP@K =
1

M

M∑
u=1

MK
AP (Ru) =

1

M

M∑
u=1

1Ru≤K
1

Ru

We note the unconstrained metrics defined in Equation 1 are
the special case of top-K metrics, where K = N . Thus, we
will focus on studying the top-K evaluation metrics.

Sampling Top-K Evaluation
Under the sampling-based top-K evaluation, for a given user
u and his/her relevant item iu, only n − 1 irrelevant items
from the entire set of items I are sampled, together with iu
forming Iu (iu ∈ Iu, |Iu| = n). Thus, the rank of iu among
Iu is denoted as ru = A(u, iu; Iu).
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Given this, a (seemingly) natural and also commonly used
practice in recommendation studies (Koren 2008; He et al.
2017; Liang et al. 2018) is to simply replace Ru with ru for
(top-K) evaluation, denoted as

m̃etric@K =

1

M

M∑
u=1

MK
metric(ru) =

1

M

M∑
u=1

1ru≤KMmetric(ru) (4)

For instance, the sampling top-K AP metric is

ÃP@K =
1

M

M∑
u=1

MK
AP (ru) =

1

M

M∑
u=1

1ru≤K
1

ru

The Problem of m̃etric@K
It is rather easy to see that the range of sampling rank ru
(from 1 to n) is very different from the range of true rank
Ru (from 1 to N ) of any user u. Thus, for the same K, the
sampling top-K metrics and the global top-K correspond to
very different measures (no direct relationship):

metrics@K 6= m̃etrics@K (5)

This is the “problem” being highlighted and confirmed
in (Krichene and Rendle 2020; Rendle 2019), and they further
formalize that these two metrics are “inconsistent”. Using
statistics terminology, the commonly used sampling-based
top-K metric m̃etric@K is not a “reasonable” estimator
(Lehmann and Casella 2006) of the exact metrics@K from
the entire testing data.

However, Li et. al. (Li et al. 2020) showed that for some of
the most commonly used metrics, the Recall/HitRatio, there
is a mapping function f (approximately linear), such that

Recall@f(K) ≈ R̃ecall@K (6)

In other words, for Recall at f(1), f(2), . . . , f(n) = N ,
they can be estimated by the the sampling-based top-K Re-
call/HitRatio R̃ecall at with K = 1, K = 2, · · · , K = n,
respectively. Note that this result can be generalized to the
Precision metrics, but it has difficulty for more complex met-
rics, such as NDCG and AP (Li et al. 2020).

Top-K Metrics Estimation
Now, we formally introduce the estimation problem of the
(top-K) evaluation metrics under sampling. Given the sam-
pling ranked results in the testing dataset, {ru}Mu=1, we would
like to develop various estimators m̂etric@K to approximate
metric@K (Equations 4), i.e.

metric@K ≈ m̂etric@K (7)

Note that in general, we would like the estimators to have low
bias and variance (or be unbiased), among other desirable
properties (Lehmann and Casella 2006).

The Sampled Metric M̂(r) Approach
In (Krichene and Rendle 2020), Krichene and Rendle notice
that the overall metrics (metric@K) are the average of the
weighting function (MK

metric(Ru) = 1R≤KMmetric(R)).
Their approach is to develop a sampled metric M̂K

metric(r)

(M̂(r) for simplicity) so that:

1

M

M∑
u=1

MK
metric(Ru) ≈ 1

M

M∑
u=1

M̂(ru)
(

=

n∑
r=1

P̃ (r)M̂(r)
)

(8)
where P̃ (r) = 1

M

∑M
u=1 1ru=r is the empirical rank distri-

bution on the sampling data.
They have proposed a few estimators based on this idea,

including estimators that use the unbiased rank estimators,
minimize bias with monotonicity constraint (CLS), and uti-
lize Bias-Variance (BV ) tradeoff. Their study shows that
only the last one (BV ) is competitive (Krichene and Rendle
2020). We describe it below.

Bias-Variance (BV ) Estimator The BV estimator is to
consider the tradeoff between two goals: 1) minimize the
difference between metric@K and the expectation of the
estimator, which can be written as

E
( 1

M

M∑
u=1

M̂(ru)
)

=
1

M

M∑
u=1

E
(
M̂(ru)|Ru

)
(9)

and 2) minimize the sum of variance of M̂(ru) given its
global rank Ru,

∑M
u=1 V ar[M̂(r)|R]. Let P (R) be the em-

pirical pmf (probability mass function) for the rank distri-
bution P (R) = 1

M

∑M
u=1 1Ru=R. Then, the BV estimator

uses the n dimensional vector M̂ := (M̂(r))nr=1 ∈ Rn to
minimize the following formula:

N∑
R=1

P (R)
(

(E
[
M̂(r)|R

]
−MK

metric(R))2 + γVar[M̂(r)|R]
)

(10)

Since this is a regularized least squares problem, its opti-
mal solution is (Krichene and Rendle 2020):

M̂ =
(

(1.0− γ)ATA+ γdiag(ccc)
)−1

ATbbb (11)

where

A ∈ RN×n, AR,r =
√
P (R)P (r|R)

bbb ∈ RN , bR =
√
P (R)MK

metric(R)

ccc ∈ Rn, cr =
N∑
R

P (R)P (r|R)

(12)

Since the rank distribution P (R) is unknown, they simply
use the uniform distribution in (Krichene and Rendle 2020)
and found it works reasonably well. Furthermore, they em-
pirically found that when γ ≤ 0.1 they achieve a good esti-
mation.
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The New Approach and New Problem
Our new approach is based on the following observation:

metric@K =
1

M

M∑
u=1

MK
metric(Ru) =

K∑
R=1

P (R)Mmetric(R)

(13)
Thus, if we can estimate P̂ (R) ≈ P (R), then we can derive

the metric estimator as

m̂etric@K =
K∑

R=1

P̂ (R)Mmetric(R) (14)

New Problem Given this, we introduce the problem of
learning the empirical rank distribution (P (R))NR=1 based
on sampling {ru}Mr=1. In general, only when R is small is
P (R) of interest for estimating the top-K metrics. To our
best knowledge, this problem has not been formally and
explicitly studied before for sampling-based recommendation
evaluation.

We note that the importance of the problem is two-fold. On
one side, the learned empirical rank distributions can directly
provide estimators for metric@K; on the other side, since
this question is closely related to the underlying mechanism
of sampling for recommendation, tackling it can help better
understand the power of sampling and help resolve the ques-
tions as to if and how we should use sampling for evaluating
recommendation.

Furthermore, since metric@K is the linear function of
(P (R))KR=1, the statistical properties of estimator P̂ (R) can
be nicely preserved by m̂etric@K (Lehmann and Casella
2006). In addition, this approach can be considered as metric-
independent: We only need to estimate the empirical rank
distribution P (R) once; then we can utilize it for estimating
all the top-K evaluation metrics metric@K (including for
different K) based on Equation 14.

Finally, we note that we can utilize the BV estimator to
estimate P (R) as follows: Let R̂ecallBV (R) be the recall
estimator from BV . Then we have
P̂ (R) = R̂ecallBV (R)− R̂ecallBV (R− 1)

= (P̃ (r))nr=1

(
(1.0− γ)ATA+ γdiag(ccc)

)−1

ATbbbR

(15)

where R̂ecallBV (R) is the BV estimator for the
Recall@R metric, (P̃ (r))nr=1 is the row vector of empiri-
cal rank distribution over the sampling data, and bbbR has the
R-th element as bR (eq. (12)) and other elements as 0. We
consider this as our baseline for learning the empirical rank
distribution.

Learning Empirical Rank Distribution
In this section, we will introduce a list of estimators for
the empirical rank distribution (P (R))NR=1 based on sam-
pling ranked data: {ru}Mr=1. Figure 1 illustrates the differ-
ent approaches of learning the empirical rank distribution
P (R), including the Maximal Likelihood Estimation (MLE),
its weighted variants (WMLE), and the Maximal Entropy
based approach (MES), for R ≤ 200 on movie-lens-1M
dataset (Harper and Konstan 2015).

Figure 1: Learning Empirical Rank Distribution P (R)

Sampling Rank Distribution: Mixtures of Binomial
Distributions
To simplify our discussion, let us consider the sampling with
replacement scheme (the results can be extended to sampling
without replacement). Now, assume an item i is ranked R in
the entire set of items I . Then there are R− 1 items whose
rank is higher than item i and N − R items whose rank is
lower than i. Under the (uniform) sampling (sampling with
replacement), we have θ := R−1

N−1 probability to pick up
an item with higher rank than R. Let x be the number of
irrelevant items ranked in front of the relevant one, and x =
r−1. Thus, the rank r−1 under sampling follows a binomial
distribution: r − 1 ∼ B(n− 1, θ), and the conditional rank
distribution P (r|R) is

P (r|R) = Bin(r − 1;n− 1, θ) =

(
n− 1

r − 1

)
θr−1(1− θ)n−r

(16)

Given this, an interesting observation is that the sampling
ranked data {ru}Mr=1 can be directly modeled as a mixture
of binomial distributions. Let ΘΘΘ = (θ1 . . . , θR, . . . , θN )T

where

θR :=
R− 1

N − 1
, R = 1, . . . , N (17)

Let the empirical rank distribution PPP = (P (R))NR=1, then
the sampling rank follows the distribution P (r|PPP ) =

N∑
R=1

P (r|R)P (R) =

N∑
R=1

Bin(r − 1;n− 1, θR)P (R)

=

N∑
R=1

P (R)

(
n− 1

r − 1

)(R− 1

N − 1

)r−1(
1− R− 1

N − 1

)n−r (18)

Thus, P (R) can be considered as the parameters for the
mixture of binomial distributions.

Maximum Likelihood Estimation
The basic approach to learn the parameters of the mix-
ture of binomial distributions (MB) given {ru}Mu=1 is
based on maximal likelihood estimation (MLE). Let ΠΠΠ =
(π1, . . . , πR, . . . , πN )T be the parameters of the mixture
of binomial distributions. Then we have p(ru|ΠΠΠ) =∑N

R=1 πRp(ru|θR), where p(ru|θR) = Bin(ru − 1;n −
1, θR).
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Then MLE aims to find the particular ΠΠΠ, which maximizes
the log-likelihood:

logL =

M∑
u=1

log p(ru|ΠΠΠ) =

M∑
u=1

log

N∑
R=1

πRp(ru|θR) (19)

By leveraging EM algorithm (details in (Jin et al. 2021)):

πnew
R =

1

M

M∑
u=1

πold
R p(ru|θR)

N∑
j=1

πold
j p(ru|θj)

(20)

When eq. (20) converges, we obtain ΠΠΠ∗ and use it to esti-
matePPP , i.e., P̂ (R) = π∗

R. Then, we can use P̂ (R) in eq. (14)
to estimate the desired metric metric@K.

Speedup and Time Complexity To speedup the compu-
tation, we can further rewrite the updated formula eq. (20)
as

πnew
R =

n∑
r=1

P̃ (r)
πold
R p(r|θR)

N∑
j=1

πold
j p(r|θj)

(21)

where P̃ (r) = 1
M

∑M
u=1 1ru=r is the empirical rank distribu-

tion on the sampling data. Thus the time complexity improves
to O(kNn) (from O(kNM) using eq. (20)) where k is the
iteration number. This is faster than the least squares solver
for the BV estimator (eq. (11)) (Krichene and Rendle 2020),
which is at least O(n2N).Furthermore, we note P̂ (R) can
be used for any metric@K for the same algorithm, whereas
BV estimator has to be performed for each metric@K sep-
arately.

Weighted MLE If we are particularly interested in πR
(P (R)) when R is very small (such as R < 10), then we
can utilize the weighted MLE to provide more focus on
those ranks. This is done by putting more weight on the
sampling rank observation ru when ru is small. Specifically,
the weighted MLE aims to find the ΠΠΠ, which maximizes the
weighted log-likelihood:

logL =

M∑
u=1

w(ru) log p(ru|ΠΠΠ) =

M∑
u=1

w(ru) log

N∑
R=1

πRp(ru|θR)

(22)
where w(ru) is the weight for user u. Note that the typ-

ical MLE (without weight) is the special case of eq. (22)
(w(ru) = 1).

For weighted MLE, its updated formula is

πnew
R =

n∑
r=1

P̃ (r)w(r)∑n
r=1 P̃ (r)w(r)

πold
R p(r|θR)

N∑
j=1

πold
j p(r|θj)

(23)

For the weight wu, we can utilize any decay function
(as ru becomes bigger, than wu will reduce). We have ex-
perimented with various decay functions and found that
the important/metric functions, such as AP and NDCG,
wu = MAP (ru/C) and wu = MNDCG(ru/C) (C > 1
is a constant to help reduce the decade rate), obtain good
and competitive results. We will provide their results in the
experimental evaluation section.

Maximal Entropy with Minimal Distribution Bias
Another commonly used approach for estimating a (dis-
crete) probability distribution is based on the principal of
maximal entropy (Cover and Thomas 2006). Assume a
random variable x takes values in (x1, x2, · · · , xn) with
pmf: p(x1), p(x2), · · · , p(xn). Typically, given a list of
(linear) constraints in the form of

∑n
i=1 p(xi)fk(xi) ≥

Fk (k = 1, · · ·m), together with the equality constraint
(
∑n

i=1 p(xi) = 1), it aims to maximize its entropy:

H(p) = −
n∑

i=1

p(xi) log p(xi) (24)

In our problem, let the random variable R take on rank
from 1 to N . Assume its pmf is ΠΠΠ = (π1, . . . , πR, . . . , πN ),
and the only immediate inequality constraint is πR ≥ 0

besides
∑N

R=1 πR = 1. Now, to further constrain πππ, we need
to consider how they reflect and manifest on the observation
data {ru}Mu=1. The natural solution is to simply utilize the
(log) likelihood. However, combining them together leads to
a rather complex non-convex optimization problem which
will complicate the EM-solver.

In this paper, we introduce a method (to constrain the max-
imal entropy) which utilizes the squared distance between
the learned rank probability (based on ΠΠΠ) and the empirical
rank probability in the sampling data

E =
1

M

M∑
R=1

(
p(ru|ΠΠΠ)− P̃ (ru)

)2

=
n∑

r=1

P̃ (r)
( N∑

R=1

P (r|R)πR − P̃ (r)
)2

(25)

Again, P̃ (r) is the empirical rank distribution in the sampling
data. Note that E can be considered to be derived from the
log-likelihood of independent Gaussian distributions if we
assume the error term p(ru|ΠΠΠ)− P̃ (ru) follows the Gaussian
distribution.

Given this, we seek to solve the following optimization
problem:

ΠΠΠ = arg max
ΠΠΠ

η ·H(πππ)− E (26)

with constraints:

πR ≥ 0 (1 ≤ R ≤ N)
∑
R

πR = 1 (27)

Note that this objective can also be considered as adding an
entropy regularizer for the log-likelihood.

The objective function: η · H(πππ) − E is concave (or its
negative is convex). This can be easily observed as both
negative of entropy and sum of squared errors are convex
function.

Given this, we can employ available convex optimization
solvers (Boyd and Vandenberghe 2004) to identify the opti-
mization solution. Thus, we have the estimator P̂ (R) = π∗

R,
where Π∗ is the optimal solution for eq. (26).
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Model Metric Exact Estimators of Metrics@10
CLS BV 0.1 BV 0.01 MLE WMLE MES

EASE
Recall 34.77 54.43±1.29 36.83±2.09 36.18±5.35 35.33±7.17 36.30±7.41 35.22±7.36
NDCG 16.16 25.44±0.60 16.81±1.04 16.38±2.88 16.03±3.95 16.46±4.07 16.03±4.12
AP 10.63 16.81±0.40 10.88±0.72 10.53±2.13 10.32±2.97 10.59±3.06 10.35±3.13

MultiVAE
Recall 18.38 45.23±1.42 26.27±2.46 21.66±6.11 20.79±6.78 21.23±6.96 20.58±6.97
NDCG 7.08 21.13±0.66 11.80±1.22 9.38±3.26 9.17±3.44 9.35±3.53 9.10±3.58
AP 3.81 13.97±0.44 7.53±0.85 5.77±2.39 5.74±2.44 5.86±2.50 5.72±2.56

NeuMF
Recall 30.96 49.51±1.31 32.12±2.17 31.30±5.63 31.06±7.15 31.82±7.37 30.63±7.30
NDCG 13.43 23.14±0.61 14.62±1.08 14.15±3.03 14.16±3.94 14.49±4.05 13.99±4.06
AP 8.26 15.29±0.40 9.44±0.75 9.08±2.24 9.15±2.96 9.37±3.04 9.06±3.07

itemKNN
Recall 42.72 46.46±1.28 34.26±2.00 38.29±5.09 40.02±7.22 41.71±7.56 39.20±6.43
NDCG 20.54 21.71±0.60 15.80±0.99 17.81±2.74 18.96±4.24 19.75±4.43 18.53±3.73
AP 13.89 14.35±0.40 10.32±0.69 11.73±2.02 12.68±3.32 13.21±3.47 12.38±2.90

ALS
Recall 24.17 48.07±1.20 29.62±2.04 26.17±5.64 25.16±6.49 25.91±6.72 24.94±7.08
NDCG 9.49 22.46±0.56 13.39±1.02 11.54±3.08 11.18±3.40 11.51±3.52 11.14±3.76
AP 5.21 14.84±0.37 8.59±0.72 7.23±2.30 7.06±2.47 7.27±2.55 7.08±2.76

Table 2: Dataset: ml-1m with sample size =99.

Model Metric Exact Estimators of Metric@10
CLS BV 0.1 BV 0.01 MLE WMLE MES

EASE
Recall 87.91 52.56±0.52 49.62±1.06 65.99±2.98 83.19±10.14 84.13±10.26 83.72±11.83
NDCG 43.63 24.04±0.24 22.70±0.49 30.28±1.39 38.55±4.97 38.99±5.03 38.83±5.81
AP 30.48 15.58±0.15 14.73±0.32 19.70±0.92 25.29±3.42 25.58±3.46 25.49±4.01

MultiVAE
Recall 48.82 55.62±0.54 52.84±1.10 70.09±2.96 86.45±9.89 86.98±9.95 87.02±10.82
NDCG 17.12 25.43±0.25 24.17±0.51 32.16±1.38 39.98±4.82 40.22±4.85 40.27±5.29
AP 8.14 16.49±0.16 15.68±0.33 20.92±0.91 26.18±3.30 26.34±3.32 26.39±3.63

NeuMF
Recall 62.87 45.83±0.56 41.51±1.12 53.39±3.16 63.68±9.42 64.24±9.52 64.39±11.44
NDCG 31.05 20.96±0.26 18.98±0.52 24.48±1.48 29.41±4.58 29.67±4.62 29.77±5.59
AP 21.66 13.59±0.17 12.30±0.34 15.91±0.98 19.23±3.13 19.41±3.16 19.50±3.83

itemKNN
Recall 68.46 52.88±0.52 50.42±1.03 68.04±3.08 88.43±11.35 89.36±11.48 89.19±13.13
NDCG 28.71 24.18±0.24 23.07±0.48 31.23±1.44 41.06±5.59 41.49±5.66 41.46±6.49
AP 17.12 15.68±0.15 14.97±0.31 20.32±0.95 26.98±3.86 27.27±3.91 27.28±4.49

ALS
Recall 58.55 31.39±0.48 26.90±0.93 34.43±2.62 42.21±7.16 43.05±7.31 43.09±8.91
NDCG 30.30 14.35±0.22 12.29±0.43 15.78±1.22 19.55±3.50 19.94±3.57 20.00±4.39
AP 21.77 9.31±0.14 7.97±0.28 10.26±0.81 12.82±2.40 13.07±2.45 13.14±3.02

Table 3: Dataset: citeulike with sample size =99.

Experiments
In this section, we report the experimental evaluation on
estimating the top-K metrics based on sampling, as well as
the learning of empirical rank distribution P (R). Specifically,
we aim to answer the following questions:
(Question 1) How do the new estimators based on the learned
empirical distribution perform against the CLS and BV
approach proposed in (Krichene and Rendle 2020) on esti-
mating the top-K metrics based on sampling?
(Question 2) How do these approaches perform when helping
predict the winners (from the global metrics) among a list of
competitive recommendation algorithms using sampling?
(Question 3) How accurately can the proposed approaches
learn the empirical rank distribution?

Experimental Setup
We use four of the most commonly used datasets for recom-
mendation studies in our study, whose characteristics are in
the full paper (Jin et al. 2021). For the different recommenda-
tion algorithms, we use some of the most well-known and the

state-of-the-art algorithms, including three non-deep-learning
options: itemKNN (Deshpande and Karypis 2004); ALS (Hu,
Koren, and Volinsky 2008); and EASE (Steck 2019); and
two deep learning options: NeuMF (He et al. 2017) and Mul-
tiVAE (Liang et al. 2018). We use three (likely the most)
commonly used top-K evaluation metrics: Recall, NDCG
and AP (Average Precision). Due to the space limitation,
we only report representative results here, and additional ex-
perimental results can be found in the full paper (Jin et al.
2021).

Estimation Accuracy of Metric@K
Table 2 and 3 show the average and the standard deviation of
the aforementioned estimators for Recall@10, NDCG@10,
and AP@10, which repeats 100 each with sample size 99
(n = 100). The estimators include CLS, BV (with the trade-
off parameters γ = 0.1 and γ = 0.01), MLE (Maximal
Likelihood Estimation), WMLE (Weighted Maximal Like-
lihood Estimation where the weighted function is MNDCG

with C = 10), MES (Maximal Entropy with Squared dis-
tribution distance, where η = 0.001). The Exact column
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Figure 2: Accuracy of Learned Empirical Rank Distribution

corresponds to the target metrics which use all items in I for
ranking.

In Table 2 on the ml− 1m dataset, we observe that MLE
and MES are among the most, or the second-most accurate
estimators (using the bias which measures the difference be-
tween the Exact Metrics and the Average of the Estimated
Metrics). In Table 3, WMLE performs the best, with 7 most
(or second-most) accurate estimations, whereas MES, MB,
and BV estimators are all comparable, with each having
some better estimates. In both tables, CLS estimator has the
worst performance. In addition, we also notice that the new
estimators tend to have higher variance than the BV estima-
tors, which explicitly control the variance of each individual
M(r) estimate. In the future, we plan to utilize methods
such as bootstrapping to help reduce the variance of these
estimators based on the empirical rank distribution.

Predicting Winners by Metric@K

Table 4 shows, among the 100 sample runs, the number
of correct winners predicted by CLS, BV , MLE, WLE
andMES estimators based onRecall@K,NDCG@K and
AP@K for K = 1, 5, 10 and 20, on the ml − 1m dataset.
We observe that WMLE has the best prediction accuracy in
picking up the winners, while MLE and MES are compa-
rable and slightly better than BV 0.01.

Learning Empirical Rank Distributions
Figure 2 illustrates the accuracy of learned empirical Rank
Distributions against the exact P (R) on the ml − 1m
dataset for two recommendation methods: NeuMF and
itemKNN , respectively. The empirical pmf refers to P (R),
and the estimation methods includeBV (with parameter 0.1),
MLE,WMLE, andMES. The two figures on the top show
the (learned) probability mass function, whereas the bottom
shows the corresponding CDF (or Recall) at the top-K. These
estimation curves are the average of estimates of 100 sample
runs. We can see that BV either over- or under- estimates the
empirical CDF (Recall curve). MLE and MES are quite
comparable where WMLE has a higher average estimate
than both of them. This is understandable as we add more

K Metric CLS 0.1 0.01 MLE WMLE MES

1
Recall 0 41 59 59 59 57
NDCG 0 41 59 59 59 57

AP 0 41 59 59 59 57

5
Recall 0 34 57 59 61 59
NDCG 0 34 57 59 61 59

AP 0 35 58 59 61 59

10
Recall 0 21 54 58 59 58
NDCG 0 24 56 60 61 59

AP 0 27 56 61 61 59

20
Recall 100 98 59 49 45 53
NDCG 0 4 51 54 58 53

AP 0 23 53 60 61 58

Table 4: The number of successes at predicting a winner on
the ml-1m dataset with 100 repeats. 0.1 and 0.01 represent
the estimator BV with γ = 0.1 and 0.01 correspondingly.

weight to the sampled rank with smaller values, which leads
to a higher concentration of probability mass for the smaller
rank. We also notice that all these estimators are not very
accurate on the individual rank probability P (R) (the top fig-
ures). But their aggregated results (CDF; the bottom figures)
are quite accurate. This helps explain why we can estimate
metric@K, which is also an aggregate. In the full paper (Jin
et al. 2021), we show that as the sample size increases, the
estimate accuracy will also increase accordingly.

Conclusion
In this paper, we study a new approach to estimate the top-
K evaluation metrics based on learning the empirical rank
distribution from sampling, which is, by itself, a new and in-
teresting research problem. We present two approaches based
on Maximal Likelihood Estimation and Maximal Entropy
principals. Our experimental results show the advantage of
using the new approaches to estimate the top-K metrics. In
our future work, we plan to investigate the open questions on
how many samples we should use for recovering the empiri-
cal rank distribution and top-K metrics.
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