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Abstract

Knowledge Graphs (KGs) can be used to store informa-
tion about software design, biomedical designs, and financial
information—all domains where intellectual property and/or
specialized knowledge must be kept confidential. Moreover,
KGs can also be used to represent the content of technical
documents. In order to deter theft of intellectual property via
cyber-attacks, we consider the following problem: given a
KG K0 (e.g., representing a software or biomedical device
design or the content of a technical document), can we au-
tomatically generate a set of KGs that are similar enough
to K0 (so they are hard to discern as synthetic) but suffi-
ciently different (so as to be wrong)? If this is possible, then
we will be one step closer to automatically generating fake
KGs that an adversary has difficulty distinguishing from the
original. We will also be closer to automatically generating
documents corresponding to fake KGs so that an adversary
who steals such documents has difficulty distinguishing the
real from the fakes. We formally define this problem and
prove that it is NP-hard. We show that obvious approaches
to solving this problem do not satisfy a novel concept of
“adversary-awareness” that we define. We provide a graph-
theoretic characterization of the problem and leverage it to
devise an “adversary-aware” algorithm. We validate the effi-
cacy of our algorithm on 3 diverse real-world datasets, show-
ing that it achieves high levels of deception.

Introduction
Theft of intellectual property (IP) is a growing problem. Ac-
cording to a 2017 report by the US Intellectual Property
Commission, theft of US IP alone is estimated to range from
0.87 to 2.61 percent of annual US GDP: a huge loss exceed-
ing that of the 1991 Gulf War.1 While one may dispute the
precise numbers claimed in various news and other reports,
the fact is that most IP producing companies have grave con-
cerns about IP theft.

Recent efforts (Chakraborty et al. 2019; Abdibayev et al.
2021) have proposed generating fake versions of techni-
cal documents by replacing concepts in an original docu-
ment with different concepts (e.g., in a sentence such as
“In the iron-based powder mixture for use, it was confirmed

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://www.nationalreview.com/2020/07/china-intellectual-
property-theft-counting-costs-united-states/

that component segregation was greatly reduced”2, the word
“iron” might be replaced by “zinc” which has similar mal-
leability properties but is more reactive). However, these
past proposals have several limitations: (i) they do not con-
sider the knowledge encoded within a document, and (ii)
they do not account for the adversary who might both know
the algorithm for generating fakes and analyze relationships
between the resulting set (original + fakes) and thus discern
the original one.

In this paper, we consider an “original” knowledge graph
K0 that captures some intellectual property. For instance,
KGs can be used to capture information about software de-
signs and flows via UML (Berardi, Calvanese, and De Gi-
acomo 2005), biomedical designs (Alshahrani et al. 2017;
Alshahrani 2019), financial information (Pujara 2017), cor-
porate structure (Atzeni et al. 2020), and much more. Such
KGs may capture not only intellectual property, but also
valuable proprietary or secret corporate information. In ad-
dition, there are numerous methods to represent the knowl-
edge within a document as a knowledge graph (Ji et al. 2020;
Hogan et al. 2020). Such knowledge graphs can be readily
extracted using standard methods in NLP (Luan et al. 2018).
In the case of KGs representing text, we assume assume that
given a knowledge graph, we can generate text from it—
either via strategic replacements as in (Chakraborty et al.
2019) or via a generative model as in (Koncel-Kedziorski
et al. 2019).3

Thus, this paper focuses on the central problem of gener-
ating fake versions of a given KG K0. We show how to au-
tomatically generate a set K = {K0,K1, . . . ,Kn} having n
fake documents (plus the original) so as to make it very hard
for an adversary to guess which document inK is correct. In
particular, the fakes are constrained to be “similar enough”
(according to a distance metric) to the original (to be believ-
able), but sufficiently dissimilar to be likely wrong. We make
the following contributions: (i) We formally define the Fake
Knowledge Graph problem FAKEKG and show that solving
it is NP-hard. (ii) We show that even solutions to FAKEKG
can be “cracked” by an intelligent adversary. (iii) In order to

2Japanese patent JP5112828B2, https://patents.google.com/
patent/JP5112828B2/en?q=metallurgy&oq=metallurgy

3Due to space reasons, we do not show how to generate KGs
from documents or how to generate fake versions of an original
document from fake KGs.
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avoid this, we formally define the notion of an “adversary-
aware” algorithm: even if the adversary knows the algorithm
we use and also knows all inputs except for the original
KG, s/he does not gain knowledge from them to identify the
original KG. (iv) We show that solving the FAKEKG prob-
lem is closely linked to a graph theory problem and pro-
pose an adversary-aware algorithm, CLIQUE-FAKEKG, for
this problem. (v) We run experiments on 3 knowledge graph
datasets showing that CLIQUE-FAKEKG achieves good re-
sults in deceiving adversaries.

Preliminaries
We assume two disjoint finite sets E of entities and R of re-
lations. A knowledge graph (KG) is a subsetK of E×R×E.
Thus, K is a finite set of triples of the form 〈s, r, o〉, whose
meaning is that the “subject” entity s is related to the “ob-
ject” entity o via relation r. An alternative way of looking
at KGs is as directed graphs where vertices are entities and
edges are labeled with relations.

In addition to KGs which are directed and labeled, we use
undirected graphs in our graph-theoretic characterization of
the problem and to develop our algorithm. An undirected
graph G is a pair 〈V,E〉, where V is a finite set whose el-
ements are called vertices, and E ⊆ V × V is a set of un-
ordered pairs (of vertices) called edges. We use “graphs” to
refer to undirected graphs.

A clique of G is a subset C of V such that for every pair
of distinct vertices v and v′ in C, (v, v′) ∈ E. We say that
C is a maximum clique of G iff there is no clique C ′ of G
such that |C| < |C ′|. A clique ofG with cardinality k is also
called a k-clique of G.

Given a set of vertices V ′ ⊆ V , the subgraph of G in-
duced by V ′, denoted G[V ′], is the graph 〈V ′, E′〉 where
E′ = {(v′, v′′) | v′, v′′ ∈ V ′ and (v′, v′′) ∈ E}.

For an arbitrary set S, we will use 2S to denote the pow-
erset of S, that is, the set of all subsets of S.

The Fake KG Problem
In this section, we formally define the problem of generating
fake KGs, study its computational complexity, and introduce
the notion of an adversary-aware algorithm.

Our goal is to generate fake yet highly believable KGs
from an original one, so that after putting them all together,
an adversary has no clue which is the original KG.

Before providing the formal definition of our problem, we
introduce distance functions for KGs. Given a set U of KGs,
a distance function d for U is a function d : U × U → [0, 1]
such that for all K,K ′,K ′′ ∈ U , (i) d(K,K ′) = 0 iff
K = K ′, (ii) d(K,K ′) = d(K ′,K), and (iii) d(K,K ′) ≤
d(K,K ′′) + d(K ′′,K ′). As a simple example, a distance
function can be the Jaccard distance, that is, d(K,K ′) =

1− |K∩K′|
|K∪K′| .

The problem we address, named FAKEKG, is defined as
follows.

Definition 1 (FAKEKG problem). Given a set U of KGs, a
distance function d for U , a knowledge graph K0 ∈ U , an
integer n ≥ 1, and an interval τ = [`, u] ⊆ [0, 1], find a

set K = {K0,K1, . . . ,Kn} ⊆ U of n + 1 distinct KGs s.t.
` ≤ d(Ki,Kj) ≤ u for every 0 ≤ i 6= j ≤ n.

Thus, an instance I = 〈U , d,K0, n, τ〉 of FAKEKG in-
cludes

• a set U of KGs, which are all the KGs of interest for the
application at hand;

• a function d measuring the distance between KGs in U ;

• the original KG K0 for which we want to generate fakes;

• the number n of fake KGs we want to generate;

• an interval τ that bounds the distance between any two
distinct KGs in a solution.

Notice that U is an arbitrary set of KGs whose role is to
specify the set of KGs from which fake ones are taken. In
fact, in many cases it is desirable for users to express which
KGs are of interest or deemed to be “admissible” for the ap-
plication at hand. For instance, U might only include KGs
that satisfy a given set of semantic constraints which capture
whether the KG makes sense or not. It is also very important
to note that d can be any arbitrary distance function, which
can therefore incorporate structural and/or semantic aspects
of KGs (e.g., the Jaccard distance only looks at the struc-
ture of a KG). We do not impose any restriction on d—our
framework and algorithms work for any distance function
one wants to employ. Thus, both structural and semantic as-
pects can be taken into account when defining the set of ad-
missible KGs (namely, U ) and their distance (namely, d).

A solution for I is a set K = {K0,K1, . . . ,Kn} of n+ 1
distinct KGs such that their pairwise distance lies in the
interval τ . Notice that K includes the original knowledge
graph K0 along with n additional KGs. The requirement
` ≤ d(Ki,Kj) allows users to set a minimum desired dis-
tance between every pair of distinct KGs in K. This also
means that fake KGs must be “far enough” from the original
one, that is, their distance from K0 must be at least `. The
requirement d(Ki,Kj) ≤ u allows users to set a maximum
desired distance between every pair of distinct KGs in K.
This also means that fake KGs must differ from the origi-
nal at most of u, so users can state that fake KGs must not
be too far from the original one (e.g., to keep them “believ-
able enough”). We point out that d can also be used to ex-
press strict requirements that should hold between any pair
of KGs, and in particular between the original and fakes. So,
for instance, d can be defined in such a way that if two KGs
have the same structural property of interest then their dis-
tance is measured according to some criterion, while if they
do not have the same structural property their distance is set
to 1. Notice that an instance of FAKEKG might not admit a
solution.

The following theorem states NP-hardness of FAKEKG.
The proof relies on a reduction from the NP-complete
CLIQUE problem, that is, given an undirected graph G and
an integer k, decide whether G has a k-clique. Specifically,
we reduce the CLIQUE problem to the problem of deciding
whether an instance of FAKEKG admits a solution, which in
turn implies NP-hardness of FAKEKG.

Theorem 2. The FAKEKG problem is NP-hard.
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Figure 1: Knowledge graph of Example 3.

Our goal is to design algorithms to solve FAKEKG.
Clearly, a good algorithm must make it difficult for an ad-
versary to single out the original KG from the output of the
algorithm. This comes with a caveat. As customary in infor-
mation security (e.g., in cryptography), the algorithm itself
is public, and this knowledge must not allow an adversary to
make a better guess of which KG is the original one. Indeed,
we place ourselves in a very hostile setting, assuming that
an adversary knows the algorithm A as well as U , d, n, and
τ (and K, of course). Thus, an adversary knows everything
except which KG is the original one in K.

In the following example, we report a (not so good) algo-
rithm to solve FAKEKG and show why an algorithm for this
purpose must be carefully designed.

Example 3. Consider the simple KG K0 reported in Fig-
ure 1, which is an excerpt taken from the Nation dataset
(Kim, Xie, and Ong 2016), one of the datasets we used in our
experimental evaluation. Vertices represent countries, while
a directed edge labeled R that goes from vertex A to ver-
texB represents countryA having some relationshipR with
countryB, with the meaning of edge labels being as follows:

• conferences: country A attends conferences in country B;
• exportbooks: country A exports books to country B;
• booktranslations: country A has translations of books

from country B;
• students: country A has students from country B;
• exports: country A exports to country B.

Suppose U contains all the KGs that can be built using
the entities (i.e., vertex labels) and relations (i.e., edge la-
bels) appearing in K0. Let the distance function for U be
the Jaccard distance. Finally, suppose we want to gener-
ate n = 2 fake KGs for K0 with τ = [0, 1]. Consider
now a simple algorithm A that generates fake KGs ei-
ther by adding exactly one (randomly chosen) triple to the
original KG or by deleting exactly one (randomly chosen)
triple from the original KG (with the resulting KG being
in U ). Suppose A is called with I = 〈U , d,K0, n, τ〉 as
defined above, and A returns K = {K0,K1,K2}, where
K1 = K0 \ {〈USA, exports ,Egypt〉} (i.e., K1 has been
derived from K0 by deleting 〈USA, exports ,Egypt〉) and
K2 = K0 ∪ {〈Jordan, students , India〉} (i.e., K2 has been

derived fromK0 by adding 〈Jordan, students , India〉). No-
tice that d(Ki,Kj) ∈ τ for 0 ≤ i 6= j ≤ 2. An adver-
sary looking at K, knowing algorithm A and its input other
than the original KG, can nonetheless identify K0 as the
original KG with certainty. In fact, A(〈U , d,K1, n, τ〉) can
never output K, as K2 has two more triples than K1, and
thus K2 cannot have been generated from K1. Likewise,
A(〈U , d,K2, n, τ〉) can never outputK, asK2 has two more
triples than K1, and thus K1 cannot have been generated
fromK2. Thus, it has to be the case thatA was called giving
K0 as input, which discloses the actual original KG.

The previous example suggests that an algorithm solving
FAKEKG must be carefully designed, in order to prevent an
adversary from taking advantage of knowing the algorithm
and some of the input elements to single out the original KG.
We introduce a property that formalizes when an algorithm
is “adversary-aware”, that is, the knowledge of everything
butK0 does not provide any additional clue on which KG in
K is the original one.

We consider randomized algorithms (deterministic algo-
rithms are a special case of randomized ones). A random-
ized algorithm A might return different outputs when it is
called multiple times with the same input. Thus, for a given
input, rather than having a single output that is uniquely de-
termined by the input, the output of A is a random variable.
More formally, consider a randomized algorithm A to solve
FAKEKG. For an instance I of FAKEKG (which is then an
input of A), we use A(I) to denote the random variable de-
fined as the output of A when the input is I . Then, A(I)
takes values in 2U (i.e., each value is a set of KGs) and it is
associated with a probability distribution Pr : 2U → [0, 1]
with

∑
K∈2U Pr[A(I) = K] = 1.

We now introduce the aforementioned notion of an
adversary-aware algorithm, which is a conservative defini-
tion of security for an algorithm, as it assumes that an adver-
sary knows the algorithm, U , d, n, τ , and K.
Property 1 (Adversary-aware algorithm). A (randomized)
algorithm A to solve FAKEKG is adversary-aware iff it
satisfies the following property: For every instance I =
〈U , d,K0, n, τ〉 of FAKEKG, if K = {K0,K1, . . . ,Kn} is
a possible output of A(I), that is

Pr[A(I) = K] > 0,

then

Pr[A(〈U , d,Ki, n, τ〉) = K] = Pr[A(〈U , d,Kj , n, τ〉) = K]

for every 0 ≤ i 6= j ≤ n.
The rationale behind the previous property is as fol-

lows. Suppose we give as input to A an arbitrary instance
〈U , d,K0, n, τ〉 of FAKEKG, and the returned output isK =
{K0,K1, . . . ,Kn}. Then, in order for A to be adversary-
aware, it has to be the case that all the Ki’s in K have the
same probability of being the original KG. That is, for ev-
ery Ki ∈ K, the probability of K being the output when Ki

is the input remains the same. If this is the case, then the
knowledge of A, U , d, n, τ , and K does not allow an adver-
sary to make a better guess than picking one KG (uniformly
at random) as the original KG.
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Example 4. The algorithmA of Example 3 is not adversary-
aware, since for the output K = {K0,K1,K2} of Ex-
ample 3 we have Pr[A(U , d,K0, n, τ) = K] > 0,
Pr[A(U , d,K1, n, τ) = K] = 0, Pr[A(U , d,K2, n, τ) =
K] = 0. Consider an adversary looking at K and trying to
figure out which KG was the original one. By knowing A as
well as U , d, n, and τ , the adversary can compute the proba-
bilities above and figure out that K0 is certainly the original
KG (as K1 and K2 cannot yield K as result).

Notice that a deterministic algorithm A (i.e., A always re-
turns the same output when it is called multiple times with
the same input) can be seen as a particular randomized algo-
rithm where, for every instance I of FAKEKG, A(I) is such
that Pr[A(I) = K] = 1 for someK ∈ 2U . In such a case, we
write A(I) = K to denote that K is the (only) output of A
when it is called with input I . The following proposition pro-
vides an equivalent characterization of adversary-awareness
for deterministic algorithms.
Proposition 5. A deterministic algorithm A is adversary-
aware iff it satisfies the following property: For every in-
stance I = 〈U , d,K0, n, τ〉 of FAKEKG, if

A(I) = K = {K0,K1, . . . ,Kn},
then

A(〈U , d,Ki, n, τ〉) = K
for every 1 ≤ i ≤ n.

Intuitively, the previous proposition says that for an
adversary-aware deterministic algorithm A, if K is the out-
put of A for some arbitrary input 〈U , d,K0, n, τ〉, then K
must be the output of A also when the input is Ki (together
with U , d, n, and τ ), for every 1 ≤ i ≤ n. That is, all the
Ki’s yield K as output. This does not allow an adversary to
rule out any of the Ki’s as the candidate original KG.

Our goal in the next section is to develop an adversary-
aware algorithm for the FAKEKG problem.

A Graph-theoretic Approach
In this section, we first provide a graph-theoretic character-
ization of the FAKEKG problem and then leverage it to de-
sign an adversary-aware algorithm.

Consider an instance I = 〈U , d,K0, n, τ〉 of FAKEKG.
Recall that a solution is a set {K0,K1, . . . ,Kn} ⊆ U of
distinct KGs such that d(Ki,Kj) ∈ τ for every 0 ≤ i 6=
j ≤ n. We define the distance graph of I as the undirected
graph GI = (VI , EI) such that VI = U and (Ki,Kj) ∈
EI iff d(Ki,Kj) ∈ τ . Then, we can show the following
property, which allows us to look at solutions of I from a
graph-theoretic perspective.
Proposition 6. Consider an instance I = 〈U , d,K0, n, τ〉
of FAKEKG. Then, K ∈ 2U is a solution for I iff K is an
(n+ 1)-clique of GI containing K0.

In light of Proposition 6, one natural approach to solve
FAKEKG is to look for an (n + 1)-clique containing K0

in the distance graph. Algorithm 1, called NAIVECLIQUE-
FAKEKG, is a simple randomized algorithm leveraging this
property. In particular, it chooses an (n + 1)-clique con-
taining K0 from the set of all (n + 1)-cliques containing

Algorithm 1 NAIVECLIQUE-FAKEKG
Input: An instance I = 〈U , d,K0, n, τ〉 of FAKEKG.
Output: A solution for I or ∅.
1: Let C be the set of all (n+ 1)-cliques of GI containing K0.
2: if C 6= ∅ then
3: Pick an element C from C uniformly at random.
4: return C.
5: else
6: return ∅.

K0. Attempting to be adversary-aware, Algorithm 1 picks
the clique uniformly at random. However, as shown below,
NAIVECLIQUE-FAKEKG is not adversary-aware.

Fact 7. NAIVECLIQUE-FAKEKG is not adversary-aware.

To prove Fact 7, it suffices to show an instance of
the FAKEKG problem for which NAIVECLIQUE-FAKEKG
does not satisfy the condition of Property 1, which we report
in the following example.

Example 8. Consider an instance I = 〈U , d,K0, n, τ〉
of FAKEKG, where U = {Ka,Kb,Kc,Kd,Ke,Kf ,Kg},
K0 = Ka, n = 2, and d and τ are such that the dis-
tance graph GI in Figure 2 is derived. Suppose we call
NAIVECLIQUE-FAKEKG with input I . The possible solu-
tions for I are the 3-cliques of GI including Ka, namely
Ca

1 = {Ka,Kb,Kc}, Ca
2 = {Ka,Kb,Kd}, and Ca

3 =
{Ka,Kc,Kd}. Consider now K = Ca

2 = {Ka,Kb,Kd},
which is a possible output of NAIVECLIQUE-FAKEKG. We
show that K does not satisfy the condition stated in Prop-
erty 1. That is, we show that Pr[A(〈U , d,Ki, n, τ〉) = K]
is not always the same for Ki ∈ {Ka,Kb,Kd}, where A
is NAIVECLIQUE-FAKEKG. This means that, to single out
the original KG, an adversary can make a better guess than
picking one KG in K uniformly at random. K is one out of
three possible cliques containing Ka (see Ca

1 , Ca
2 , and Ca

3
above), so we have Pr[A(〈U , d,Ka, n, τ〉) = K] = 1/3.
Let us consider now Pr[A(〈U , d,Kb, n, τ〉) = K]. The 3-
cliques of GI including Kb are Cb

1 = {Kb,Ka,Kc}, Cb
2 =

{Kb,Ka,Kd}, and Cb
3 = {Kb,Kc,Kd}. Thus, supposing

that the original KG was Kb, the probability that A would
have been returned K is Pr[A(〈U , d,Kb, n, τ〉) = K] =
1/3. Finally, let us consider Pr[A(〈U , d,Kd, n, τ〉) = K].
The 3-cliques of GI including Kd are Cd

1 = {Kd,Ka,Kb},
Cd

2 = {Kd,Ka,Kc}, Cd
3 = {Kd,Kb,Kc}, and Cd

4 =
{Kd,Ke,Kf}. Thus, supposing that the original KG was
Kd, the probability that A would have been returned K is
Pr[A(〈U , d,Kd, n, τ〉) = K] = 1/4. As a consequence,

Figure 2: Distance graph for the scenario of Example 8.
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NAIVECLIQUE-FAKEKG is not adversary-aware.
In the preceding example, we note that an adversary who

knows the NAIVECLIQUE-FAKEKG algorithm, has the out-
put K = {Ka,Kb,Kc}, as well as the input parameters U ,
d, n, and τ (but not which KG in K is the original one) can
try to identify the original KG by computing the above prob-
abilities. S/he thus gains important information on Ka and
Kb being more likely than Kd to be the original KG (which
was indeed Ka).

Before presenting an adversary-aware algorithm, we point
out one issue which makes NAIVECLIQUE-FAKEKG non-
adversary-aware. As shown in Example 8, for the output
{Ka,Kb,Kd}, Ka (resp., Kb) belongs to three 3-cliques,
which are all possible solutions for Ka (resp., Kb), while
Kd belongs to four 3-cliques, which are all possible solu-
tions for Kd. This makes the probabilities of Ka, Kb, and
Kd of being the original KG different.

To overcome this issue, we devise a new (adversary-
aware) algorithm whose main ideas are as follows. Pairwise
disjoint cliques of the distance graphs are computed, with
each clique being of size at least n + 1—indeed, as dis-
cussed in the following, our algorithm is optimized so as to
iteratively compute cliques on subgraphs of decreasing size,
and it performs pruning that avoids the computation of all
cliques. For each vertex (i.e., KG) K of a clique C, if K
is the original KG for which we want to generate fakes, the
possible solutions are all subsets K ⊆ C including K with
|K| = n + 1. One of such solutions is picked uniformly at
random. This behavior ensures that all Ki’s in K have the
same number of solutions, which in turn makes the algo-
rithm adversary-aware, as we will show later.

Let us clarify how cliques are computed. In order for
a clique to accommodate as many KGs as possible, max-
imum cliques are computed. More specifically, the algo-
rithm starts by finding a maximum clique C of the distance
graph with |C| ≥ n + 1. If K0 belongs to C, one solution
is picked uniformly at random from the set of all subsets
K = {K0,K1, . . . ,Kn} of C and it is returned. If K0 does
not belong to C, then the (smaller) subgraph G[V \ C] is
considered (i.e., the subgraph of the distance graph induced
by V \ C) and the same process described above is applied.

We now go into the details of our algorithm, called
CLIQUE-FAKEKG (cf. Algorithm 3), which in turn relies
on algorithm CLIQUECOMPUTATION (cf. Algorithm 2).

We start by explaining CLIQUECOMPUTATION, which
takes as input an instance I = 〈U , d,K0, n, τ〉 of the
FAKEKG problem, and it gives as output a set of cliques of
the distance graph of I , with each clique having size at least
n + 1. On line 1, the distance graph GI is defined. Then,
line 2 defines a graph G, which is set equal to GI . Graph
G is the graph where a maximum clique is sought: initially,
it is the entire distance graph GI ; then, it will be a smaller
induced subgraph (indeed, it gets smaller and smaller as the
algorithm proceeds). On line 3, the set C of all cliques that
have been found so far is initialized to the empty set. The
while loop on lines 4–10 looks for (maximum) cliques of
size at least n + 1 containing K0, and it stops when such a
clique has been found or there is no clique of size at least
n+1. On line 5, a maximum clique C of G is found (notice

that |C| ≥ n + 1 because of the while condition). We as-
sume an arbitrary but fixed total order over sets of vertices,
so when there are multiple maximum cliques, one is deter-
ministically chosen according to such order (this is needed
to ensure the algorithm is adversary-aware). On line 6, C is
added to C. If C contains K0, then C is returned (lines 7–8).
Otherwise, C is deleted from G (lines 9–10), and the pro-
cess discussed so far is repeated. Eventually, the algorithm
returns C.

CLIQUE-FAKEKG takes as input an instance I =
〈U , d,K0, n, τ〉 of the FAKEKG problem, and it gives as
output a solution for I or the empty set (meaning that no
solution has been found). First of all, a set C of cliques is
computed by algorithm CLIQUECOMPUTATION (line 1). If
C includes a clique C containing K0 (line 2), which is guar-
anteed to have size at least n+1 by CLIQUECOMPUTATION,
then, among all subsets of C containing n elements differ-
ent from K0, one is picked uniformly at random, denoted S
(line 3). Then, K0 is added to S , and the resulting set is re-
turned (line 4). Otherwise, the empty set is returned (line 6).

As mentioned before, the algorithm offers several com-
putational benefits. First, the set C of cliques can be stored
and be used for subsequent calls of CLIQUE-FAKEKG, as
long as U , d, and τ remain the same. The latter parameters
are indeed less likely to be modified for a fixed application.
If the original KG belongs to a clique in C, no additional
computation is needed. If the original KG does not belong
to any clique in C, the computation can be resumed starting
from the stored C. Notice that this approach can be used even
with different values of n.

Another computational benefit of the algorithm is that it
performs the computation of maximum cliques of graphs
of decreasing size at each iteration, making the computa-
tion less demanding as the algorithm proceeds. Indeed, dif-
ferent scalable algorithms for computing maximum cliques
have been developed and can be employed off-the-shelf, e.g.
(Cheng et al. 2012).

Algorithmic Complexity. Overall, the worst-case time
complexity of CLIQUE-FAKEKG is given by the worst-case
time complexities of building the distance graph and extract-
ing cliques. The former isO(T · |U|2), where T is the worst-
case time complexity to evaluate d. As for the latter, extract-
ing cliques is a well-known problem, for which several al-
gorithms have been developed, and the time complexity de-
pends on the algorithm that is used, e.g., see (Cheng et al.
2012).

We illustrate CLIQUE-FAKEKG, as well as CLIQUE-
COMPUTATION, in the following example.
Example 9. Consider again the FAKEKG instance I of Ex-
ample 8, whose distance graph GI is reported in Figure 2.
Recall that K0 = Ka and n = 2. First of all, CLIQUECOM-
PUTATION is invoked and looks for a maximum clique inGI

with size at least 3. The clique is C = {Ka,Kb,Kc,Kd}.
Then, C is added to C. Since C contains Ka, CLIQUECOM-
PUTATION returns C to CLIQUE-FAKEKG. Since C includes
clique C, which in turn contains Ka, among all subsets of
C containing two KGs different from Ka, one is picked
uniformly at random, say it S . Thus, S might be one of
{Kb,Kc}, {Kb,Kd}, and {Kc,Kd}. Finally, S ∪ {Ka} is
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Algorithm 2 CLIQUECOMPUTATION

Input: An instance I = 〈U , d,K0, n, τ〉 of FAKEKG.
Output: A set of k-cliques of GI with k ≥ n+ 1.
1: Let GI = (VI , EI).
2: G = (V,E) = (VI , EI).
3: C = ∅.
4: while G has a clique of size at least n+ 1 do
5: Let C be a maximum clique of G.
6: Add C to C.
7: if C contains K0 then
8: return C.
9: G′ = G[V \ C].

10: G = G′.
11: return C.

Algorithm 3 CLIQUE-FAKEKG
Input: An instance I = 〈U , d,K0, n, τ〉 of FAKEKG.
Output: A solution for I or ∅.
1: C = CLIQUECOMPUTATION(I).
2: if C includes a clique C containing K0 then
3: Pick a set S of n elements from C \ {K0} uniformly at

random.
4: return S ∪ {K0}.
5: else
6: return ∅.

returned as a solution.

We can show that CLIQUE-FAKEKG is an adversary-
aware algorithm.

Theorem 10. CLIQUE-FAKEKG is adversary-aware.

We conclude by providing some insights on why
CLIQUE-FAKEKG is adversary-aware, using the scenario
discussed in Example 9. Suppose the set S chosen by
CLIQUE-FAKEKG is {Kb,Kc}, and thus the returned so-
lution isK = {Ka,Kb,Kc}. Consider an adversary looking
at K, trying to figure out which is the original KG. Sup-
pose that the adversary knows all elements of I but K0, and
knows how CLIQUE-FAKEKG works. Then, the probability
that CLIQUE-FAKEKG returns K when the original KG is
Ka is 1/3. In fact, recall that {Kb,Kc} is chosen uniformly
at random out of the three sets {Kb,Kc}, {Kb,Kd}, and
{Kc,Kd} (cf. Example 9). If the original KG were Kb, then
{Ka,Kc} would have been chosen uniformly at random out
of the three sets {Ka,Kc}, {Ka,Kd}, and {Kc,Kd}, and
thus the probability that CLIQUE-FAKEKG returns K when
the original KG is Kb is again 1/3. An analogous argument
can be applied to Kc, yielding the same probability. Hence,
Ka, Kb, and Kc are equally likely to be the original KG,
and from knowledge of CLIQUE-FAKEKG and its input the
adversary has learnt nothing!

Experimental Evaluation
In this section we describe the experiments we performed
in order to assess how CLIQUE-FAKEKG can prevent dis-
covery of the original KGs. We implemented the algorithm
in Python on a 2.3 GHz Dual-Core Intel Core i5 with
8GB of LPDDR3 RAM, running MacOS Catalina Version

10.15.6. For duplication purposes, the code, sample KGs,
and sample outputs generated may be downloaded from
https://dsaildartmouth.github.io/FakeKG.pdf.

We used three datasets: Nation4 (Kim, Xie, and Ong
2016), which represents international relations among coun-
tries, UMLS5 (Kim, Xie, and Ong 2016), which represents
biomedical relations, and the Microsoft FB15K-237 (FB for
short)6 (Toutanova et al. 2015), which stores triples and tex-
tual mentions of Freebase entity pairs.

For each of the 3 datasets we extracted 22 original KGs
and, for each KG, we computed 9 fake KGs—in particular,
we computed 3 fake KGs for each of the following ranges
of τ : [0, 1/3], [1/3, 2/3], and [2/3, 1]. Thus, we built a set
T of 66 tests in total, each consisting of 10 KGs including
the original one. The set U was derived as follows: first, we
randomly picked a subgraph of the original dataset; then,
we built new KGs by randomly adding and deleting ver-
tices/edges/labels to the KGs built so far. The average num-
ber of vertices and edges of the original KGs was 15.79 and
9.98, respectively (16.18 and 9.95 for the fake KGs)—we
decided to keep the KGs reasonably sized to allow human
subjects to accurately analyze them. The size of U was 50.
We used the Jaccard distance function.

Evaluation Process
We invited 10 human subjects to review the 66 tests in T ,
in order to gather the results of human evaluation over 660
tests overall. We asked the subjects to select, for each test,
the top-3 KGs they felt were the original one. We developed
a web-based tool to visualize the KGs as directed graphs
with (labeled) vertices and edges, and made it available to
evaluators. For each test, the KGs (1 original and 9 fakes)
were displayed in a random order. A clear description of the
domain and of the labels was provided. All subjects have a
Master or a Ph.D. degree in Computer Engineering.

We reiterate an important point: while a structural dis-
tance function (namely, the Jaccard distance) was used to
generate fake KGs, the evaluation also considered semantic
aspects of KGs, as evaluators had to visually look at KGs la-
beled with semantic information. This put our framework in
a tougher setting (for our system) by allowing human evalu-
ators to make a more educated choice based on the semantics
of the KGs—in contrast to more blind evaluations, such as
a random choice (whose probability of success can be arbi-
trarily lowered by simply augmenting the number of fakes).
For instance, in the Nation dataset, Indonesia taking mili-
tary actions against the US is an unlikely event that can help
evaluators to easily identify a KG to be fake if the KG claims
that Indonesia carries out military actions against the US .

For each dataset, in order to assess the competence of the
subjects on the corresponding topic, we generated 5 ques-
tions each of which presented two vertices and asked which
labels (out of 5 possible ones) made sense if used on an edge

4https://github.com/dongwookim-ml/kg-data/tree/master/
nation

5https://github.com/dongwookim-ml/kg-data/tree/master/umls
6https://www.microsoft.com/en-us/download/details.aspx?id=

52312
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between the two vertices. Each question was generated by
(i) randomly picking a triple 〈s, r, o〉 from the dataset, (ii)
making s and o the basis of the question, (iii) presenting r
as a possible answer, together with 4 other randomly picked
labels from the dataset, and (iv) considering as right all of
the chosen labels r′ for which there was actually a triple
of the form 〈s, r′, o〉 in the dataset. Each question counted
for 5 possible points—a point was given for choosing a cor-
rect label or for not choosing an incorrect one. This way, we
were able to associate a competence score (then normalized
in the [0, 1] interval) with each (subject,dataset) pair. The
overall average score was 0.72 (specifically, 0.61 on the Na-
tion dataset, 0.74 on the UMLS dataset, and 0.81 on the FB
dataset).

In order to evaluate how our proposed approach can de-
ceive human subjects, we defined a metric called Deception
Rate (DR). For each subject h, each original KG K0, and
r ∈ {1, 2, 3, top-3}, we write w(h,K0, r) = 1 if a fake KG
was selected as the r-th choice by h, and w(h,K0, r) = 0
otherwise—in the top-3 case, we assumed the human sub-
ject was correct when any of his top-3 choices was right.
Then, for each r-th choice, we computed the average value
of w of each subject (resp., each KG) over all KGs (resp., all
subjects). Thus, we defined

DR(r, h) =
∑
K0

w(h,K0, r)/|T |

and
DR(r,K0) =

∑
h

w(h,K0, r)/10.

We computed the deception rates DR(r, h) and
DR(r,K0) for all possible choices. Then, we com-
puted the average of DR(r, h) across the human subjects
(i.e., the overall average detection rate for the different
choices) and the standard deviation of DR(r, h) (resp.
DR(r,K0)) across the human subjects (resp. across T ).
Finally, for each dataset and for each of 6 different ranges
of DR(r,K0), we computed the number of tests whose
deception rate falls in the range.

Results
The results are reported in Figure 3, Table 1, and Figure 4.

They show a strong deception ability. In 86.8% of the
cases (Figure 3) the KG that users selected as their top

Figure 3: Average deception rate for the different choices.

St.dev. DR(r, h) St.dev. DR(r,K0)

1st choice 0.06 0.11
2nd choice 0.04 0.09
3rd choice 0.04 0.10

Top-3 choice 0.11 0.16

Table 1: Standard deviation of DR(r, h) (resp. DR(r,K0))
across the human subjects (resp. across T ).

Nation dataset

UMLS dataset

FB dataset

Figure 4: Number of tests for different ranges of DR(r,K0).

choice was in fact fake. Even in the top-3 case, our approach
was able to deceive users in 62.7% of the cases. Moreover,
the standard deviation across the human subjects (Table 1)
was lower than that across the tests, which suggests that our
approach achieves similar performance in achieving decep-
tion on different subjects. Finally (Figure 4), the deception
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rate for the first choice was above 90% on 41 out of 66 tests
(14 out of 22 for Nation, 16 for UMLS, and 11 for FB) and
above 80% on 56 out of 66 tests—for each of the datasets, in
just 1 out of 22 test the deception rate was lower than 70%.
For the second and third choices, the results were similar.
Even in the top-3 case, the deception rate was above 60% in
49 out of 66 tests.

We also looked at the distribution of the KGs selected as
top choices by the evaluators. Interestingly, if we consider
the three distance ranges chosen for the fake KGs, the KG
wrongly picked as top choice was in the range [0, 1/3] in 243
cases, in the range [1/3, 2/3] in 186 cases, and in the range
[2/3, 1] in 144 cases (overall, 573 out of 660 incorrect top
choices were made). If we instead consider the probability
of correctly identifying the original KG, its value was in the
range [0, 0.1] in 41 tests, in the range [0.2, 0.3] in 22 tests,
and 0.4 in 3 tests—overall, the probability was obviously
1−

∑
h DR(1,h)

10 = 13.2%.
Thus, the results suggest that our approach is successful

at deceiving users.
The average time to generate one test for the Nation (resp.

UMLS, FB) dataset was 10.57 (resp. 12.44, 50.55) seconds.

Related Work
Cyber-deception has been extensively used in different con-
texts during the past several years (Shabtai, Elovici, and
Rokach 2012). For example, in the digital music industry,
fake recordings containing terrible music have been gener-
ated in order to dissuade users from downloading unautho-
rized songs (Kushner 2003).

Deception has also been studied for files/documents (Yuill
et al. 2004; Voris, Boggs, and Stolfo 2012; Chakraborty et al.
2019), software code (Park and Stolfo 2012), and at the sys-
tems level (Jajodia et al. 2016, 2017; Wang et al. 2012). A
honeypot scheme has been proposed in (Yuill et al. 2004),
which distributed decoy honey files throughout the system
so that alerts are triggered as soon as an attacker breaks
into the system and accesses a honey file. (Voris, Boggs,
and Stolfo 2012) developed an automated system to translate
the text into another language, with untranslatable but entic-
ing nouns (such as company names, hot topics, and bogus
login information) sprinkled throughout the text, increasing
the probability that the attacker will try to steal the file. (Park
and Stolfo 2012) works on deception at the code level and
generates fake but believable Java code with techniques like
obfuscation. A multi-layer deception system that provides
in-depth defense against sophisticated attacks is designed by
(Wang et al. 2012). (Chakraborty et al. 2019) propose the use
of fake document generation as a way of mitigating intellec-
tual property theft. Their FORGE system can deal with text
only and uses meta-centrality metrics to identify key features
to be replaced in the text of the document.

Meanwhile, there are also works on deception detection
for the purpose of detecting fraud on document, code or
text (Afroz, Brennan, and Greenstadt 2012; Caliskan-Islam
et al. 2015). For instance, (Afroz, Brennan, and Greenstadt
2012) exploits linguistic features of written documents to
detect stylistic deception and distinguish deceptive docu-

ments from original ones. (Caliskan-Islam et al. 2015) in-
vestigate machine learning methods to de-anonymize source
code authors of C/C++ using coding style.

Different security problems have been investigated in the
context of graph-structured knowledge, such as the compres-
sion and encryption of RDF datasets (Fernández et al. 2020)
and search over encrypted graph data (Poh, Mohamad, and
Z’aba 2012). Methods using some principled ways to intro-
duce noise into knowledge graphs, such as typed sampling,
relational sampling, and corrupting positive instances, have
been proposed in the literature—e.g., see (Kotnis and Nas-
tase 2017). As a direction for future work, it would be inter-
esting to investigate how such approaches can be integrated
into our framework.

Conclusions

In this paper, we consider the problem of generating a set
K = {K0,K1, . . . ,Kn} of KGs from a given original
KG K0 so that the adversary has to invest time and effort
in separating the real KG from the fake ones. Our formu-
lation of this problem takes as input, not only the origi-
nal KG, but several parameters. Our algorithm assumes a
strong adversary—one who knows all the parameters we
use as well as the algorithm we use. The only thing s/he
does not know is the identity of K0. Yet, we want to pre-
vent the adversary from identifying K0. We first formulate
the FAKEKG problem and show it is NP-hard, but that it
does not necessarily fool the adversary. We then develop our
CLIQUE-FAKEKG algorithm and show that it satisfies the
adversary-aware requirement. We run experiments on 3 very
different datasets and show that CLIQUE-FAKEKG is very
effective at deceiving adversaries.

We reiterate that the work in this paper applies to many
domains that use knowledge graphs and/or similar con-
structs such as software design (Berardi, Calvanese, and
De Giacomo 2005), biomedical applications (Alshahrani
et al. 2017; Alshahrani 2019), finance (Pujara 2017) and
business (Atzeni et al. 2020). However, this paper is not a
work in isolation. It is intended to be used as part of 3 steps
used to generate fake versions of a technical document: (i)
Given an original document, we extract a knowledge graph
from it using off-the-shelf methods such as (Luan et al.
2018). (ii) We then use the techniques in this paper to gen-
erate a set K of fake KGs. (iii) For each of the fake KGs in
K, we then generate a fake document using techniques sim-
ilar to those in (Koncel-Kedziorski et al. 2019).7 This paper
focuses on (ii).
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7Readers might wonder how legitimate users may separate the
real document from the fakes. As a solution based on Message Au-
thentication Codes is already provided in (Chakraborty et al. 2019),
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